Skip to main content

Salicylic Acid and Phospholipid Signaling

  • Chapter
  • First Online:
SALICYLIC ACID

Abstract

Salicylic acid (SA) signaling has been associated with phospholipids and the enzymes that metabolize them. However, despite studies conducted by other research groups, the role of SA signaling via phospholipids in plant responses to phytoregulators is not yet fully understood. The signal transduction pathway involves the generation of secondary messengers, through the enzymes such as phospholipase C (PLC) and phospholipase D (PLD). The signaling pathway of SA was evaluated in different models of plants, where it was observed that this compound regulates enzymatic activities to generate a rapid cellular response. In this chapter, we review the important aspects of the relationship of the SA effects with phospholipid signal transduction and cellular responses to this component.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aftab, T., Masroor, M., Khan, A., Idrees, M., & Naeem, M. (2010). Salicylic acid acts as potent enhancer of growth, photosynthesis and artemisinin production in Artemisia annua L. Journal of Crop Science and Biotechnology, 13, 183–188.

    Article  Google Scholar 

  • Altúzar-Molina, A. R. (2008). Efecto del ácido salicílico y del jasmonato de metilo en la vía de transducción de señales a través de fosfolípidos en células en suspensión de Capsicum chinense Jacq. Tesis de Maestría Centro de Investigación Científica de Yucatán (pp. 1–55). Mérida, Yucatán.

    Google Scholar 

  • Altúzar-Molina, A. R., Muñoz-Sánchez, J. A., Vázquez-Flota, F., Monforte-González, M., Racagni-Di, Palma. G., & Hernández-Sotomayor, S. M. T. (2011). Phospholipidic signaling and vanillin production in response to salicylic acid and methyl jasmonate in Capsicum chinense J. cells. Plant Physiology and Biochemistry, 49, 151–158.

    Article  PubMed  Google Scholar 

  • Babar-Ali, M., Hanh, E. J., & Paek, K. Y. (2007). Methyl jamonate and salycilic acid induced oxidative stress and accumulation of phenolics in Panax ginseng bioreactor root suspension cultures. Molecules, 12, 607–621.

    Article  Google Scholar 

  • Bargmann, B. O., & Munnik, T. (2006). The role of phospholipase D in plant stress responses. Current Opinion in Plant Biology, 9, 515–522.

    Article  PubMed  CAS  Google Scholar 

  • Bulgakov, V. P., Tchernoded, G. K., Mischenko, N. P., Khodakovskaya, M. V., Glazunov, V. P., Radchenko, S. V., et al. (2002). Effect of salicylic acid, methyl jasmonate, ethephon and cantharidin on anthraquinone production by Rubia cordifolia callus cultures transformed with the rolB and rolC genes. Journal of Biotechnology, 97, 213–221.

    Article  PubMed  CAS  Google Scholar 

  • Canché-Chay, C. I. (2006). Efecto de inductores en la síntesis de capsaicina y las vías de transducción de señales a través de fosfoinosítidos en suspensiones celulares de Capsicum chinense Jacq. Tesis de Licenciatura Universidad Autónoma de Yucatán, Facultad de Química (pp. 1–62). Mérida, Yucatán.

    Google Scholar 

  • Chapman, K. D. (1998). Phospholipase activity during plant growth and development and in response to environmental stress. Trends in Plant Science, 3, 419–426.

    Article  Google Scholar 

  • Chen, Z., Iyer, S., Caplan, A., Klessig, D. F., & Fan, B. (1997). Differential accumulation of salicylic acid and salicylic acid sensitive catalase in different rice tissues. Plant Physiology, 114, 193–201.

    Article  PubMed  CAS  Google Scholar 

  • Chen, G., Snyder, C., Greer, M. S., & Randall, J. (2011). Biology and Biochemistry of Plant Phospholipases. Critical Reviews in Plant Sciences, 30, 239–258.

    Article  Google Scholar 

  • Cheng, S. H., Sheen, J., Gerrish, C., & Bolwell, G. P. (2001). Molecular identification of phenylalanine ammonia-lyase as a substrate of a specific constitutively active Arabidopsis CDPK expressed in maize protoplasts. FEBS Letters, 503, 185–188.

    Article  PubMed  CAS  Google Scholar 

  • Dat, J. F., Lopez-Delgado, H., Foyer, C. H., & Scott, I. M. (1998). Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedling. Plant Physiology, 116, 1351–1357.

    Google Scholar 

  • DiCosmo, F., & Misawa, M. (1985). Eliciting secondary metabolism in plant cell cultures. Trends in Biotechnology, 3, 318–322.

    Google Scholar 

  • Gross, W., Yang, W., & Boss, W. F. (1992). Release of carrot plasma membrane-associated phosphatidylinositol kinase by phospholipase A2 and activation by a 70 kDa protein. Biochimica et Biophysica Acta, 1134, 73–80.

    Article  PubMed  CAS  Google Scholar 

  • Gutiérrez-Carbajal, M. G. (2006). Estudios de la síntesis de capsaicina en cultivos in vitro de C. chinense Jacq. Tesis de Maestría Centro de Investigación Científica de Yucatán (pp. 1–55). Mérida, Yucatán.

    Google Scholar 

  • Gutiérrez-Carbajal, M. G., Monforte-González, M., Miranda-Ham, M. L., Godoy-Hernández, G., & Vázquez-Flota, F. (2011). Induction of capsaicinoid synthesis in Capsicum chinense cell cultures by salicylic acid or methyl jasmonate. Biologia Plantarum, 54, 430–434.

    Article  Google Scholar 

  • Horváth, E., Szalai, G., & Janda, T. (2007). Induction of abiotic stress tolerance by salicylic acid signaling. Journal Plant Growth Regulation, 26, 290–300.

    Google Scholar 

  • Hong, Y., Zhang, W., & Wang, X. (2010). Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity. Plant, Cell and Environment, 33, 627–635.

    Article  PubMed  CAS  Google Scholar 

  • Idrees, M., Naeem, M., Aftab, T., & Khan, M. M. (2010). Salicylic acid mitigates salinity stress by improving antioxidant defence system and enhances vincristine and vinblastine alkaloids production in periwinkle [Catharanthus roseus (L.) G. Don]. Acta Physiologiae Plantarum, 33, 987–999.

    Article  Google Scholar 

  • Janda, T., Szalai, G., Tari, I., & Páldi, E. (1999). Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta, 208, 175–180.

    Article  CAS  Google Scholar 

  • Kiddle, G. A., Doughty, K. J., & Wallsgrove, R. M. (1994). Salicylic acid-induced accumulation of glucosinolates in oilseed rape (Brassica napus L.) leaves. Journal of Experimental Botany, 45, 1343–1346.

    Article  CAS  Google Scholar 

  • Krinke, O., Novotná, Z., Valentová, O., & Martinec, J. (2007). Inositol trisphosphate receptor in higher plants: Is it real? Journal of Experimental Botany, 58, 361–376.

    Article  PubMed  CAS  Google Scholar 

  • Krinke, O., Flemr, M., Vergnolle, S. C., Renou, J. P., Taconnat, L., Yu, A., et al. (2009). Phospholipase D activation is an early component of the salicylic acid signaling pathway in Arabidopsis cell suspensions. Plant Physiology, 150, 424–436.

    Article  PubMed  CAS  Google Scholar 

  • Legendre, L., Yueh, Y. G., Crain, R., Handdock, N., Heinstein, P. F., & Low, P. S. (1993). Phospholipase C activation during elicitation of the oxidative burst in cultured plant cells. Journal of Biological Chemistry, 268, 24559–24563.

    PubMed  CAS  Google Scholar 

  • Leslie, C. A., & Romani, R. J. (1986). Salicylic acid: A new inhibitor of ethylene biosynthesis. Plant Cell Reports, 5, 144–146.

    Article  CAS  Google Scholar 

  • Liu, H. T., Huang, W. D., Pan, Q. H., Weng, F. H., Zhan, J. C., Liu, Y., et al. (2006). Contributions of PIP2-specific-phospholipase C and free salicylic acid to heat acclimation-induced thermotolerance in pea leaves. Journal of Plant Physiology, 163, 405–416.

    Article  PubMed  CAS  Google Scholar 

  • Malamy, J., & Klessig, D. F. (1992). Salicylic acid and plant disease resistance. The Plant Journal, 2, 643–654.

    Article  CAS  Google Scholar 

  • Maldonado, R., Goñi, O., Escribano, M. I., & Merodio, C. (2007). Regulation of phenylalanine ammonia-lyase enzyme in annona fruit: Kinetic characteristics and inhibitory effect of ammonia. Journal of Food Biochemistry, 31, 161–178.

    Article  CAS  Google Scholar 

  • Munnik, T., & Nielsen, E. (2011). Green light for polyphosphoinositide signals in plants. Current Opinion in Biology, 14, 489–497.

    Article  CAS  Google Scholar 

  • Munnik, T., & Testerink, C. (2008). Plant phospholipid signaling: “In a nutshell”. Journal of Lipid Research, 260–265.

    Google Scholar 

  • Munnik, T., & Verneer, J. E. M. (2010). Osmotic stress-induced phosphoinositide and inositol phosphate signaling in plants. Plant, Cell and Environment, 33, 655–669.

    Article  PubMed  CAS  Google Scholar 

  • Munnik, T., Van Himbergen, J. A. J., Ter, R. B., Braun, F. J., Irvine R. F., Vanden Ende, H., & Musgrave, A. (1998). Detailed analysis of the turnover of phosphoinosides and phosphatidic acid upon activation of phospholipases C and D in Chamydomonas cells treated with non-permeabilizing concentrations of mastoporan. Planta, 207, 133–145.

    Google Scholar 

  • Nawrath, C., Métraux, J. P., Genoud, T. (2005). Chemical signals in plant resistance: Salicylic acid. In S. Tuzun & E. Bent (Eds.), Multigenic and Induced Systemic Resistance in Plants (pp. 143–165). Dordrecht: Springer US.

    Google Scholar 

  • Nieto-Pelayo Y., 2006. Inducción de la síntesis de capsaicinoides en cultivos de células en suspensión de Capsicum chinense. Tesis de Licenciatura.Facultad de Química, Universidad Autónoma de Yucatán (pp. 1–95).

    Google Scholar 

  • Ochoa-Alejo, N., & Gómez-Peralta, J. E. (1993). Activity of enzymes involved in capsaicin biosynthesis in callus tissue and fruits of chili pepper (capsicum annuum l.). Journal of Agriculture and Food Chemistry, 46, 1695–1697.

    Google Scholar 

  • Ochoa-Alejo, N., & Salgado, G. (1992). Phenylalanine ammonia-lyase activity and capsaicin-precursor compounds in p-fluorophenylalanine-resistant and -sensitive variant cells of chili pepper (capsicum annuum). Physiologia Plantarum, 85, 173–179.

    Article  CAS  Google Scholar 

  • Pitta-Alvarez, S. I., Spollansky, T. C., & Giulietti, A. M. (2000). The influence of different biotic and abiotic elicitors on the production and profile of tropane alkaloids in hairy root cultures of Brugmansia candida. Enzyme and Microbial Technology, 26, 252–258.

    Article  CAS  Google Scholar 

  • Profotová, B., Burketová, L., Novotná, Z., Martinec, J., & Valentová, O. (2006). Involvement of phospholipase C and D in early response to SAR and ISR inducers in Brassica napus plants. Plant Physiology and Biochemistry, 44, 143–151.

    Article  PubMed  Google Scholar 

  • Ramani, S., & Chellilah, J. (2007). UV-B-induced signaling events leading to enhanced-production of catharanthine in Catharanthus roseus cell suspension cultures. BMC Plant Biology, 7, 61.

    Article  PubMed  Google Scholar 

  • Raskin, I., Skubatz, H., Tang, W., & Meeuse, B. J. D. (1990). Salicylic acid levels in thermogenic and non-thermogenic plants. Annals of Botany, 66, 369–373.

    CAS  Google Scholar 

  • Shabani, L., Ehsanpour, A., Asghari, G., & Emami, J. (2009). Glycyrrhizin production by in vitro cultured Glycyrrhiza glabra elicited by methyl Jasmonate and salicylic acid. Russian Journal of Plant Physiology, 56, 621–626.

    Article  CAS  Google Scholar 

  • Staxén, I., Pical, C., Montgomery, L. T., Gray, J. E., Hetherington, A. M., & Mcainsh, M. R. (1999). Abscisic acid induces oscillations in guard-cell cytosolic gree calcium that involve phosphoinositide-specific phospholipase C. PNAS, 96, 1779–1784.

    Article  PubMed  Google Scholar 

  • Strobel, N. E., & Kuc, A. (1995). Chemical and biological inducers of systemic acquired resistance to pathogen protec cucumber and tocacco from damage caused by paraquat and cupric chloride. Phytopathology, 85, 1306–1310.

    Google Scholar 

  • Sudha, G., & Ravishankar, G. A. (2003). Influence of methyl jasmonate and salicylic acid in the enhancement of capsaicin production in cell suspension cultures of Capsicum frutescens mill. Current Science, 85, 1212–1217.

    CAS  Google Scholar 

  • Toyoda, K., Kawahara, T., Ichinose, Y., Yamada, T., & Shiraishi, T. (2000). Potentiation of phytoalexin accumulation in elicitor-treated epicotyls of pea (Pisum sativum) by a diacylglycerol kinase inhibitor. Journal of Phytopathology, 148, 633–636.

    Article  CAS  Google Scholar 

  • Vasconsuelo, A. A., Giuletti, A. M., Picotto, G., Rodrıguez-Talou, J., & Boland, R. (2003). Involvement of the PLC/PKC pathway in chitosan-induced anthraquinone production by Rubia tinctorum L. cell cultures. Plant Science, 165, 429–436.

    Article  CAS  Google Scholar 

  • Vlot, A. C., Amick, D. D., & Klessig, D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual review of Phytopathology, 47, 177–206.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X. (2001). Plant phospholipases. Plant Molecular Biology, 52, 211–231.

    CAS  Google Scholar 

  • Wang, X. (2002). Phospholipase D in hormonal and stress signaling. Current Opinion Plant Biology, 5, 408–414.

    Article  CAS  Google Scholar 

  • Wang, Y. D., Wu, J. C., & Yuan, Y. J. (2007). Salicylic acid-induced taxol production and isopentenyl pyrophosphate biosynthesis in suspension cultures of Taxus chinensis var. mairei. Cell Biology International, 31, 1179–1183.

    Article  PubMed  CAS  Google Scholar 

  • Xue, H. W., & Chen, M. X. (2009). Function and regulation of phospholipid signaling in plants. Biochemical Journal, 421, 145–156.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, T., Minami, E., & Shibuya, N. (2003). Activation of phospholipases by N-acetylchitooligosaccharide elicitor in suspension-cultured rice cells mediates reactive oxygen generation. Physiologia Plantarum, 118, 361–370.

    Google Scholar 

  • Yamaguchi, T., Tanabe, S., Minami, E., & Shibuya, N. (2004). Activation of phospholipase D induced by hydrogen peroxide in suspension-cultured rice cells. Plant Cell Physiology, 9, 1261–1270.

    Article  Google Scholar 

  • Yamaguchi, T., Minami, E., Ueki, J., & Shibuya, N. (2005). Elicitor-induced activation of phospholipases plays an important role for the induction of defense responses in suspensión-cultured rice cells. Plant Cell Physiology, 46, 579–587.

    Article  PubMed  CAS  Google Scholar 

  • Yang, S., Qiao, B., Lu, S. H., & Yuan, Y. J. (2007). Comparative lipidomics analysis of cellular development and apoptosis in two Taxus cell lines. Biochimica et Biophysica Acta, 1771, 600–612.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S., & Klessig, D. F. (1997). Salicylic acid activates a 48 kD MAP kinase in tobacco. The Plant Cell, 9, 809–824.

    PubMed  CAS  Google Scholar 

  • Zhao, J., Davis, L. C., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23, 283–333.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, X., & Zhong, J. (2011). Intracellular salicylic acid is involved in signal cascade regulating low ammonium-induced taxoid biosynthesis in suspension cultures of Taxus chinensis. Applied Microbiology and Biotechnology, 90, 1027–1036.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the technical support of MSc. Miriam-Monforte-González. This work is funded by a CONACYT project (98352) and a scholarship for BARJ (89390).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Teresa Hernández-Sotomayor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rodas-Junco, B.A., Armando Muñoz-Sánchez, J., Teresa Hernández-Sotomayor, S.M. (2013). Salicylic Acid and Phospholipid Signaling. In: Hayat, S., Ahmad, A., Alyemeni, M. (eds) SALICYLIC ACID. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6428-6_3

Download citation

Publish with us

Policies and ethics