Skip to main content

Insertion-Deletion Marker Targeting for Intron Polymorphisms

  • Chapter
  • First Online:
Diagnostics in Plant Breeding

Abstract

Insertion-deletion (indel) polymorphisms are the second most frequent type of polymorphisms in genomes following single nucleotide polymorphisms (SNPs). As one of the types of indel markers to detect polymorphisms among individuals, we focus on markers targeting intron length polymorphisms (ILPs) in this chapter. Intron polymorphism (IP) markers including ILP markers are based on more abundant polymorphisms in intron regions compared to exon regions. Conserved genic sequences and structures including exon-intron junctions allow the development of IP markers for orphan crops without genomic information. Based on syntenic relationships among genomes of related species, IP markers can be developed in regions of interest based on the single-copy genes, such as for regions containing quantitative trait loci (QTL). Although introns are non-coding sequences in genes, they are suggested to have functions such as control of transcription. In some cases, ILPs are directly associated with trait variation as functional nucleotide polymorphisms (FNPs). This chapter reviews recent studies on the characteristics of IPs, especially ILPs, how to develop markers, and their application for the genetic analysis and molecular breeding of crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert TJ, Molla MN, Muzny DM, Nazareth L, Wheeler D, Song XZ, Richmond TA, Middle CM, Rodesch MJ, Packard CJ, Weinstock GM, Gibbs RA (2007) Direct selection of human genomic loci by microarray hybridization. Nat Methods 4:903–905

    Article  PubMed  CAS  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Arai-Kichise Y, Shiwa Y, Nagasaki H, Ebana K, Yoshikawa H, Yano M, Wakasa K (2011) Discovery of genome-wide DNA polymorphisms in a landrace cultivar of japonica rice by whole-genome sequencing. Plant Cell Physiol 52:274–282

    Article  PubMed  CAS  Google Scholar 

  • Ashikari M, Sasaki A, Ueguchi-Tanaka M, Itoh H, Nishimura A, Datta S, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice ‘green revolution’. Breed Sci 52:143–150

    Article  CAS  Google Scholar 

  • Ashikari M, Sakakibara H, Lin SY, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    Article  PubMed  CAS  Google Scholar 

  • Burrell AM, Taylor KG, Williams RJ, Cantrell RT, Menz MA, Pepper AE (2011) A comparative genomic map for Caulanthus amplexicaulis and related species (Brassicaceae). Mol Ecol 20:784–798

    Article  PubMed  Google Scholar 

  • Cabrera A, Kozik A, Howad W, Arus P, Iezzoni AF, van der Knaap E (2009) Development and bin mapping of a Rosaceae Conserved Ortholog Set (COS) of markers. BMC Genomics 10:562

    Article  PubMed  Google Scholar 

  • Chapman MA, Chang J, Weisman D, Kesseli RV, Burke JM (2007) Universal markers for comparative mapping and phylogenetic analysis in the Asteraceae (Compositae). Theor Appl Genet 115:747–755

    Article  PubMed  CAS  Google Scholar 

  • Choi HK, Kim D, Uhm T, Limpens E, Lim H, Mun JH, Kalo P, Penmetsa RV, Seres A, Kulikova O, Roe BA, Bisseling T, Kiss GB, Cook DR (2004) A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics 166:1463–1502

    Article  PubMed  CAS  Google Scholar 

  • Eagles HA, Cane K, Vallance N (2009) The flow of alleles of important photoperiod and vernalisation genes through Australian wheat. Crop Pasture Sci 60:646–657

    Article  CAS  Google Scholar 

  • Edwards JD, Janda J, Sweeney MT, Gaikwad AB, Liu B, Leung H, Galbraith DW (2008) Development and evaluation of a high-throughput, low-cost genotyping platform based on oligonucleotide microarrays in rice. Plant Methods 4:13

    Article  PubMed  Google Scholar 

  • Fan CH, Xing YZ, Mao HL, Lu TT, Han B, Xu CG, Li XH, Zhang QF (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    Article  PubMed  CAS  Google Scholar 

  • Fedorov A, Merican AF, Gilbert W (2002) Large-scale comparison of intron positions among animal, plant, and fungal genes. Proc Natl Acad Sci USA 99:16128–16133

    Article  PubMed  CAS  Google Scholar 

  • Feltus FA, Singh HP, Lohithaswa HC, Schulze SR, Silva TD, Paterson AH (2006) A comparative genomics strategy for targeted discovery of single-nucleotide polymorphisms and conserved-noncoding sequences in orphan crops. Plant Physiol 140:1183–1191

    Article  PubMed  CAS  Google Scholar 

  • Ferreira AO, Cardoso HG, Macedo ES, Breviario D, Arnholdt-Schmitt B (2009) Intron polymorphism pattern in AOX1b of wild St John’s wort (Hypericum perforatum) allows discrimination between individual plants. Physiol Plant 137:520–531

    Article  PubMed  CAS  Google Scholar 

  • Fiume E, Christou P, Giani S, Breviario D (2004) Introns are key regulatory elements of rice tubulin expression. Planta 218:693–703

    Article  PubMed  CAS  Google Scholar 

  • Fredslund J, Madsen LH, Hougaard BK, Nielsen AM, Bertioli D, Sandal N, Stougaard J, Schauser L (2006a) A general pipeline for the development of anchor markers for comparative genomics in plants. BMC Genomics 7:207

    Article  PubMed  Google Scholar 

  • Fredslund J, Madsen LH, Hougaard BK, Sandal N, Stougaard J, Bertioli D, Schauser L (2006b) GeMprospector – online design of cross-species genetic marker candidates in legumes and grasses. Nucleic Acids Res 34:W670–W675

    Article  PubMed  CAS  Google Scholar 

  • Fu D, Szűcs P, Yan L, Helguera M, Skinner JS, von Zitzewitz J, Hayes PM, Dubcovsky J (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics 273:54–65

    Article  PubMed  CAS  Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974

    Article  PubMed  CAS  Google Scholar 

  • Guillet-Claude C, Birolleau-Touchard C, Manicacci D, Rogowsky PM, Rigau J, Murigneux A, Martinant JP, Barriere Y (2004) Nucleotide diversity of the ZmPox3 maize peroxidase gene: relationships between a MITE insertion in exon 2 and variation in forage maize digestibility. BMC Genet 5:19

    Article  PubMed  Google Scholar 

  • Gupta S, Kumari K, Das J, Lata C, Puranik S, Prasad M (2011) Development and utilization of novel intron length polymorphic markers in foxtail millet (Setaria italica (L.) P. Beauv.). Genome 54:586–602

    Article  PubMed  CAS  Google Scholar 

  • Hemming MN, Fieg S, Peacock WJ, Dennis ES, Trevaskis B (2009) Regions associated with repression of the barley (Hordeum vulgare) VERNALIZATION1 gene are not required for cold induction. Mol Genet Genomics 282:107–117

    Article  PubMed  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Ishikawa G, Yonemaru J, Saito M, Nakamura T (2007) PCR-based landmark unique gene (PLUG) markers effectively assign homoeologous wheat genes to A, B and D genomes. BMC Genomics 8:135

    Article  PubMed  Google Scholar 

  • Ishikawa G, Nakamura T, Ashida T, Saito M, Nasuda S, Endo TR, Wu JZ, Matsumoto T (2009) Localization of anchor loci representing five hundred annotated rice genes to wheat chromosomes using PLUG markers. Theor Appl Genet 118:499–514

    Article  PubMed  CAS  Google Scholar 

  • Iwata H, Gaston A, Remay A, Thouroude T, Jeauffre J, Kawamura K, Oyant LHS, Araki T, Denoyes B, Foucher F (2012) The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry. Plant J 69:116–125

    Article  PubMed  CAS  Google Scholar 

  • Jayashree B, Jagadeesh VT, Hoisington D (2008) CISprimerTOOL: software to implement a comparative genomics strategy for the development of conserved intron scanning (CIS) markers. Mol Ecol Resour 8:575–577

    Article  PubMed  CAS  Google Scholar 

  • Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309–334

    Article  CAS  Google Scholar 

  • Kawahigashi H, Kasuga S, Ando T, Kanamori H, Wu JZ, Yonemaru J, Sazuka T, Matsumoto T (2011) Positional cloning of ds1, the target leaf spot resistance gene against Bipolaris sorghicola in sorghum. Theor Appl Genet 123:131–142

    Article  PubMed  Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304:982

    Article  PubMed  Google Scholar 

  • Lai JS, Li RQ, Xu X, Jin WW, Xu ML, Zhao HN, Xiang ZK, Song WB, Ying K, Zhang M, Jiao YP, Ni PX, Zhang JG, Li D, Guo XS, Ye KX, Jian M, Wang B, Zheng HS, Liang HQ, Zhang XQ, Wang SC, Chen SJ, Li JS, Fu Y, Springer NM, Yang HM, Wang JA, Dai JR, Schnable PS, Wang J (2010) Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet 42:1027–1130

    Article  PubMed  CAS  Google Scholar 

  • Li X, Ramchiary N, Choi SR, Van Nguyen D, Hossain MJ, Yang HK, Lim YP (2010) Development of a high density integrated reference genetic linkage map for the multinational Brassica rapa Genome Sequencing Project. Genome 53:939–947

    Article  PubMed  CAS  Google Scholar 

  • Lister R, Gregory BD, Ecker JR (2009) Next is now: new technologies for sequencing of genomes, transcriptomes, and beyond. Curr Opin Plant Biol 12:107–118

    Article  PubMed  CAS  Google Scholar 

  • Liu HL, Lin YA, Chen GB, Shen Y, Liu J, Zhang SZ (2012) Genome-scale identification of resistance gene analogs and the development of their intron length polymorphism markers in maize. Mol Breed 29:437–447

    Article  CAS  Google Scholar 

  • Lohithaswa HC, Feltus FA, Singh HP, Bacon CD, Bailey CD, Paterson AH (2007) Leveraging the rice genome sequence for monocot comparative and translational genomics. Theor Appl Genet 115:237–243

    Article  PubMed  CAS  Google Scholar 

  • Lyons LA, Laughlin TF, Copeland NG, Jenkins NA, Womack JE, Obrien SJ (1997) Comparative anchor tagged sequences (CATS) for integrative mapping of mammalian genomes. Nat Genet 15:47–56

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Ashikari M, Matsuoka M (2011) The role of QTLs in the breeding of high-yielding rice. Trends Plant Sci 16:319–326

    Article  PubMed  CAS  Google Scholar 

  • Morgante M, Olivieri AM (1993) PCR-amplified microsatellites as markers in plant genetics. Plant J 3:175–182

    Article  PubMed  CAS  Google Scholar 

  • Oliver SN, Finnegan EJ, Dennis ES, Peacock WJ, Trevaskis B (2009) Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene. Proc Natl Acad Sci USA 106:8386–8391

    Article  PubMed  CAS  Google Scholar 

  • Palaisa KA, Morgante M, Williams M, Rafalski A (2003) Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell 15:1795–1806

    Article  PubMed  CAS  Google Scholar 

  • Palumbi SR, Baker CS (1994) Contrasting population-structure from nuclear intron sequences and mtDNA of humpback whales. Mol Biol Evol 11:426–435

    PubMed  CAS  Google Scholar 

  • Panjabi P, Jagannath A, Bisht NC, Padmaja KL, Sharma S, Gupta V, Pradhan AK, Pental D (2008) Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics 9:113

    Article  PubMed  Google Scholar 

  • Poczai P, Cernák I, Gorji AM, Nagy S, Taller J, Polgár Z (2010) Development of intron targeting (IT) markers for potato and cross-species amplification in Solanum nigrum (Solanaceae). Am J Bot 97:e142–e145

    Article  PubMed  CAS  Google Scholar 

  • Roy SW, Gilbert W (2006) The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev Genet 7:211–221

    PubMed  Google Scholar 

  • Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448:83–86

    Article  PubMed  CAS  Google Scholar 

  • Salathia N, Lee HN, Sangster TA, Morneau K, Landry CR, Schellenberg K, Behere AS, Gunderson KL, Cavalieri D, Jander G, Queitsch C (2007) Indel arrays: an affordable alternative for genotyping. Plant J 51:727–737

    Article  PubMed  CAS  Google Scholar 

  • Sargent DJ, Rys A, Nier S, Simpson DW, Tobutt KR (2007) The development and mapping of functional markers in Fragaria and their transferability and potential for mapping in other genera. Theor Appl Genet 114:373–384

    Article  PubMed  CAS  Google Scholar 

  • Selinger DA, Chandler VL (1999) Major recent and independent changes in levels and patterns of expression have occurred at the b gene, a regulatory locus in maize. Proc Natl Acad Sci USA 96:15007–15012

    Article  PubMed  CAS  Google Scholar 

  • Shang W, Zhou R, Jia J, Gao L (2010) RGA-ILP, a new type of functional molecular markers in bread wheat. Euphytica 172:263–273

    Article  CAS  Google Scholar 

  • Shimada N, Nakatsuka T, Nakano Y, Kakizaki Y, Abe Y, Hikage T, Nishihara M (2009) Identification of gentian cultivars using SCAR markers based on intron-length polymorphisms of flavonoid biosynthetic genes. Sci Hortic (Amsterdam) 119:292–296

    Article  CAS  Google Scholar 

  • Shirasawa K, Asamizu E, Fukuoka H, Ohyama A, Sato S, Nakamura Y, Tabata S, Sasamoto S, Wada T, Kishida Y, Tsuruoka H, Fujishiro T, Yamada M, Isobe S (2010a) An interspecific linkage map of SSR and intronic polymorphism markers in tomato. Theor Appl Genet 121:731–739

    Article  PubMed  CAS  Google Scholar 

  • Shirasawa K, Isobe S, Hirakawa H, Asamizu E, Fukuoka H, Just D, Rothan C, Sasamoto S, Fujishiro T, Kishida Y, Kohara M, Tsuruoka H, Wada T, Nakamura Y, Sato S, Tabata S (2010b) SNP discovery and linkage map construction in cultivated tomato. DNA Res 17:381–391

    Article  PubMed  CAS  Google Scholar 

  • Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40:1023–1028

    Article  PubMed  CAS  Google Scholar 

  • Shu Y, Li Y, Zhu Y, Zhu Z, Lv D, Bai X, Cai H, Ji W, Guo D (2010) Genome-wide identification of intron fragment insertion mutations and their potential use as SCAR molecular markers in the soybean. Theor Appl Genet 121:1–8

    Article  PubMed  CAS  Google Scholar 

  • Sommer R, Tautz D (1989) Minimal homology requirements for PCR primers. Nucleic Acids Res 17:6749

    Article  PubMed  CAS  Google Scholar 

  • Sonah H, Deshmukh RK, Sharma A, Singh VP, Gupta DK, Gacche RN, Rana JC, Singh NK, Sharma TR (2011) Genome-wide distribution and organization of microsatellites in plants: an insight into marker development in Brachypodium. PLoS One 6:e21298

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Yonemaru J, Hisano H, Kanamori H, King J, King IP, Tase K, Sanada Y, Komatsu T, Yamada T (2009) Development of intron-flanking EST markers for the Lolium/Festuca complex using rice genomic information. Theor Appl Genet 118:1549–1560

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Kiyoshi T, Yonemaru J (2012) The development of highly transferable intron-spanning markers for temperate forage grasses. Mol Breed 30:1–8

    Article  CAS  Google Scholar 

  • Wang X, Zhao X, Zhu J, Wu W (2005) Genome-wide investigation of intron length polymorphisms and their potential as molecular markers in rice (Oryza sativa L.). DNA Res 12:417–427

    Article  PubMed  CAS  Google Scholar 

  • Wang MJ, Zhang Y, Lin ZS, Ye XG, Yuan YP, Ma W, Xin ZY (2010) Development of EST-PCR markers for Thinopyrum intermedium chromosome 2Ai#2 and their application in characterization of novel wheat-grass recombinants. Theor Appl Genet 121:1369–1380

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Chen S, Yu S (2011) Functional markers developed from multiple loci in GS3 for fine marker-assisted selection of grain length in rice. Theor Appl Genet 122:905–913

    Article  PubMed  Google Scholar 

  • Wei H, Fu Y, Arora R (2005) Intron-flanking EST-PCR markers: from genetic marker development to gene structure analysis in Rhododendron. Theor Appl Genet 111:1347–1356

    Article  PubMed  CAS  Google Scholar 

  • Wu F, Mueller LA, Crouzillat D, Petiard V, Tanksley SD (2006) Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and systematic studies: a test case in the euasterid plant clade. Genetics 174:1407–1420

    Article  PubMed  CAS  Google Scholar 

  • Wu F, Eannetta NT, Xu Y, Durrett R, Mazourek M, Jahn MM, Tanksley SD (2009a) A COSII genetic map of the pepper genome provides a detailed picture of synteny with tomato and new insights into recent chromosome evolution in the genus Capsicum. Theor Appl Genet 118:1279–1293

    Article  PubMed  CAS  Google Scholar 

  • Wu F, Eannetta NT, Xu Y, Tanksley SD (2009b) A detailed synteny map of the eggplant genome based on conserved ortholog set II (COSII) markers. Theor Appl Genet 118:927–935

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Yonemaru J, Yano M (2009) Towards the understanding of complex traits in rice: substantially or superficially? DNA Res 16:141–154

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Jin G, Zhao X, Zheng Y, Xu Z, Wu W (2007) PIP: a database of potential intron polymorphism markers. Bioinformatics 23:2174–2177

    Article  PubMed  CAS  Google Scholar 

  • You FM, Huo N, Gu YQ, Lazo GR, Dvorak J, Anderson OD (2009) ConservedPrimers 2.0: a high-throughput pipeline for comparative genome referenced intron-flanking PCR primer design and its application in wheat SNP discovery. BMC Bioinformatics 10:331

    Article  PubMed  Google Scholar 

  • Zhao X, Yang L, Zheng Y, Xu Z, Wu W (2009) Subspecies-specific intron length polymorphism markers reveal clear genetic differentiation in common wild rice (Oryza rufipogon L.) in relation to the domestication of cultivated rice (O. sativa L.). J Genet Genomics 36:435–442

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Zhu JY, Li ZY, Yi CD, Liu J, Zhang HG, Tang SZ, Gu MH, Liang GH (2009) Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication. Genetics 183:315–324

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiko Yamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tamura, Ki., Yonemaru, Ji., Yamada, T. (2013). Insertion-Deletion Marker Targeting for Intron Polymorphisms. In: Lübberstedt, T., Varshney, R. (eds) Diagnostics in Plant Breeding. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5687-8_10

Download citation

Publish with us

Policies and ethics