Skip to main content

Energy from Microalgae: A Short History

  • Chapter
  • First Online:
Book cover Algae for Biofuels and Energy

Part of the book series: Developments in Applied Phycology ((DAPH,volume 5))

Abstract

The current extensive research and development activities on microalgae as commercial sources of renewable fuels and energy rely on the basic and applied research on biology, physiology, culture methods, culture systems etc. undertaken in the past. This chapter provides a brief overview of some of the major steps in the development of R&D on the mass culture algae for practical applications and commercial products, with a particular focus on microalgae as sources of renewable energy. This chapter attempts to highlight the development and evolution of many of the key concepts and research in the field including the development of large-scale culture systems and attempts at long term stable high productivity algae cultures, the understanding of the major limitations affecting outdoor algae cultures, especially light utilization efficiency and the lessons learned from the development of commercial microalgae production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aach HG (1952) Über Wachstum und Zusammensetzung von Chlorella pyrenoidosa bei unterschiedlichen Lichtstärken und Nitratmengen. Arch Mikrobiol 17:213–246

    Google Scholar 

  • Anderson DB, Eakin DE (1985) A process for the production of polysaccharides from microalgae. Biotechnol Bioeng Symp 15:533–547

    Google Scholar 

  • Anon (1953) Pilot-plant studies in the production of Chlorella. In: Burlew JS (ed) Algal culture: from laboratory to pilot plant. Carnegie Institution, Washington, DC, pp 235–272

    Google Scholar 

  • Ansell AD, Raymont JEG, Lauder KF, Crowley E, Shackley P (1963) Studies on the mass culture of Phaeodactylum. II. The growth of Phaeodactylum and other species in outdoor tanks. Limnol Oceanogr 8:184–206

    Google Scholar 

  • Arad S, Richmond A (2004) Industrial production of microalgal cell-mass and secondary products – species of high potential: Porphyridium sp. In: Richmond A (ed) Microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 289–297

    Google Scholar 

  • Avron M, Ben-Amotz A (1992) Dunaliella: physiology, biochemistry and biotechnology. CRC Press, Boca Raton, p 240

    Google Scholar 

  • Bachofen R (1982) The production of hydrocarbons by Botryococcus braunii. Experientia 38:47–49

    CAS  Google Scholar 

  • Barclay WR, Meager KM, Abril JR (1994) Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J Appl Phycol 6:123–129

    CAS  Google Scholar 

  • Becker EW (1994) Microalgae. Biotechnology and Microbiology. Cambridge University Press, Cambridge, p 293

    Google Scholar 

  • Becker EW, Venkataraman LV (1982) Biotechnology and exploitation of algae – the Indian approach. German Agency for Tech. Co-op, Eschborn

    Google Scholar 

  • Beijerinck MW (1890) Kulturversuche mit Zoochloren, Lichenen­gonidien und anderen niederen Algen. Bot Z 48:725–785

    Google Scholar 

  • Belay A (1997) Mass culture of Spirulina outdoors – the earthrise farms experience. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell-biology and biochemistry. Taylor & Francis, London, pp 131–158

    Google Scholar 

  • Belay A, Ota Y, Miyakawa K, Shimamatsu H (1994) Production of high quality Spirulina at earthrise farms. In: Phang SM, Lee K, Borowitzka MA, Whitton B (eds) Algal biotechnology in the Asia-Pacific region. Institute of Advanced Studies, University of Malaya, Kuala Lumpur, pp 92–102

    Google Scholar 

  • Ben-Amotz A (2004) Industrial production of microalgal cell-mass and secondary products – major industrial species: Dunaliella. In: Richmond A (ed) Microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 273–280

    Google Scholar 

  • Ben-Amotz A, Avron M (1990) The biotechnology of cultivating the halotolerant alga Dunaliella. Trends Biotechnol 8:121–126

    CAS  Google Scholar 

  • Ben-Amotz A, Polle JEW, Subba Rao DV (eds) (2009) The alga Dunaliella. Biodiversity, Physiology, Genomics and Biotechnology. Scibce Publishers, Enfield, p 556

    Google Scholar 

  • Benemann JR (2000) Hydrogen production by microalgae. J Appl Phycol 12:291–300

    CAS  Google Scholar 

  • Benemann J (2009) Biohydrogen production. Final summary report 1996–2000. Hawaii Natural Energy Institute, University of Hawaii, Honolulu, pp 1–28

    Google Scholar 

  • Benemann JR, Koopman BL, Baker D, Goebel RP, Oswald WJ (1977) Design of the algal pond subsystem of the photosynthesis energy factory. Final report to the U.S. Energy Research and Development Administration. NTIS #HCPT3548-01, pp 1–98

    Google Scholar 

  • Benemann JR, Pursoff P, Oswald WJ (1978) Engineering design and cost analysis of a large-scale microalgae biomass system. Final report to the U.S. Department of Energy. NTIS #HCP/T1605-01 UC-61, pp 1–91

    Google Scholar 

  • Benemann J, Koopman B, Weissman J, Eisenberg D, Goebel R (1980) Development of microalgae harvesting and high-rate pond technologies in California. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier/North Holland Biomedical Press, Amsterdam, pp 457–495

    Google Scholar 

  • Boonyaratpalin M, Thongrod S, Supamattaya K, Britton G, Schlipalius LE (2001) Effects of ß-carotene source, Dunaliella salina, and astaxanthin on pigmentation, growth, survival and health of Penaeus monodon. Aquacult Res 32(Suppl 1):182–190

    CAS  Google Scholar 

  • Borowitzka LJ (1991) Development of western biotechnology algal beta-carotene plant. Biores Technol 38:251–252

    Google Scholar 

  • Borowitzka LJ (1992) Commercial Dunaliella production: history of development. In: Villa TG, Abalde J (eds) Profiles on biotechnology. Universidade de Compostela, Santiago de Compostela, pp 233–245

    Google Scholar 

  • Borowitzka LJ (1994) Commercial pigment production from algae. In: Phang SM, Lee K, Borowitzka MA, Whitton B (eds) Algal biotechnology in the Asia-Pacific region. Institute of Advanced Studies, University of Malaya, Kuala Lumpur, pp 82–84

    Google Scholar 

  • Borowitzka MA (1997) Algae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401

    Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    CAS  Google Scholar 

  • Borowitzka MA (2005) Carotenoid production using microorganisms. In: Cohen Z, Ratledge C (eds) Single cell oils. AOCS, Urbana, pp 124–137

    Google Scholar 

  • Borowitzka LJ, Borowitzka MA (1981) Roche’s development of Dunaliella technology in Australia. In: Thirteenth International Botanical Congress, Sydney. Abstracts 183

    Google Scholar 

  • Borowitzka MA, Borowitzka LJ (1988a) Limits to growth and carotenogenesis in laboratory and large-scale outdoor cultures of Dunaliella salina. In: Stadler T, Mollion J, Verdus MC, Karamanos Y, Morvan H, Christiaen D (eds) Algal biotechnology. Elsevier Applied Science, Barking, pp 371–381

    Google Scholar 

  • Borowitzka MA, Borowitzka LJ (eds) (1988b) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 1–466

    Google Scholar 

  • Borowitzka LJ, Borowitzka MA (1989) ß-Carotene (Provitamin A) production with algae. In: Vandamme EJ (ed) Biotechnology of vitamins, pigments and growth factors. Elsevier Applied Science, London, pp 15–26

    Google Scholar 

  • Borowitzka LJ, Borowitzka MA (1990) Commercial production of ß-carotene by Dunaliella salina in open ponds. Bull Mar Sci 47:244–252

    Google Scholar 

  • Borowitzka LJ, Borowitzka MA, Moulton T (1984) The mass culture of Dunaliella: from laboratory to pilot plant. Hydrobiologia 116/117:115–121

    Google Scholar 

  • Borowitzka LJ, Moulton TP, Borowitzka MA (1985) Salinity and the commercial production of beta-carotene from Dunaliella salina. Nova Hedwigia, Beih 81:217–222

    Google Scholar 

  • Boussiba S, Vonshak A, Cohen Z, Richmond A (1997) A procedure for large-scale production of astaxanthin from Haematococcus. PCT Patent Application 9,728,274

    Google Scholar 

  • Buchholz R (1999) Bioreactor with U-shaped reactor elements. European Patent 911386

    Google Scholar 

  • Bunnag B, Tanticharoen M, Ruengjitchatchawalya M (1998) Present status of microalgal research and cultivation in Thailand. In: Subramanian G, Kaushik BD, Venkataraman GS (eds) Cyanobacterial Biotechnology. Oxford & IBH Publishing Co, New Delhi, pp 325–328

    Google Scholar 

  • Burlew JS (ed) (1953a) Algae culture: from laboratory to pilot plant. Carnegie Institution of Washington, Washington, DC, pp 1–357

    Google Scholar 

  • Burlew JS (1953b) Current status of large-scale culture of algae. In: Burlew JS (ed) Algal culture: from laboratory to pilot plant. Carnegie Institution, Washington, DC, pp 3–23

    Google Scholar 

  • Caldwell, Connell Engineers (1976) Algae harvesting from sewage. Australian Government Publishing Service, Canberra, p 97

    Google Scholar 

  • Calvin M, Benson AA (1948) The path of carbon in photosynthesis. Science 107:476–480

    CAS  Google Scholar 

  • Casadevall E, Dif D, Largeau C, Gudin C, Chaumont D, Desanti O (1985) Studies on batch and continuous cultures of Botryococcus braunii: hydrocarbon production in relation to physiological state, cell ultrastructure, and phosphate nutrition. Biotechnol Bioeng 27:286–295

    CAS  Google Scholar 

  • Chaumont D, Thepenier C, Gudin C, Junjas C (1988) Scaling up a tubular photoreactor for continuous culture of Porphyridium cruentum from laboratory to pilot plant (1981–1987). In: Stadler T, Mollion J, Verdus MC, Karamanos Y, Morvan H, Christiaen D (eds) Algal biotechnology. Elsevier Applied Science, London, pp 199–208

    Google Scholar 

  • Chen PH (1987) Factors influencing methane fermentation of microalgae. PhD thesis, University of California, Berkeley

    Google Scholar 

  • Chihara M, Nakayama T, Inouye I, Kodama M (1994) Chlorococcum littorale, a new marine green coccoid alga (Chlorococcales, Chlorophyceae). Arch Protistenk 144:227–235

    Google Scholar 

  • Ciferri O (1983) Spirulina, the edible microorganism. Microbiol Rev 47:551–578

    CAS  Google Scholar 

  • Clement G (1975) Production et constituents caracteristiques des algues Spirulina platensis et maxima. Ann Nutr Aliment 29:477–488

    CAS  Google Scholar 

  • Clement G, Giddey C, Menzi R (1967) Amino acid composition and nutritive value of the alga Spirulina maxima. J Sci Food Agric 18:497–501

    CAS  Google Scholar 

  • Cohn F (1850) Zur Naturgeschichte des Protococcus pluvialis Kützing. Nova Acta Academia Leopoldensis Caroliensis 22:607

    Google Scholar 

  • Cook PM (1950) Large-scale culture of Chlorella. In: Brunel J, Prescott GW (eds) The culture of algae. Charles F. Kettering Foundation, Dayton, pp 53–77

    Google Scholar 

  • Curtain CC, West SM, Schlipalius L (1987) Manufacture of ß-carotene from the salt lake alga Dunaliella salina; the scientific and technical background. Aust J Biotechnol 1:51–57

    CAS  Google Scholar 

  • Cysewski GR, Lorenz RT (2004) Industrial production of microalgal cell-mass and secondary products – species of high potential: Haematococcus. In: Richmond A (ed) Microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 281–288

    Google Scholar 

  • D’Elia CF, Ryther JH, Losordo TM (1977) Productivity and nitrogen balance in large scale phytoplankton cultures. Water Res 11:1031–1040

    Google Scholar 

  • Davis EA, Dedrick J, French CS, Milner HW, Myers J, Smith JHC, Spoehr HA (1953) Laboratory experiments on Chlorella culture at the Carnegie Institution of Washington Department of Plant Biology. In: Burlew JS (ed) Algal culture: from laboratory to pilot plant. Carnegie Institution of Washington, Washington, DC, pp 105–153

    Google Scholar 

  • Delente JJ, Behrens PW, Hoeksma SD (1992) Closed photobioreactor and method of use. US Patent 5,151,347

    Google Scholar 

  • Doucha J, Livansky K (1995) Novel outdoor thin-layer high density microalgal culture system: productivity and operational parameters. Algol Stud 76:129–147

    Google Scholar 

  • Doucha J, Straka F, Livansky K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412

    Google Scholar 

  • Durand-Chastel H (1980) Production and use of Spirulina in Mexico. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier/North Holland Biomedical Press, Amsterdam, pp 51–64

    Google Scholar 

  • El-Fouly MM (1980) Proceedings of the second egyptial algae symposium. National Research Centre, Cairo, pp 1–232

    Google Scholar 

  • Emerson R, Arnold W (1932) The photochemical reactions in photosynthesis. J Gen Physiol 16:191–205

    CAS  Google Scholar 

  • Evenari M, Mayer AM, Gottesman E (1953) Experiments of culture of algae in Israel. In: Burlew JS (ed) Algal culture. From laboratory to pilot plant. Carnegie Institution, Washington, DC, pp 197–203

    Google Scholar 

  • Famintzin A (1871) Die anorganischen Salze als ausgezeichneted Hülfsmittel zum Studium der Entwicklung niederer chlorophyllhaltiger Organismen. Bull Acad Sci St Petersburg 17:31–70

    Google Scholar 

  • Farrar WV (1966) Tecuitlatl: a glimpse of Aztec food technology. Nature 211:341–342

    Google Scholar 

  • Florenzano G (1958) Prime ricerche in Italia, nell’impianto sperimentale di Firence, sulla cultura massiva non sterile de alghe. Nuovo Giornale Botanica Italia 65:1–15

    Google Scholar 

  • Gaffron H (1939) Reduction of CO2 with H2 in green plants. Nature 143:204–205

    CAS  Google Scholar 

  • Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26:219–240

    CAS  Google Scholar 

  • Geoghegan MJ (1951) Unicellular algae as food. Nature 168:426–427

    CAS  Google Scholar 

  • Geoghegan MJ (1953) Experiments with Chlorella at Jealott’s Hill. In: Burlew JS (ed) Algal culture: from laboratory to pilot plant. Carnegie Institution, Washington, DC, pp 182–189

    Google Scholar 

  • Goldman JC (1979) Outdoor algal mass cultures – I. Applications. Water Res 13:1–19

    Google Scholar 

  • Goldman JC, Ryther JH (1976) Temperature-influenced species competition in mass culture of marine phytoplankton. Biotechnol Bioeng 18:1125–1144

    Google Scholar 

  • Goldman JC, Stanley HI (1974) Relative growth of different species of marine algae in wastewater-seawater mixtures. Mar Biol 28:17–25

    CAS  Google Scholar 

  • Golueke CG, Oswald WJ (1965) Harvesting and processing of sewage-grown planktonic algae. J Water Pollut Control Fed 37:471–498

    Google Scholar 

  • Golueke CG, Oswald WJ, Gotaas HB (1957) Anaerobic digestion of algae. Appl Microbiol 5:47–55

    CAS  Google Scholar 

  • Gowans CS (1976) Publications by Franz Moewus on the genetics of algae. In: Lewin RA (ed) The genetics of algae. Blackwell Scientific Publications, Oxford, pp 310–332

    Google Scholar 

  • Grobbelaar JU (1989) Do light/dark cycles of medium frequency enhance phytoplankton productivity? J Appl Phycol 1:333–340

    Google Scholar 

  • Grobbelaar JU (1994) Turbulence in mass algal cultures and the role of light dark fluctuations. J Appl Phycol 6:331–335

    Google Scholar 

  • Grobbelaar JU, Nedbal L, Tichy V (1996) Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation. J Appl Phycol 8:335–343

    CAS  Google Scholar 

  • Gromov BV (1967) Main trends in experimental work with algal cultures in the U.S.S.R. In: Jackson DF (ed) Algae, man and the environment. Syracuse University Press, Syracuse, pp 249–278

    Google Scholar 

  • Gudin C (1976) Method of growing plant cells. US Patent 3,955,317

    Google Scholar 

  • Gudin C, Chaumont D (1983) Solar biotechnology study and development of tubular solar receptors for controlled production of photosynthetic cellular biomass. In: Palz W, Pirrwitz D (eds) Proceedings of the workshop and E.C. Contractor’s meeting in Capri. Reidel Publ. Co, Dordrecht, pp 184–193

    Google Scholar 

  • Gummert F, Meffert ME, Stratmann H (1953) Nonsterile large-scale culture of Chlorella in greenhouse and open air. In: Burlew JS (ed) Algal culture: from laboratory to pilot plant. Carnegie Institution of Washington, Washington, DC, pp 166–176

    Google Scholar 

  • Hamasaki A, Shioji N, Ikuta Y, Hukuda Y, Makita T, Hirayama K, Matuzaki H, Tukamoto T, Sasaki S (1994) Carbon dioxide fixation by microalgal photosynthesis using actual flue gas from a power plant. Appl Biochem Biotechnol 45–46:799–809

    Google Scholar 

  • Hanagata N, Takeuchi T, Fukuju Y, Barnes DJ, Karube I (1992) Tolerance of microalgae to high CO2 and high temperature. Phytochemistry 31:3345–3348

    CAS  Google Scholar 

  • Harder R, von Witsch H (1942a) Bericht über Versuche zur Fettsynthese mittels autotropher Microorganismen. Forschungsdienst Sonderheft 16:270–275

    CAS  Google Scholar 

  • Harder R, von Witsch H (1942b) Die Massenkultur von Diatomeen. Ber Deutsch Bot Ges 60:146–152

    Google Scholar 

  • Heussler P (1980) Advance and prospects of microalgae culture experiences of the Peruvian German microalgae project. In: El-Fouly MM (ed) Proceedings of the Second Egyptian Algae Symposium. March 11–13, 1979, Cairo. National Research Centre, Cairo, pp 173–200

    Google Scholar 

  • Hills CB (1984) Method for growing a biomass in a closed tubular system. US Patent 4,473,970

    Google Scholar 

  • Hu Q, Guterman H, Richmond A (1996) A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnol Bioeng 51:51–60

    CAS  Google Scholar 

  • Hu Q, Kurano N, Kawachi M, Iwasaki I, Miyachi S (1998a) Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor. Appl Microbiol Biotechnol 49:655–662

    CAS  Google Scholar 

  • Hu Q, Zarmi Y, Richmond A (1998b) Combined effects of light intensity, light-path, and culture density on output rate of Spirulina platensis (Cyanobacteria). Eur J Phycol 32:165–171

    Google Scholar 

  • Huntley ME, Wahlberg DD, Redalje DG (1991) Process and apparatus for the production of photosynthetic microbes. PCT Patent Application 91/05849

    Google Scholar 

  • Hutner SH, Provasoli L (1964) Nutrition of algae. Ann Rev Plant Physiol 15:37–56

    CAS  Google Scholar 

  • Ichimura S, Ozono M (1976) Photosynthesis reactor tank. US Patent 3,986,297

    Google Scholar 

  • Ikawa M, Sasner JJ, Haney JF (1997) Inhibition of Chlorella growth by degradation and related products of linoleic and linolenic acids and the possible significance of polyunsaturated fatty acids in phytoplankton ecology. Hydrobiologia 356:143–148

    CAS  Google Scholar 

  • Janssen M, Kuijpers TC, Veldhoen B, Ternbach MB, Tramper J, Mur LR, Wijffels RH (1999) Specific growth rate of Chlamydomonas reinhardtii and Chlorella solokiniana under medium duration light/dark cycles: 13–87 s. J Biotechnol 70:323–333

    CAS  Google Scholar 

  • Javamardian M, Palsson BO (1991) High density photoautotrophic algal cultures: design, construction and operation of a novel photobioreactor system. Biotechnol Bioeng 38:1182–1189

    Google Scholar 

  • Johnston HW (1970) The biological and economic importance of algae. III. Edible algae of fresh and brackish waters. Tuatara 18:19–24

    Google Scholar 

  • Jüttner F (1982) Mass cultivation of microalgae and photosynthetic bacteria under sterile conditions. Proc Biochem 7:2–7

    Google Scholar 

  • Jüttner F, Victor H, Metzner H (1971) Massenanzucht phototropher Organismen in einer automatischen Kulturanlage. Arch Mikrobiol 77:275–280

    Google Scholar 

  • Kanizawa T, Fujita C, Yuhata T, Sasa T (1958) Mass culture of unicellular algae using the ‘open circulation method’. J Gen Appl Microbiol 4:135–152

    Google Scholar 

  • Kawaguchi K (1980) Microalgae production systems in Asia. In: Shelef G, Soeder CJ (eds) Algae biomass production and use. Elsevier/North Holland Biomedical Press, Amsterdam, pp 25–33

    Google Scholar 

  • Ketchum BH, Redfield AC (1938) A method for maintaining a continuous supply of marine diatoms by culture. Biol Bull 75:165–169

    Google Scholar 

  • Ketchum BH, Lillick L, Redfield AC (1949) The growth and optimum yield s of unicellular algae in mass culture. J Cell Comp Physiol 33:267–279

    CAS  Google Scholar 

  • Kobayashi K (1997) Tubular-type photobioreactor. Japan Patent 9,121,835

    Google Scholar 

  • Kodama M, Ikemoto H, Miyachi S (1993) A new species of highly CO2-tolerant fast-growing marine microalga for high-density cultivation. J Mar Biotechnol 1:21–25

    Google Scholar 

  • Kok B (1948) A critical consideration of the quantum yield of Chlorella photosynthesis. Enzymologia 13:1–56

    CAS  Google Scholar 

  • Kok B (1953) Experiments on photosynthesis by Chlorella in flashing light. In: Burlew JS (ed) Algal culture: from laboratory to pilot plant. Carnegie Institution of Washington, Washington, DC, pp 63–75

    Google Scholar 

  • Kok B (1956) Photosynthesis in flashing light. Biochim Biophys Acta 21:245–258

    CAS  Google Scholar 

  • Krauss RW (1962) Mass culture of algae for food and other organic compounds. Am J Bot 49:425–435

    Google Scholar 

  • Krüger GHJ, Eloff JN (1981) Defined algal production systems for the culture of microalgae. University of the Orange Free State Publications, Series C 3:16–23

    Google Scholar 

  • Kurano N, Ikemoto H, Miyashita H, Hasegawa T, Hata H, Miyachi S (1995) Fixation and utilization of carbon dioxide by microalgal photosynthesis. Energy Convers Manage 36:689–692

    CAS  Google Scholar 

  • Kyle DJ, Boswell KDB, Gladue RM, Reeb SE (1992) Designer oils from microalgae as nutritional supplements. In: Bills DD, Kung SD (eds) Biotechnology and Nutrition. Butterworth-Heinemann, Boston, pp 451–468

    Google Scholar 

  • Largeau C, Casadevall E, Berkaloff C, Dhamelincourt P (1980) Sites of accumulation and composition of hydrocarbons in Botryococcus braunii. Phytochemistry 19:1043–1951

    CAS  Google Scholar 

  • Laws EA (1986) Use of the flashing light effect to stimulate production in algal mass cultures. Nova Hedwigia Beih 83:230–234

    Google Scholar 

  • Lee YK (1997) Commercial production of microalgae in the Asia-Pacific rim. J Appl Phycol 9:403–411

    Google Scholar 

  • Lerche W (1937) Untersuchungen über Entwicklung und Fortpflanzung in der Gattung Dunaliella. Arch Protistenk 88:236–268

    CAS  Google Scholar 

  • Levin GV, Clendenning JR, Gibor A, Bogar FD (1962) Harvesting of algae by froth flotation. Appl Microbiol 10:1–69

    Google Scholar 

  • Lewin RA (1949) Genetics of Chlamydomonas – paving the way. Biol Bull 97:243–244

    Google Scholar 

  • Lewin RA (1951) Isolation of sexual strains of Chlamydomonas. J Gen Microbiol 5:926–929

    CAS  Google Scholar 

  • Lewin RA (1953) The genetics of Chlamydomonas moewusii. J Genet 51:543–550

    Google Scholar 

  • Lewin RA (1954) Mutants of Chlamydomonas moewusii with impaired motility. J Gen Microbiol 11:358–363

    CAS  Google Scholar 

  • Li DM (1997) Spirulina industry in China: present status and future prospects. J Appl Phycol 9:25–28

    CAS  Google Scholar 

  • Massyuk NP (1966) Mass culture of the carotene containing alga Dunaliella salina Teod. Ukr Bot Zh 23:12–19

    Google Scholar 

  • Massyuk NP (1973) Morphology, taxonomy, ecology and geographic distribution of the genus Dunaliella Teod. And prospects for its potential utilization. Naukova Dumka, Kiev, p 242

    Google Scholar 

  • Massyuk NP, Abdula EG (1969) First experiment of growing carotene-containing algae under semi- industrial conditions. Ukr Bot Zh 26:21–27

    Google Scholar 

  • Matsumoto H, Shioji N, Hamasaki A, Ikuta Y, Fukuda Y, Sato M, Endo N, Tsukamoto T (1995) Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler. Appl Biochem Biotechnol 51–52:681–692

    Google Scholar 

  • Matsunaga T, Izumida H (1984) Seawater-based methane production from blue-green algae biomass by marine bacteria coculture. Biotechnol Bioeng 14:407–418

    CAS  Google Scholar 

  • Mayer AM, Zuri U, Sham Y, Ginzburg H (1964) Problems of design and ecological considerations in mass culture of algae. Biotechnol Bioeng 6:173–190

    Google Scholar 

  • Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol 127:740–748

    CAS  Google Scholar 

  • Melis A, Neidhardt J, Benemann J (1999) Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. J Appl Phycol 10:515–525

    Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496

    CAS  Google Scholar 

  • Michiki H (1995) Biological CO2 fixation and utilization project. Energy Convers Manage 36:701–705

    CAS  Google Scholar 

  • Milner HW (1951) Possibilities in photosynthetic methods for production of oils and proteins. JAOCS 28:363–367

    CAS  Google Scholar 

  • Miquel P (1892) De la culture artificielle des Diatomées. Comp Rend Acad Sci Paris 94:780–782

    Google Scholar 

  • Mitsui A, Kumazawa S (1977) Hydrogen production by marine photosynthetic organisms as a potential energy source. Biological solar energy conversion. In: Proceedings of the conference, Miami, Fla, November 15–18, 1976. Academic, New York, pp 23–51

    Google Scholar 

  • Mituya A, Nyunoya T, Tamiya H (1953) Pre-pilot-plant experiments on algal mass culture. In: Burlew JS (ed) Algal culture: from laboratory to pilot plant. Carnegie Institution, Washington, DC, pp 273–281

    Google Scholar 

  • Miyake J, Matsunaga T, San Pietro A (eds) (2001) Biohydrogen II. Pergamon Press, New York

    Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Miyachi S, Chihara M (1993) Prasinococcus capsulatus gen et sp nov, a new marine coccoid prasinophyte. J Gen Appl Microbiol 39:571–582

    CAS  Google Scholar 

  • Mohn FH (1980) Experiences and strategies in the recovery of biomass from mass cultures of microalgae. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier, Amsterdam, pp 547–571

    Google Scholar 

  • Mohn FH (1988) Harvesting of micro-algal biomass. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal Biotechnology. Cambridge University Press, Cambridge, pp 395–414

    Google Scholar 

  • Mohn FH, Cordero-Contreras O (1990) Harvesting of the alga Dunaliella – some consideration concerning its cultivation and impact on the production costs of ß-carotene. Berichte des Forschungszentrums Jülich 2438:1–50

    Google Scholar 

  • Moldowan JM, Seifert WK (1980) First discovery of botryococcane in petroleum. J Chem Soc Chem Commun 1980:912–914

    Google Scholar 

  • Moore A (2001) Blooming prospects? EMBO Rep 2:462–464

    CAS  Google Scholar 

  • Morimura Y, Nihei T, Sasa T (1955) Outdoor bubbling culture of some unicellular algae. J Gen Appl Microbiol 1:173–182

    Google Scholar 

  • Moulton TP, Borowitzka LJ, Vincent DJ (1987) The mass culture of Dunaliella salina for ß-carotene: from pilot plant to production plant. Hydrobiologia 151–152:99–105

    Google Scholar 

  • Murakami M, Inkenouchi M (1997) The biological CO2 fixation and utilization project by RITE (2) – screening and breeding of microalgae with high capability in fixing CO2. Energy Convers Manage 38:S493–S497

    CAS  Google Scholar 

  • Myers J, Clark LB (1944) Culture conditions and the development of the photosynthetic mechanisms. II. An apparatus for the continuous culture of Chlorella. J Gen Physiol 28:103–112

    CAS  Google Scholar 

  • Nanba M, Kawata M (1998) CO2 removal by a bioreactor with photosynthetic algae using solar-collecting and light-diffusing optical devices. Stud Surf Sci Catal 114:633–636

    CAS  Google Scholar 

  • Nedbal L, Tichy L, Xiong F, Grobbelaar JU (1996) Microscopic green algae and cyanobacteria in high-frequency intermittent light. J Appl Phycol 8:325–333

    CAS  Google Scholar 

  • Negoro M, Shioji N, Miyamoto K, Miura Y (1991) Growth of microalgae in high CO2 gas and effects of SOx and NOx. Appl Biochem Biotechnol 28–29:877–886

    Google Scholar 

  • Negoro M, Shioji N, Ikuta Y, Makita T, Uchiumi M (1992) Growth characteristics of microalgae in high-concentration CO2 gas. Effects of culture medium trace components, and impurities thereon. Appl Biochem Biotechnol 34–35:681–692

    Google Scholar 

  • Negoro M, Hamasaki A, Ikuta Y, Makita T, Hirayama K, Suzuki S (1993) Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler. Appl Biochem Biotechnol 39:643–653

    Google Scholar 

  • Neidhardt J, Benemann JR, Zhang L, Melis A (1998) Photosystem-II repair and chloroplast recovery from irradiance stress: relationship between chronic photoinhibition, light harvesting chlorophyll antenna size and photosynthetic productivity in Dunaliella salina (green algae). Photosynth Res 56:175–184

    CAS  Google Scholar 

  • Neori A (2011) “Green water” microalgae: the leading sector in world aquaculture. J Appl Phycol 23:143–149

    Google Scholar 

  • Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol 12:499–506

    CAS  Google Scholar 

  • Oswald WJ (1969a) Current status of microalgae from wastes. Chem Eng Prog Symp Ser 65:87–92

    CAS  Google Scholar 

  • Oswald WJ (1969b) Growth characteristics of microalgae in domestic sewage: environmental effects on productivity. In: Proceedings of the IBP/PP technical meeting

    Google Scholar 

  • Oswald WJ (1988) Micro-algae and waste-water treatment. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal Biotechnology. Cambridge University Press, Cambridge, pp 305–328

    Google Scholar 

  • Oswald WJ, Benemann JR (1977) A critical analysis of bioconversion with microalgae. In: Mitsui A, Miyachi S, San Pietro A, Tamura S (eds) Biological solar energy conversion. Academic, New York, pp 379–396

    Google Scholar 

  • Oswald WJ, Golueke CG (1960) Biological transformation of solar energy. In: Umbreit WW (ed) Advances in applied microbiology, vol 2. Academic, New York, pp 223–262

    Google Scholar 

  • Oswald WJ, Gotaas HB (1957) Photosynthesis in sewage treatment. Trans Am Soc Civil Eng 122:73–105

    Google Scholar 

  • Oswald WJ, Gotaas HB, Ludwig HI, Lynch V (1953) Algal symbiosis in oxidation ponds. Sewage Wastes 25:692–705

    CAS  Google Scholar 

  • Oswald WJ, Gotaas HB, Golueke CG, Kellen WR (1957) Algae in waste treatment. Sewage Wastes 29:437–457

    Google Scholar 

  • Pascher A (1916) Ueber die Kreuzung einzelliger haploider Organismen: Chlamydomonas. Ber Deutsch Bot Ges 34:228–242

    Google Scholar 

  • Pascher A (1918) Ueber die beziehung der Reductionsteilung zur Medelschen Spaltung. Ber Deutsch Bot Ges 36:163–168

    Google Scholar 

  • Pesheva I, Kodama M, Dionisiosese ML, Miyachi S (1994) Changes in photosynthetic characteristics induced by transferring air-grown cells of Chlorococcum littorale to high-CO2 conditions. Plant Cell Physiol 35:379–387

    CAS  Google Scholar 

  • Phillips JN, Myers J (1954) Growth rate of Chlorella in flashing light. Plant Physiol 29:152–161

    CAS  Google Scholar 

  • Pirt SJ (1986) The thermodynamic efficiency (quantum demand) and dynamics of photosynthetic growth. New Phytol 102:3–37

    Google Scholar 

  • Pirt SJ, Lee YK, Walach MR, Pirt MW, Balyuzi HHM, Bazin MJ (1983) A tubular bioreactor for photosynthetic production of biomass from carbon dioxide: design and performance. J Chem Technol Biotechnol 33B:35–58

    CAS  Google Scholar 

  • Pratt R (1943) Studies on chlorella vulgaris. VI. Retardation of photosynthesis by a growth inhibitory substance from Chlorella vulgaris. Am J Bot 30:32–33

    CAS  Google Scholar 

  • Pratt R, Fong J (1940) Studies on chlorella vulgaris. II. Further evidence that chlorella cells form a growth-inhibiting substance. Am J Bot 27:431–436

    CAS  Google Scholar 

  • Pringsheim EG (1947) Pure cultures of algae. Cambridge University Press, Cambridge, p 119

    Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293

    CAS  Google Scholar 

  • Quayale JR, Fuller RC, Benson AA, Calvin M (1954) Enzymatic carboxylation of ribulose diphosphate photosynthesis. J Am Chem Soc 76:3610–3611

    Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced Biofuel production. Eukaryot Cell 8:486–501

    Google Scholar 

  • Ramos de Ortega A, Roux JC (1986) Production of Chlorella biomass in different types of flat bioreactors in temperate zones. Biomass 10:141–156

    CAS  Google Scholar 

  • Richmond A (1976) Testing the economic feasibillity of industrial algal biomass production. Annual report for 1976. Institute for Desert Research, Sede Boquer campus, Ben-Gurion University of the Negev, Sede Boquer, Israel

    Google Scholar 

  • Richmond A (ed) (1986) CRC Handbook of microalgal mass culture. CRC Press, Boca Raton, pp 1–528

    Google Scholar 

  • Richmond A (1988) Spirulina. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 85–121

    Google Scholar 

  • Richmond A (ed) (2004) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, p 565

    Google Scholar 

  • Richmond A, Grobbelaar JU (1986) Factors affecting the output rate of Spirulina platensis with reference to mass cultivation. Biomass 10:253–264

    Google Scholar 

  • Richmond A, Vonshak A, Arad S (1980) Environmental limitations in outdoor production of algal biomass. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier/North Holland Biomedical Press, Amsterdam, pp 65–72

    Google Scholar 

  • Ricke FF, Gaffron H (1943) Flash saturation and reaction periods in photosynthesis. J Phys Chem 47:299–308

    Google Scholar 

  • Robinson LF, Morrison AW (1992) Biomass production apparatus. US Patent 5,137,828

    Google Scholar 

  • Rodolfi L, Zittelli GC, Barsanti L, Rosati C, Tredeci MR (2003) Growth medium recycling in Nannochloropsis sp. mass culture. Biomol Eng 20:243–248

    CAS  Google Scholar 

  • Samson R, Leduy A (1985) Multistage continuous cultivation of blue-green alga Spirulina maxima in the flat tank photobioreactors with recycle. Can J Chem Eng 65:105–112

    Google Scholar 

  • Sasa T, Morimura Y, Tamiya H (1955) Seasonal variation of growth rate of various strains of unicellular algae under natural light- and temperature-conditions. J Gen Appl Microbiol 1:183–189

    Google Scholar 

  • Satoh A, Kurano N, Miyachi S (2001) Inhibition of photosynthesis by intracellular carbonic anhydrase in microalgae under excess concentrations of CO2. Photosynth Res 68:215–224

    CAS  Google Scholar 

  • Schlipalius L (1991) The extensive commercial cultivation of Dunaliella salina. Bioresour Technol 38:241–243

    CAS  Google Scholar 

  • Selke W (1976) Equipment for growing algae. US Patent 3,959,923

    Google Scholar 

  • Senger H, Wolf H-J (1964) Eine automatische Verdünnungsanlage und ihre Anwendung zur Erziehlung homokontinuierlicher Chlorella-Kulturen. Arch Mikrobiol 48:81–94

    Google Scholar 

  • Setlik I, Komarek J, Prokes B (1967) Short account of the activities from 1960 to 1965. In: Necas J, Lhotsky O (eds) Annual report of the Laboratory of Experimental Algology and Department of Applied Algology for the year 1966. Knihtisk, Prague, pp 5–36

    Google Scholar 

  • Setlík I, Sust V, Malek I (1970) Dual purpose open circulation units for large scale culture of algae in temperate zones. I. Basic design considerations and scheme of pilot plant. Algol Stud 11:111–164

    Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s Aquatic Species Program – biodiesel from algae. National Renewable Energy Laboratory: Golden, Colorado. NREL/TP-580-24190, pp 1–328

    Google Scholar 

  • Shelef G, Soeder CJ (eds) (1980) Algae biomass. Production and use. Elsevier/North Holland Biomedical Press, Amsterdam, p 852

    Google Scholar 

  • Shelef G, Schwartz M, Schechter H (1973) Prediction of photosynthetic biomass production in accelerated algal-bacterial wastewater treatment systems. In: Jenkins SJ (ed) Advances in water pollution research. Pergamon Press, Oxford, pp 181–189

    Google Scholar 

  • Shelef G, Sukenik A, Green M (1984) Microalgal harvesting and processing: a literature review. US Department of Energy: Golden Colorado. SERI/STR-231-2396, pp 1–65

    Google Scholar 

  • Shimamatsu H (2004) Mass production of Spirulina, an edible alga. Hydrobiologia 512:39–44

    Google Scholar 

  • Skill S (1998) Culture of microorganisms. PCT Patent Application 98/24879

    Google Scholar 

  • Soeder CJ (1976) Zur Verwendung von Mikroalgen fur Ernahrungszwecke. Naturwissenschaften 63:131–138

    CAS  Google Scholar 

  • Soeder CJ (1977) Primary production of biomass in freshwater with respect to microbial energy conversion. In: Schlegel HG, Barnea J (eds) Microbial energy conversion. Pergamon Press, Oxford, pp 59–68

    Google Scholar 

  • Soeder CJ (1978) Economic considerations concerning the autotrophic production of microalgae at the technical scale. Arch Hydrobiol Beih 11:259–273

    Google Scholar 

  • Soeder CJ (1986) An historical outline of applied algology. In: Richmond A (ed) CRC Handbook of Microalgal Mass Culture. CRC Press, Boca Raton, pp 25–41

    Google Scholar 

  • Sommer TR, D’Souza FML, Morrissy NM (1992) Pigmentation of adult rainbow trout, Oncorhynchus mykiss, using the green alga Haematococcus pluvialis. Aquaculture 106:63–74

    Google Scholar 

  • Soong P (1980) Production and development of Chlorella and Spirulina in Taiwan. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier/North Holland Biomedical Press, Amsterdam, pp 97–113

    Google Scholar 

  • Spoehr HA, Milner HW (1948) Chlorella as a source of food. Carnegie Institution Washington Yearbook 47:100–103

    Google Scholar 

  • Spoehr HA, Milner HW (1949) The chemical composition of Chlorella; effect of environmental conditions. Plant Physiol 24:120–149

    CAS  Google Scholar 

  • Stengel E (1970) Anlagentypen und Verfahren der technischen Algenmassenproduktion. Ber Deutsch Bot Ges 83:589–606

    CAS  Google Scholar 

  • Suzuki K, Kawano S, Kuroiwa T (1994) Single mitochondrion in acidic hot-spring alga – Behaviour of mitochondria in Cyanidium caldarium and Galdieria sulphuraria (Rhodophyta, Cyanidiophyceae). Phycologia 33:298–300

    Google Scholar 

  • Tamiya H (1957) Mass culture of algae. Ann Rev Plant Physiol 8:309–344

    CAS  Google Scholar 

  • Tanticharoen M, Bunnag B, Vonshak A (1993) Cultivation of Spirulina using secondary treated starch wastewater. Australas Biotechnol 3:223–226

    Google Scholar 

  • Tredici MR (2004) Mass production of microalgae: photobioreactors. In: Richmond A (ed) Handbook of microalgal culture. Biotechnology and applied phycology. Blackwell Science, Oxford, pp 178–214

    Google Scholar 

  • Tredici MR, Materassi R (1992) From open ponds to vertical alveolar panels – The Italian experience in the development of reactors for the mass cultivation of phototrophic microorganisms. J Appl Phycol 4:221–231

    Google Scholar 

  • Tredici MR, Carlozzi P, Zittelli GC, Materassi R (1991) A vertical alveolar panel (VAP) for outdoor mass cultivation of microalgae and cyanobacteria. Bioresour Technol 38:153–159

    Google Scholar 

  • Tsukuda O, Kawahara T, Miyachi S (1977) Mass culture of Chlorella in Asian countries. In: Mitsui A, Miyachi S, San Pietro A, Tamura S (eds) Biological solar energy conversion. Academic, New York, pp 363–365

    Google Scholar 

  • Uemura K, Anwaruzzaman S, Miyachi S, Yokota A (1997) Ribulose-1,5-bisphosphate carboxylase/oxygenase from thermophilic red algae with a strong specificity for CO2 fixation. Biochem Biophys Res Commun 233:568–571

    CAS  Google Scholar 

  • Ueno Y, Kurano N, Miyachi S (1998) Ethanol production by dark fermentation in the marine green algae, Chlorococcum littorale. J Ferment Bioeng 86:38–43

    CAS  Google Scholar 

  • Usui N, Ikenouchi M (1997) The biological CO2 fixation and utilization project by RITE(1) – highly effective photobioreactor system. Energy Convers Manage 38:S487–S492

    CAS  Google Scholar 

  • Uziel M (1978) Solar energy fixation and conversion with algal bacterial systems. PhD thesis, University of California

    Google Scholar 

  • Vendlova J (1969) Les problèmes de la technologie de la culture des algues sur une grande échelle dans les installations au dehors. Annali Di Microbiologia 19:1–12

    Google Scholar 

  • Venkataraman LV, Becker EW (1985) Biotechnology and utilization of algae – the Indian experience. Department of Science & Technology, New Delhi, p 257

    Google Scholar 

  • Vonshak A (1997) Spirulina: growth, physiology and biochemistry. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell-biology and biochemistry. Taylor & Francis, London, pp 43–65

    Google Scholar 

  • Vonshak A, Abeliovich A, Boussiba S, Arad S, Richmond A (1982) Production of Spirulina biomass: effects of environmental factors and population density. Biomass 2:175–185

    Google Scholar 

  • Wake LV (1983) Characteristics of resting state colonies of the alga Botryococcus braunii obtained from a bloom of the organism. Aust J Bot 31:605–614

    Google Scholar 

  • Wake LV (1984) Botryococcus braunii: the alga that initiated oil drilling in Australia. Search 15:158–161

    Google Scholar 

  • Wake LV, Hillen LW (1980) Study of a “bloom” of the oil-rich alga Botryococcus braunii in the Darwin River reservoir. Biotechnol Bioeng 22:1637–1656

    Google Scholar 

  • Warburg O (1919) Über die Geschwindigkeit der Kohlensäure­zusammensetzung in lebenden Zellen. Biochem Z 100:230–270

    CAS  Google Scholar 

  • Wassink EC, Kok B, van Oorschot JLP (1953) The efficiency of light-energy conversion in Chlorella cultures as compared with higher plants. In: Burlew JS (ed) Algal culture: from laboratory to pilot plant. Carnegie Institution of Washington, Washington, DC, pp 55–62

    Google Scholar 

  • Zaborski O (ed) (1988) Biohydrogen. Plenum Press, New York

    Google Scholar 

  • Zhang K, Kurano N, Miyachi S (1999) Outdoor culture of a cyanobacterium with a vertical flat-plate photobioreactor: effects on productivity of the reactor orientation, distance setting between the plates, and culture temperature. Appl Microbiol Biotechnol 52:781–786

    CAS  Google Scholar 

  • Zmora O, Richmond A (2004) Microalgae for aquaculture. Microalgae production for aquaculture. In: Richmond A (ed) Microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 365–379

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Borowitzka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Borowitzka, M.A. (2013). Energy from Microalgae: A Short History. In: Borowitzka, M., Moheimani, N. (eds) Algae for Biofuels and Energy. Developments in Applied Phycology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5479-9_1

Download citation

Publish with us

Policies and ethics