Skip to main content

Discrete and Continuous Processes in Computers and Brains

  • Chapter
  • First Online:
LAWS, LANGUAGE and LIFE

Part of the book series: Biosemiotics ((BSEM,volume 7))

  • 1359 Accesses

Abstract

Theories of computation and theories of the brain have close historical interrelations, the best-known examples being Turing’s introspective use of the brain’s operation as a model for his idealized computing machine (Turing 1936), McCulloch’s and Pitts’ use of ideal switching elements to model the brain (McCulloch and Pitts 1943), and von Neumann’s comparison of the logic and physics of both brains and computers (von Neumann 1958).

Reprinted from Physics and Mathematics of the Nervous System, M. Conrad, W. Güttinger, Eds. Lecture Notes in Biomathematics 4. Berlin, Heidelberg, New York: Springer-Verlag, 1974, pp. 128–148.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 309.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anninos, P. A., Beek, B., Csermely, T. J., Harth, E. M., & Pertile, G. (1970). Dynamics of neural structures. Journal of Theoretical Biology, 25, 121–148.

    Article  Google Scholar 

  • Blair, E. (1932). On the intensity-time relations for stimulation by electric currents. Journal of General Physiology, 12, 709.

    Article  Google Scholar 

  • Brillouin, L. (1962). Science and information theory. New York: Academic.

    Google Scholar 

  • Conrad, M. (1974). Molecular information processing in the central nervous system. Part I, selection circuits in the brain. In M. Conrad & W. Guttinger (Eds.), Physics and mathematics of the nervous system. Lecture notes in biomathematics 4 (pp. 82–107). Berlin/Heidelberg/New York: Springer.

    Google Scholar 

  • Cowan, J. D. (1973). Stochastic models of neuroelectric activity. In C. H. Waddington (Ed.), Towards a theoretical biology (Vol. 4, pp. 169–188). Edinburgh: University of Edinburgh Press.

    Google Scholar 

  • Duda, R.O., & Hart, P.E. (1970). Experiment in scene analysis. In Proceedings of the First National Symposium on Industrial Robots, Chicago, April, 1970.

    Google Scholar 

  • Eccles, J. C. (1973). The understanding of the brain. New York: McGraw-Hill.

    Google Scholar 

  • Ghiselin, B. (Ed.). (1952). The creative process. Berkeley: University of California Press (Reprinted 1955 by Mentor Books, New York).

    Google Scholar 

  • Gödel, K. (1964). On formally undecidable propositions of the Principia Mathematica and related systems. In M. Davis (Ed.), The Undecidable (pp. 4–38). Hewlett: Rowen Press.

    Google Scholar 

  • Griffith, J.S. (1963). A field theory of neural nets: I. Derivation of field equations, Bulletin of Mathematical Biophysics, 25, 111; II. Properties of field equations, Bulletin of Mathematical Biophysics, 27, 187.

    Google Scholar 

  • Guzman, A. (1968). Decomposition of a visual scene into three dimensional bodies. In Proceeding of the Fall Joint Computer Conference, Washington DC: IEEE Computer Society Press, 291–304

    Google Scholar 

  • Hadamard, J. (1945). The psychology of invention in the mathematical field. Princeton: Princeton University Press.

    Google Scholar 

  • Handler, P. (Ed.). (1970). Biology and the future of man. New York: Oxford University Press. 360.

    Google Scholar 

  • Harth, E. M., Csermely, T. J., Beek, B., & Lindsay, R. D. (1970). Brain function and neural dynamics. Journal of Theoretical Biology, 26, 93–120.

    Article  PubMed  CAS  Google Scholar 

  • Hill, A. V. (1936). Excitation and accommodation in nerve. Proceedings of the Royal Society B of London, 19, 305.

    Article  Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology, 195, 215–243.

    PubMed  CAS  Google Scholar 

  • Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly constructed nets. Journal of Theoretical Biology, 22, 437–467.

    Article  PubMed  CAS  Google Scholar 

  • Keyes, R. W. (1970). Power dissipation in information processing. Science, 168, 796–801.

    Article  PubMed  CAS  Google Scholar 

  • Landauer, R. (1961). Irreversibility and heat generation in the computing process. IBM Journal of Research and Development, 5, 183–191.

    Article  Google Scholar 

  • McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115–133.

    Article  Google Scholar 

  • Pattee, H. H. (1972). Physical problems of decision-making constraints. International Journal of Neuroscience, 3, 99–106.

    Article  PubMed  CAS  Google Scholar 

  • Poincaré, H. (1913). Mathematical creation, from The Foundations of Science 1913, 1946. New York: Science Press

    Google Scholar 

  • Polanyi, M. (1968). Life’s irreducible structure. Science, 160, 1308–1312.

    Article  PubMed  CAS  Google Scholar 

  • Post, E. (1965). Selections from diary of E. Post. In M. Davis (Ed.), The undecidable (p. 420). Hewlett: Rowen Press.

    Google Scholar 

  • Rashevsky, N. (1933). Outline of a physiomathematical theory of excitation and inhibition. Protoplasma, 20, 42–56.

    Article  CAS  Google Scholar 

  • Rosen, R. (1969). Hierarchical organization in automata theoretical models of the nervous system. In K. N. Leibovic (Ed.), Information processing in the nervous system (pp. 21–35). New York: Springer.

    Google Scholar 

  • Sperry, R. W. (1970). Cerebral dominance in perception. In A. Y. Francis et al. (Eds.), Early experience in information processing in perceptual and reading disorders. Washington, DC: National Academy of Sciences.

    Google Scholar 

  • Thom, R. (1970). Topological models in biology. In C. H. Waddington (Ed.), Towards a theoretical biology (Vol. 3, pp. 89–116). Edinburgh: Edinburgh University Press.

    Google Scholar 

  • Turing, A.M. (1936). On computable numbers with an application to the Entscheidungs problem. In Proceedings of the London Mathematical Society, Series 2, 42, 230–265.

    Google Scholar 

  • von Neumann, J. (1958). The computer and the brain. New Haven: Yale University Press.

    Google Scholar 

  • von Neumann, J. (1966). Theory of Self-Reproducing Automata. A.W. Burks (Ed.), Urbana: University of Illinois Press

    Google Scholar 

  • Zeeman, E. C. (1972a). Differential equations for the heartbeat and nerve impulse. In C. H. Waddington (Ed.), Towards a theoretical biology (Vol. 4, pp. 8–67). Edinburgh: Edinburgh University Press.

    Google Scholar 

  • Zeeman, E. C. (1972b). Appendix: A catastrophe machine. In C. H. Waddington (Ed.), Towards a theoretical biology (Vol. 4, pp. 276–282). Edinburgh: Edinburgh University Press.

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by grant from National Aeronautics and Space Administration, No. NGR 33-015-002.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pattee, H.H. (2012). Discrete and Continuous Processes in Computers and Brains. In: LAWS, LANGUAGE and LIFE. Biosemiotics, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5161-3_8

Download citation

Publish with us

Policies and ethics