Skip to main content

Biological Constraints on the Production of Microalgal-Based Biofuels

  • Chapter
  • First Online:
The Science of Algal Fuels

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 25))

Abstract

Algal biotechnology involving the mass culturing of microalgae has the potential to produce the next generation of biofuels. Microalgae have higher growth and solar energy conversion rates than terrestrial taxa. In addition, their osmotolerance, metabolic diversity, and in some strains the capacity to produce large amounts of lipids have attracted considerable interest from both the academic and commercial science communities. It is probable that future alga mass culture facilities will be based on open pond systems, located in areas with access to saltwater/seawater and supplies of carbon dioxide. Although there are a handful of examples of currently commercially successful algal mass culturing, these have focused on the production of higher value products (pigments, health foods, etc.). The development of algal biofuels will require much further R&D. In this chapter, we have restricted our coverage to the biological constraints to a successful commercial process. These include the basic issues of algal physiology: do we understand it sufficiently and are the algae truly “up to the task”? We also discuss the molecular control of the process; can this be enhanced conventionally or through more modern molecular approaches? Lastly, we discuss interactions with other organisms; all monocultures are susceptible to “weeds,” “pests,” disease, grazing, etc. We feel that all the challenges are achievable given time, with sufficient scientific and financial investment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

 References

  • Acien Fernandez FG, Garcıa Camacho F, Sanchez Perez JA, Fernandez Sevilla JM, Molina Grima E (1998) Modeling of biomass productivity in tubular photobioreactors for microalgal cultures: effects of dilution rate, tube diameter, and solar irradiance. Biotechnol Bioeng 58:605–616

    Article  CAS  Google Scholar 

  • Amin SA, Green DH, Hart MC, Küpper FC, Sunda WG, Carrano CJ (2009) Photolysis of iron-siderophore chelates promotes bacterial-algal mutualism. Proc Nat Acad Sci USA 106:17071–17076

    Article  CAS  Google Scholar 

  • Anon (2002) Virus decimates algal blooms. ScienceDaily. 18 Nov 2002

    Google Scholar 

  • Apt KE, Behrens PW (1999) Commercial developments in microalgal biotechnology. J Phycol 35:215–226

    Article  Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Article  CAS  Google Scholar 

  • Atkinson KM (1980) Experiments in dispersal of phytoplankton by ducks. Br Phycol J 15:49–58

    Article  Google Scholar 

  • Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279

    Article  CAS  Google Scholar 

  • Baroli I, Melis A (1996) Photoinhibition and repair in Dunaliella salina acclimated to different growth irradiances. Planta 198:640–646

    Article  CAS  Google Scholar 

  • Basova MM (2005) Fatty acid composition of lipids in microalgae. Int J Algae 7:33–57

    Article  Google Scholar 

  • Baudoux AC, Brussaard CPD (2005) Characterization of different viruses infecting the marine harmful algal bloom species Phaeocystis globosa. Virology 341:80–90

    Article  CAS  Google Scholar 

  • Becker EW (1994) Microalgae. Biotechnology and microbiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Beckmann J, Lehr F, Finazzi G, Hankamer G, Posten C, Wobbe L, Kruse O (2009) Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. J Biotechnol 142:70–77

    Article  CAS  Google Scholar 

  • Beijerinck MW (1904) Das Assimilationsproduckt der Kohlensaure in den Chromatorphoren der Diatomeen. Rec Trav Bot Neerland 1:28–40

    Google Scholar 

  • Belarbi E-H, Molina Grima E, Chisti Y (2000) A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzyme Microb Technol 26:516–529

    Article  CAS  Google Scholar 

  • Belay A (1997) Mass culture of Spirulina outdoors: the Earthrise Farms experience. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell biology and biochemistry. Taylor & Francis, London, pp 131–158

    Google Scholar 

  • Ben-Amotz A (2004) Industrial production of microalgal cell-mass and secondary products – major industrial species: Dunaliella. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science Ltd., Oxford, pp 273–280

    Google Scholar 

  • Benemann J (2003) Biofixation of CO2 and Greenhouse gas abatement with microalgae – Technology Roadmap. US Dept Energy Report

    Google Scholar 

  • Bigogno C, Khozin-Goldberg I, Boussiba S, Vonshak A, Cohen Z (2002) Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry 60:497–503

    Article  CAS  Google Scholar 

  • Bolton JR, Hall DO (1991) The maximum efficiency of photosynthesis. Photochem Photobiol 53:545–548

    Article  CAS  Google Scholar 

  • Borowitzka MA (2005) Culturing microalgae in outdoor ponds. In: Andersen RA (ed) Algal culturing techniques. Academic, New York, pp 205–217

    Google Scholar 

  • Bouvier-Nave P, Benveniste P, Oelkers P, Sturley SL, Schaller H (2000) Expression in yeast and tobacco of plant cDNAs encoding acyl CoA:diacylglycerol acyltransferase. Eur J Biochem 267:85–96

    Article  CAS  Google Scholar 

  • Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244

    Article  CAS  Google Scholar 

  • Brennan L, Owende PMO (2010) Biofuels from microalgae – a review of technologies for production, processing and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577

    Article  CAS  Google Scholar 

  • Brown MR, Dunstan GA, Norwood SJ, Miller KA (1996) Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana. J Phycol 32:64–73

    Article  CAS  Google Scholar 

  • Brussaard CPD (2004) Viral control of phytoplankton populations – a review. J Eukaryot Microbiol 51:125–138

    Article  Google Scholar 

  • Buskey EJ (2008) How does eutrophication affect the role of grazers in harmful algal bloom dynamics? Harmful Algae 8:152–157

    Article  CAS  Google Scholar 

  • Cai X-H, Brown C, Adhiya J, Traina SJ, Sayre RT (1999) Growth and heavy metal binding properties of transgenic Chlamydomonas expressing a foreign metallothionein gene. Int J Phytoremediation 1:53–65

    Article  CAS  Google Scholar 

  • Camacho A, Rubio F, García Camacho F, Fernández Sevilla JM, Chisti Y, Molina Grima E (2003) A mechanistic model of photosynthesis in microalgae. Biotechnol Bioeng 81:459–473

    Article  CAS  Google Scholar 

  • Campbell CN, Pröschold T, Darienko T, Bock C, Rad Menendez C (2009) Are there any true marine Chlorella species? The Phycologist 76:8

    Google Scholar 

  • Canter HM (1984) Observations on zoosporic fungi of Ceratium spp. in lakes of the English Lake District – importance for phytoplankton population-dynamics. New Phytol 97:601–615

    Article  Google Scholar 

  • Capell T, Christou P (2004) Progress in plant metabolic engineering. Curr Opin Biotechnol 15:148–154

    Article  CAS  Google Scholar 

  • Carisson AS, Beilen van JB, Moller R, Clayton D (2007) Outputs from the EPOBIO project. In: D Bowles (ed) Micro-and macro-algae: utility for industrial applications. EPOBIO report CPL Press

    Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • Chui S-Y, Kao C-Y, Tsai M-T, Ong S-C, Chen C-H, Lin C-S (2009) Lipid accumulation and CO2 utilization of Nanochloropsis oculata in response to CO2 aeration. Bioresour Technol 100:833–838

    Article  CAS  Google Scholar 

  • Coats DW, Park MG (2002) Parasitism of photosynthetic dinoflagellates by three strains of Amoebophrya (Dinophyta): parasite survival, infectivity, generation time, and host specificity. J Phycol 38:520–528

    Google Scholar 

  • Cobelas MA, Lechado JZ (1989) Lipids in microalgae. A review. I. Biochemistry. Grasas y Aceites 40:118–145

    Google Scholar 

  • Cock JM, Sterck L, Rouzé P, Scornet D, Allen AE, Amoutzias G, Anthouard V, Artiguenave F, Aury JM, Badger JH, Beszteri B, Billiau K, Bonnet E, Bothwell JH, Bowler C et al (2010) The Ectocarpus genome and the independent evolution of multicellularity in the brown algae. Nature 465:617–621

    Article  CAS  Google Scholar 

  • Cohen Z, Khozin-Goldberg I, Adlrestein D, Bigogno C (2000) The role of triacylglycerols as a reservoir of polyunsaturated fatty acids for the rapid production of chloroplastic lipids in certain microalgae. Biochem Soc Trans 28:740–743

    Article  CAS  Google Scholar 

  • Courchesne NMD, Parisien A, Wang B, Lan CQ (2009) Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 141:31–41

    Article  CAS  Google Scholar 

  • Croft MT, Moulin M, Webb ME, Smith AG (2007) Thiamine biosynthesis in algae is regulated by riboswitches. Proc Nat Acad Sci USA 104:20770–20775

    Article  CAS  Google Scholar 

  • Daft MJ, Stewart WDP (1973) Light and electron-microscope observations on algal lysis by bacterium CP-1. New Phytol 72:799–808

    Article  Google Scholar 

  • Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S (2000) Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Nat Acad Sci USA 97:6487–6492

    Article  CAS  Google Scholar 

  • Davidson K, Gilpin LC, Hart M, Fouillard E, Mitchell E, Alvarez-Calleja C, Laurent C, Miller AEJ, Leakey RJ (2007) The influence of the balance of inorganic and organic nitrogen on microbial food web dynamics. Limnol Oceanogr 52:2147–2163

    Article  CAS  Google Scholar 

  • Day JG, Brand JJ (2005) Cryopreservation methods for maintaining cultures. In: Andersen RA (ed) Algal culturing techniques. Academic, New York, pp 165–187

    Google Scholar 

  • Day JG, Stacey GN (2008) Biobanking. Mol Biotechnol 40:202–213

    Article  CAS  Google Scholar 

  • Day JG, Pröschold T, Friedl T, Lorenz M, Silva PC (2010) Conservation of microalgal type material: approaches needed for 21st century science. Taxon 59:3–6

    Google Scholar 

  • Day JG, Slocombe SP, Stanley MS (2012) Overcoming biological constraints to enable the exploitation of microalgae for biofuels. Bioresour Technol 109:245–251

    Article  CAS  Google Scholar 

  • Dehesh K (2001) How can we genetically engineer oilseed crops to produce high levels of medium-chain fatty acids? Eur J Lipid Sci Technol 103:688–697

    Article  CAS  Google Scholar 

  • Derelle E, Ferraz C, Rombauts S, Rouze P, Worden AZ, Robbens S, Partensky F, Degroeve S, Echeynie S, Cooke R et al (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Nat Acad Sci USA 103:11647–11652

    Article  CAS  Google Scholar 

  • Droop MR (1957) Auxotrophy and organic compounds in the nutrition of marine phyto-plankton. J Gen Microbiol 16:286–293

    Article  CAS  Google Scholar 

  • Dunahay TG (1993) Transformation of Chlamydomonas reinhardtii with silicon carbide whiskers. Biotechniques 15:452–460

    CAS  Google Scholar 

  • Dunahay TG, Jarvis EE, Roessler PG (1995) Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J Phycol 31:1004–1012

    Article  CAS  Google Scholar 

  • Dunahay TG, Jarvis EE, Dais SS, Roessler PG (1996) Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechnol Part A Enzyme Eng Biotechnol 57–58:223–231

    Google Scholar 

  • Durnford DG, Falkowski PG (1997) Chloroplast redox regulation of nuclear gene transcription during photoacclimation. Photosynth Res 53:229–241

    Article  CAS  Google Scholar 

  • Escoubas JM, Lomas M, Laroche J, Falkowski PG (1995) Light-intensity regulation of cab gene-transcription is signaled by the redox state of the plastoquinone pool. Proc Nat Acad Sci USA 92:10237–10241

    Article  CAS  Google Scholar 

  • Falkowski PG, Owens TG (1980) Light-shade adaption: two strategies in marine phytoplankton. Plant Physiol 66:592–595

    Article  CAS  Google Scholar 

  • Falkowski PG, Raven JA (1997) Aquatic photosynthesis. Blackwell Science, Madlen

    Google Scholar 

  • Fasham MJR, Platt T (1983) Photosynthesis response of phytoplankton to light: a physiological model. Proc Roy Soc Lond B 219:355–370

    Article  CAS  Google Scholar 

  • Flynn KJ, Greenwell HC, Lovitt RW, Shields R (2010) Selection for fitness at the individual or population levels: modeling effects of genetic modifications in microalgae on productivity and environmental safety. J Theor Biol 263:269–280

    Article  Google Scholar 

  • Galili G, Hofgen R (2002) Metabolic engineering of fatty acid biosynthesis in plants. Metabolic Eng 4:12–21

    Article  CAS  Google Scholar 

  • Gleason FK, Paulson JL (1984) Site of action of the natural algicide, cyanobacterin, in the blue-green alga, Synechococcus sp.. Arch Microbiol 138:273–277

    Article  CAS  Google Scholar 

  • Govindjee B, Zilinskas-Braun B (1974) Light absorption, emission and photosynthesis. In: Stewart WDP (ed) Algal physiology and biochemistry. Blackwell Scientific Publications, Oxford, pp 346–390

    Google Scholar 

  • Gross EM, Wolk CP, Juttner F (1991) Fischerellin, a new allelochemical from the fresh-water cyanobacterium Fischerella-muscicola. J Phycol 27:686–692

    Article  CAS  Google Scholar 

  • Grossman AR, Croft M, Gladyshev VN, Merchant SS, Posewitz MC, Prochnik S, Spalding MH (2007) Novel metabolism in Chlamydomonas through the lens of genomics. Curr Opin Plant Biol 10:190–198

    Article  CAS  Google Scholar 

  • Grotewold E (2008) Transcription factors for predictive plant metabolic engineering: are we there yet? Curr Opin Biotechnol 19:138–144

    Article  CAS  Google Scholar 

  • Gumbo RJ, Ross G, Cloete ET (2008) Biological control of Microcystis dominated harmful algal blooms. Afr J Biotechnol 7:4765–4773

    Google Scholar 

  • Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186

    Article  CAS  Google Scholar 

  • Gutman J, Zarka A, Boussiba S (2009) The host-range of Paraphysoderma sedebokerensis, a chytrid that infects Haematococcus pluvialis. Eur J Phycol 44:509–514

    Article  CAS  Google Scholar 

  • Halvarson MJ, Testrake D, Martin DF (1984) Effect of aponin, a substance from a green alga Nannochloris species on spore germination of two fungi. Microbios 41:105–113

    Google Scholar 

  • Harris E (2001) Chlamydomonas as a model organism. Annu Rev Plant Physiol Plant Mol Biol 52:363–406

    Article  CAS  Google Scholar 

  • Harwood JL (1998) Membrane lipids in algae. In: Siegenthaler PA, Murata N (eds) Lipids in photosynthesis: structure, function and genetics. Kluwer Academic Publishers, Dordrecht, pp 53–64

    Google Scholar 

  • Harwood JL, Guschina IA (2009) The versatility of algae and their lipid metabolism. Biochimie 91:679–684

    Article  CAS  Google Scholar 

  • Hu Q (2004) Industrial production of microalgal cell-mass and secondary products – major industrial species: Arthrospira (Spirulina) platensis. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science Ltd., Oxford, pp 264–272

    Google Scholar 

  • Hu Q, Zhang CW, Sommerfeld M (2006) Biodiesel from algae: lessons learned over the past 60 years and future perspectives. Juneau, Alaska: Annual Meeting of the Phycological Society of America, 7–12 July, pp 40–41 (Abstract)

    Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  Google Scholar 

  • Ibelings BW, De Bruin A, Kagami M, Rijkeboer M, Brehm M, Van Donk E (2004) Host parasite interactions between freshwater phytoplankton and chytrid fungi (Chytridiomycota). J Phycol 40:437–620

    Article  Google Scholar 

  • Iida I, Nakahara T, Yokochi T, Kamisaka Y, Yagi H, Yamaoka M, Suzuki O (1996) Improvement of docosahexaenoic acid production in a culture of Thraustochytrium aureum by medium optimization. J Ferment Bioeng 81:76–78

    Article  CAS  Google Scholar 

  • Jacobsen A, Bratbak G, Heldal M (1996) Isolation and characterisation of the virus infecting Phaeocystis pouchetti (Prymnesiophycea). J Phycol 32:923–927

    Article  Google Scholar 

  • Jako C, Kumar A, Wei Y, Zou J, Barton DL, Giblin EM, Covello PS, Taylor DC (2001) Seed-specific over-expression of an arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol 126:861–874

    Article  CAS  Google Scholar 

  • James MR, Hall JA (1995) Planktonic ciliated protozoa- their distribution and relationship to environmental variables in a marine costal ecosystem. J Plankton Res 17:659–683

    Article  Google Scholar 

  • Kagami M, de Bruin A, Ibelings BW, van Donk E (2007) Parasitic chytrids: their effects on phytoplankton communities and wood-web dynamics. Hydrobiologia 578:113–129

    Article  Google Scholar 

  • Kamisaka Y, Noda N, Sakai T, Kawasaki K (1999) Lipid bodies and lipid body formation in an oleaginous fungus Mortierella ramanniana var. angulispora. Biochim Biophys Acta 1438:185–198

    Article  CAS  Google Scholar 

  • Keating KI (1977) Allelopathic influences on blue-green bloom sequence in a eutrophic lake. Science 196:885–887

    Article  CAS  Google Scholar 

  • Khan SA, Rashmi A, Hussain MZ, Prasad S, Banerjee UC (2009) Prospects of biodiesel production from microalgae in India. Renew Sustain Energy Rev 13:2361–2372

    Article  CAS  Google Scholar 

  • Khotimchenko SV, Yakovleva IM (2005) Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry 66:73–79

    Article  CAS  Google Scholar 

  • Khozin-Goldberg I, Cohen Z (2006) The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67:696–701

    Article  CAS  Google Scholar 

  • Kirk PW (1980) The mycostatic effect of seawater on spores of terrestrial and marine higher fungi. Bot Mar 23:233–238

    Google Scholar 

  • Küpper FC, Müller DG (1999) Massive occurrence of the heterokont and fungal parasites Anisolpidium, Eurychasma and Chytridium in Pylaiella littoralis (Ectocarpales, Phaeophyceae). Nova Hedwigia 69:381–389

    Google Scholar 

  • Larsen JB, Larsen A, Thyrhaug R, Bratbak G, Sandaa R-A (2008) Response of marine viral populations to a nutrient induced phytoplankton bloom at different pCO(2) levels. Biosciences 5:523–533

    Google Scholar 

  • Lawrence JE (2008) Furtive foes: algal viruses as potential invaders. ICES J Mar Sci 65:716–722

    Article  Google Scholar 

  • Lawrence JE, Chan AM, Suttle CA (2001) A novel virus (HaNIV) causes lysis of the toxic bloom-forming alga Heterosigma akashiwo (Raphidophyceae). J Phycol 37:216–222

    Article  Google Scholar 

  • Leakey RJG, Wilks SA, Murray AWA (1994) Can cytochalasin B be used as an inhibitor of feeding in grazing experiments on ciliates? Eur J Protistol 30:309–315

    Google Scholar 

  • Leflaive J, Ten-Hage L (2007) Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshwater Biol 52:199–397

    Article  CAS  Google Scholar 

  • Leflaive J, Buffan-Dubau E, Ten-Hage L (2008) Algal bioactive compounds reduce net oxygen fluxes of artificial diatom biofilms. Aquat Microb Ecol 51:275–284

    Article  Google Scholar 

  • Leon-Banares R, Gonzalez-Ballester D, Galvan A, Fernandez E (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22:45–52

    Article  CAS  Google Scholar 

  • Livne A, Sukenik A (1990) Acetyl coenzyme A carboxylase from the marine Prymnesiophyte Isochrysis galbana. Plant Cell Physiol 31:851–858

    CAS  Google Scholar 

  • Lorenz M, Friedl T, Day JG (2005) Perpetual maintenance of actively metabolizing microalgal cultures. In: Andersen RA (ed) Algal culturing techniques. Academic Press, New York, pp 145–155

    Google Scholar 

  • Lynch DV, Thompson GA (1982) Low temperature-induced alterations in the chloroplast and microsomal membranes of Dunaliella salina. Plant Physiol 69:1369–1375

    Article  CAS  Google Scholar 

  • Mackinder LCM, Worthy CA, Biggi G, Hall M, Ryan KP, Varsani A, Harper GM, Wilson WH, Brownlee C, Schroeder DC (2009) A unicellular algal virus, Emiliania huxleyi virus 86, exploits an animal-like infection strategy. J Gen Virol 90:2306–2316

    Article  CAS  Google Scholar 

  • Martinez JM, Schroeder DC, Larsen A, Bratbak G, Wilson WH (2007) Molecular dynamics of Emiliania huxleyi and cooccurring viruses during two separate mesocosm studies. Appl Environ Microbiol 73:554–562

    Article  CAS  Google Scholar 

  • Mason GP, Edwards KR, Carlson RE, Pignatello J, Gleason FK, Wood JM (1982) Isolation of chlorine containing antibiotic from the fresh-water cyanobacterium Scytonema hofmanii. Science 213:400–402

    Article  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250

    Article  CAS  Google Scholar 

  • Merzlyak MN, Chivkunova OB, Gorelova OA, Reshetnikova IV, Solovchenko AE, Khozin-Goldberg I, Cohen Z (2007) Effect of nitrogen starvation on optical properties, pigments, and arachidonic acid content of the unicellular green alga Parietochloris incisa (Trebouxiophyceae, Chlorophyta). J Phycol 43:833–843

    Article  CAS  Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496

    Article  CAS  Google Scholar 

  • Mhlanga L, Day J, Chimbari M, Siziba N, Cronberg G (2006) Observations on limnological conditions associated with a fish kill of Oreochromis niloticus in Lake Chivero following collapse of an algal bloom. Afr J Ecol 44:199–208

    Article  Google Scholar 

  • Minowa T, Yokoyama S-Y, Kishimoto M, Okakura T (1995) Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel 74:1735–1738

    Article  CAS  Google Scholar 

  • Mitchell SA, Richmond A (1987) Use of rotifers for the maintenance of monoalgal cultures of Spirulina. Biotechnol Bioeng 30:164–168

    Article  CAS  Google Scholar 

  • Moheimani NR, Borowitzka MA (2006) The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. J Appl Phycol 18:703–712

    Article  Google Scholar 

  • Moreno-Garrido I, Canavate JP (2001) Assessing chemical compounds for controlling predator ciliates in outdoor mass cultures of the green algae Dunaliella salina. Aquac Eng 24:8–14

    Article  Google Scholar 

  • Müller J, Friedl T, Hepperle D, Lorenz M, Day JG (2005) Distinction of isolates among multiple strains of Chlorella vulgaris (Chlorophyta, Trebouxiophyceae) and testing conspecificity with Amplified Fragment Length Polymorphism and ITS rDNA sequences. J Phycol 41:1236–1247

    Article  CAS  Google Scholar 

  • Müller J, Day JG, Harding K, Hepperle D, Lorenz M, Friedl T (2007) Assessing genetic stability of a range of terrestrial microalgae after cryopreservation using Amplified Fragment Length Polymorphism (AFLP). Am J Bot 94:799–808

    Article  Google Scholar 

  • Muller-Feuga A (2004) Microalgae for aquaculture: the current global situation and future trends. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science Ltd., Oxford, pp 352–364

    Google Scholar 

  • Murata N, Throughton JH, Fork DC (1975) Relationships between the transition of the physical phase of membrane lipids and photosynthetic parameters in Anacystis nidulans and lettuce and spinach chloroplasts. Plant Physiol 56:508–517

    Article  CAS  Google Scholar 

  • Nagasaki K, Tomaru Y, Nakanishi K, Hata N, Katanozaka N, Yamaguchi M (2004) Dynamics of Heterocapsa circularisquama (Dinophyceae) and its viruses in Ago Bay. Aquat Microb Ecol 34:219–226

    Article  Google Scholar 

  • Napolitano GE (1994) The relationship of lipids with light and chlorophyll measurement in freshwater algae and periphyton. J Phycol 30:943–950

    Article  CAS  Google Scholar 

  • Nozaki H, Takano H, Misumi O, Terasawa K, Matsuzaki M, Maruyama S, Nishida K, Yagisawa F, Yoshida Y, Fujiwara T et al (2007) A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae. BMC Biol 5: Article 28

    Google Scholar 

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    CAS  Google Scholar 

  • Orcutt DM, Patterson GW (1974) Effect of light intensity upon Nitzchia closternium (Cylindrotheca fusiformis). Lipids 9:1000–1003

    Article  CAS  Google Scholar 

  • Ostrofsky ML, Jacobs FG, Rowan J (1983) Evidence for the production of an extracellular herbivore deterrents by Anabaena flos-aquae. Freshwater Biol 13:501–506

    Article  Google Scholar 

  • Park MG, Yih W, Coats DW (2004) Parasites and phytoplankton, with special emphasis on dinoflagellate infections. J Eukaryot Microbiol 51:145–155

    Google Scholar 

  • Picataggio S, Rohrer T, Deanda K, Lanning D, Reynolds R, Mielenz J, Eirich LD (1992) Metabolic engineering of Candida tropicalis for the production of long-chain dicarboxylic acids. Bio/Technology 10:894–898

    Article  CAS  Google Scholar 

  • Polle JEW, Kanakagiri S, Jin E, Masuda T, Melis A (2002) Truncated chlorophyll antenna size of the photosystems – a practical method to improve microalgal productivity and hydrogen production in mass culture. Int J Hydrogen Energy 27:1257–1264

    Article  CAS  Google Scholar 

  • Post FJ, Borowitzka LJ, Borowitzka MA, Mackay B, Moulton T (1983) The protozoa of a Western Australian hypersaline lagoon. Hydrobiologia 105:95–113

    Article  Google Scholar 

  • Post AF, Dubinsky Z, Wyman K, Falkowski PG (1985) Physiological responses of a marine planktonic diatom to transitions in growth irradiance. Mar Ecol Prog Ser 25:141–149

    Article  CAS  Google Scholar 

  • Prezelin BB (1981) Light reactions in photosynthesis. In: Platt T (ed) Physiological bases of phytoplankton ecology. Bulletin no. 210. Department of Fisheries and Oceans, Ottawa, pp 1–43

    Google Scholar 

  • Raison JK (1986) Alterations in the physical properties and thermal responses of membrane lipids: correlations with acclimation to chilling and high temperature. In: St John JB, Berlin E, Jackson PG (eds) Frontiers of membrane research in agriculture. Rowman & Allanheld, Totowa, pp 383–401

    Google Scholar 

  • Ratledge C (1988) An overview of microbial lipids. In: Ratledge C, Wilkerson SG (eds) Microbial lipids, vol 1. Academic, New York, pp 3–21

    Google Scholar 

  • Raven JA, Samuelson G (1986) Repair of photoinhibitory damage in Anacystis nidulans 625 (Synechococcus 5301): relating to catalytic capacity for and energy supply to protein synthesis, and implications for Pmax and the efficiency of light-limited growth. New Phytol 103:625–643

    Article  CAS  Google Scholar 

  • Reitan KI, Rainuzzo JR, Olsen Y (1994) Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J Phycol 30:972–979

    Article  CAS  Google Scholar 

  • Renaud SM, Thinh LV, Lambrinidis G, Parry DL (2002) Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211:195–214

    Article  CAS  Google Scholar 

  • Richardson K, Beardall J, Raven JA (1983) Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phytol 93:157–191

    Article  Google Scholar 

  • Richmond A (2004) Biological principles of mass cultivation. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell, Oxford, pp 125–177

    Google Scholar 

  • Rochaix JD, Goldschmidt-Clemont M, Merchant S (eds) (1998) The molecular biology of chloroplasts and mitochondria in Chlamydomonas. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Roesler K, Shintani D, Savage L, Boddupalli S, Ohlrogge J (1997) Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rapeseeds. Plant Physiol 113:75–81

    Article  CAS  Google Scholar 

  • Roessler PG (1988) Changes in the activities of various lipid and carbohydrate biosynthetic enzymes in the diatom Cyclotella cryptica in response to silicon deficiency. Arch Biochem Biophys 267:521–528

    Article  CAS  Google Scholar 

  • Roessler PG (1990a) Purification and characterization of acetyl CoA carboxylase from the diatom Cyclotella cryptica. Plant Physiol 92:73–78

    Article  CAS  Google Scholar 

  • Roessler PG (1990b) Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions. J Phycol 26:393–399

    Article  CAS  Google Scholar 

  • Roessler PG, Brown LM, Dunahay TG, Heacox DA, Jarvis EE, Schneider JC, Talbot SG, Zeiler KG (1994) Genetic engineering approaches for enhanced production of biodiesel fuel from microalgae. In: Himmel ME, Baker J, Overend RP (eds) Enzymatic conversion of biomass for fuels production. American Chemical Society, Washington, DC, pp 256–270

    Google Scholar 

  • Salomon PS, Graneli E, Neves MHCB, Rodriguez EG (2009) Infection by Amoebophrya spp. parasitoids of dinoflagellates in a tropical marine coastal area. Aquat Microb Ecol 55:143–153

    Article  Google Scholar 

  • Santos CNS, Stephanopoulos G (2008) Combinatorial engineering of microbes for optimizing cellular phenotype. Curr Opin Chem Biol 12:168–176

    Article  CAS  Google Scholar 

  • Sato N, Murata N (1980) Temperature shift-induced responses in lipids in the blue-green alga, Anabaena variabilis: the central role of diacylmonogalactosylglycerol in term-adaptation. Biochim Biophys Acta 619:353–366

    Article  CAS  Google Scholar 

  • Schenk P, Thomas-Hall S, Stevens E, Marx U, Mussgnug J, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res 1:20–43

    Article  Google Scholar 

  • Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286

    Article  CAS  Google Scholar 

  • Sharma NK, Rai AK, Singh S, Brown RM (2007) Airborne algae: their present status and relevance. J Phycol 43:615–627

    Article  Google Scholar 

  • Sharp JH, Underhill PA, Hughes DJ (1979) Interaction (allelopathy) between marine diatoms: Thalassiosira pseudonana and Phaeodactylum tricornutum. J Phycol 15:353–362

    CAS  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler PG (1998) US Department of Energy’s Office of Fuels Development, July 1998. A look back at the US Department of Energy’s Aquatic Species Program – Biodiesel from Algae, Close Out Report TP-580-24190. National Renewable Energy Laboratory, Golden

    Google Scholar 

  • Sherr EB, Sherr BF (2002) Significance of predation by protists in aquatic microbial food webs. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 81:293–308

    Article  CAS  Google Scholar 

  • Sherr EB, Sherr BF, McDaniel J (1991) Clearance rates of  <6 μm fluorescently labelled algae (FLA) by estuarine protozoa – potential grazing impacts of flagellates and ciliates. Mar Ecol Prog Ser 69:81–92

    Article  Google Scholar 

  • Shi SY, Liu YD, Shen YW, Li GB, Li DH (2006) Lysis of Aphanizomenon flos-aquae (Cyanobacterium) by a bacterium Bacillus cereus. Biol Control 39:345–351

    Article  CAS  Google Scholar 

  • Shifrin NS, Chisholm SW (1981) Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light– dark cycles. J Phycol 17:374–384

    Article  CAS  Google Scholar 

  • Shilo M (1970) Lysis of blue-green algae by Myxobacter. J Bacteriol 104:453–463

    CAS  Google Scholar 

  • Siripornadulsil S, Traina S, Verma DPS, Sayre RT (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14:2837–2847

    Article  CAS  Google Scholar 

  • Somerville C (1995) Direct tests of the role of membrane lipid composition in low-temperature-induced photoinhibition and chilling sensitivity in plants and cyanobacteria. Proc Nat Acad Sci USA 92:6215–6218

    Article  CAS  Google Scholar 

  • Spoehr HA, Milner HW (1949) The chemical composition of Chlorella; effect of environmental conditions. Plant Physiol 24:120–149

    Article  CAS  Google Scholar 

  • Subrahmanyam S, Cronan JE Jr (1998) Overproduction of a functional fatty acid biosynthetic enzyme blocks fatty acid synthesis in Escherichia coli. J Bacteriol 180:4596–4602

    CAS  Google Scholar 

  • Sukenik A, Wyman KD, Bennett J, Falkowski PG (1987) A novel mechanism for regulating the excitation of photosystem II in green alga. Nature 327:704–707

    Article  CAS  Google Scholar 

  • Sukenik A, Carmeli Y, Berner T (1989) Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp. J Phycol 25:686–692

    Article  CAS  Google Scholar 

  • Sun M, Qian K, Su N, Chang H, Liu J, Shen G (2003) Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast. Biotechnol Lett 25:1087–1092

    Article  CAS  Google Scholar 

  • Suttle CA (2005) Viruses in the sea. Nature 437:356–361

    Article  CAS  Google Scholar 

  • Tamiya H (1957) Mass culture of algae. Annu Rev Plant Physiol 8:309–333

    Article  CAS  Google Scholar 

  • The World Bank (2007) Focus B Biofuels: the promise and the risks In: Ross-Larson B (ed) World development report 2008: agriculture for development. The World Bank, Washington, DC, pp 70–71

    Google Scholar 

  • Thompson GA (1996) Lipids and membrane function in green algae. Biochim Biophys Acta 1302:17–45

    Article  Google Scholar 

  • Toncheva-Panova T, Pouneva I, Mizinska-Boevska Y (2008) Lysis of the green alga Choricystis minor by bacterial pathogen. Compt Rend Acad Bull Sci 61:1013–1020

    Google Scholar 

  • Tredici MR (2004) Mass production of microalgae: photobioreactors. In: Richmond A (ed) Handbook of microalgal culture. Blackwell Publishing, Oxford, pp 178–214

    Google Scholar 

  • Tripathi U, Venkateshwaran G, Sarada R, Ravishankar GA (2001) Studies on Haematococcus pluvialis for improved production of astaxanthin by mutagenesis. World J Microbiol Biotechnol 17:143–148

    Article  CAS  Google Scholar 

  • Van Etten JL, Lane LC, Meints RH (1991) Viruses and viruslike particles of eukaryotic algae. Microbiol Mol Biol Rev 55:586–620

    Google Scholar 

  • Vargas CA, Martinez RA (2009) Grazing impact of natural populations of ciliates and dinoflagellates in a river-influenced continental shelf. Aquat Microb Ecol 56:93–108

    Article  Google Scholar 

  • Vasudevan P, Briggs M (2008) Biodiesel production – current state of the art and challenges. J Ind Microbiol Biotechnol 35:421–430

    Article  CAS  Google Scholar 

  • Venkatamaran LV, Kanya TCS (1981) Insect contamination (Ephydra californica) in the mass outdoor cultures of blue green, Spirullina platensis. Proc Ind Acad Sci 90:665–677

    Google Scholar 

  • Verwoert II, Van Der Linden KH, Walsh MC, Nijkamp HJ, Stuitje AR (1995) Modification of Brassica napus seed oil by expression of the Escherichia coli fabH gene, encoding 3-ketoacyl-acyl carrier protein synthase III. Plant Mol Biol 27:875–886

    Article  CAS  Google Scholar 

  • Walsh JJ, Steidinger KA (2001) Saharan dust and Florida red tides: the cyanophyte connection. J Geophys Res Oceans 106:11597–11612

    Article  CAS  Google Scholar 

  • Waterhouse TY, Welschmeyer NA (1995) Taxon analysis of microzooplankton grazing rates and phytoplankton growth rates. Limnol Oceanogr 40:827–834

    Article  CAS  Google Scholar 

  • Weisse T, Müller H, Pinto-Coelho RM, Schweitzer A, Springmann D, Baldringer G (1990) Response of the microbial loop to the phytoplankton spring bloom in a large prealpine lake. Limnol Oceanogr 35:781–794

    Article  Google Scholar 

  • Williams PJB, Laurens LM (2010) Microalgae as biodiesel and biomass feedstocks: reviews and analysis of the biochemistry, energetics and economics. Energy Environ Sci 3:554–590

    Article  CAS  Google Scholar 

  • Wolfstein K, de Brouwer JFC, Stal LJ (2002) Biochemical partitioning of photosynthetically fixed carbon by benthic diatoms during short-term incubations at different irradiances. Mar Ecol Prog Ser 245:21–31

    Article  CAS  Google Scholar 

  • Wu W-T, Hsieh C-H (2008) Cultivation of microalgae for optimal oil production. J Biotechnol 136(suppl 1):S521–S1521

    Article  Google Scholar 

  • Yamasaki Y, Shikata T, Nukata A, Ichiki S, Nagasoe S, Matsubara T, Shimasaki Y, Nakao M, Yamaguchi K, Oshima Y, Oda T, Ito M, Jenkinson IR, Asakawa M, Honjo T (2009) Extracellular polysaccharide-protein complexes of a harmful alga mediate the allelopathic control it exerts within the phytoplankton community. ISME J 3:808–817

    Article  CAS  Google Scholar 

  • Zaslavskaia LA, Lippmeier JC, Shih C, Ehrhardt D, Grossman AR, Apt KE (2001) Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science 292:2073–2075

    Article  CAS  Google Scholar 

  • Zou J, Katavic V, Giblin EM, Barton DL, MacKenzie SL, Keller WA, Hu X, Taylor DC (1997) Modification of seed oil content and acyl composition in the Brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell 9:909–923

    Article  CAS  Google Scholar 

Download references

 Acknowledgments

The authors acknowledge funding for the BioMara project (www.biomara.ac.uk). The Biomara project is generously supported by the European Regional Development Fund through the INTERREG IVA Programme, Highlands and Islands Enterprise, The Crown Estate, Northern Ireland Executive, Scottish Government, and Irish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. Day .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Day, J.G., Stanley, M.S. (2012). Biological Constraints on the Production of Microalgal-Based Biofuels. In: Gordon, R., Seckbach, J. (eds) The Science of Algal Fuels. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5110-1_6

Download citation

Publish with us

Policies and ethics