Skip to main content

Microbiologically Produced Carboxylic Acids Used as Building Blocks in Organic Synthesis

  • Chapter
  • First Online:
Book cover Reprogramming Microbial Metabolic Pathways

Abstract

Oxo- and hydroxy-carboxylic acids are of special interest in organic synthesis. However, their introduction by chemical reactions tends to be troublesome especially with regard to stereoselectivity. We describe herein the biotechnological preparation of selected oxo- and hydroxycarboxylic acids under “green” conditions and their use as promising new building blocks. Thereby, our biotechnological goal was the development of process fundamentals regarding the variable use of renewable raw materials, the development of a multi purpose bioreactor and application of a pilot plant with standard equipment for organic acid production to minimize the technological effort. Furthermore the development of new product isolation procedures, with the aim of direct product recovery, capture of products or single step operation, was necessary. The application of robust and approved microorganisms, also genetically modified, capable of using a wide range of substrates as well as producing a large spectrum of products, was of special importance. Microbiologically produced acids, like 2-oxo-glutaric acid and 2-oxo-d-gluconic acid, are useful educts for the chemical synthesis of hydrophilic triazines, spiro-connected heterocycles, benzotriazines, and pyranoic amino acids. The chiral intermediate of the tricarboxylic acid cycle, (2R,3S)-isocitric acid, is another promising compound. For the first time our process provides large quantities of enantiopure trimethyl (2R,3S)-isocitrate which was used in subsequent chemical transformations to provide new chiral entities for further usage in total synthesis and pharmaceutical research.

Oxo- and hydroxy-carboxylic acids are of special interest in organic synthesis. However, their introduction by chemical reactions tends to be troublesome especially with regard to stereoselectivity. We describe herein the biotechnological preparation of selected oxo- and hydroxycarboxylic acids under “green” conditions and their use as promising new building blocks. Thereby, our biotechnological goal was the development of process fundamentals regarding the variable use of renewable raw materials, the development of a multi purpose bioreactor and application of a pilot plant with standard equipment for organic acid production to minimize the technological effort. Furthermore the development of new product isolation procedures, with the aim of direct product recovery, capture of products or single step operation, was necessary. The application of robust and approved microorganisms, also genetically modified, capable of using a wide range of substrates as well as producing a large spectrum of products, was of special importance. Microbiologically produced acids, like 2-oxo-glutaric acid and 2-oxo-d-gluconic acid, are useful educts for the chemical synthesis of hydrophilic triazines, spiro-connected heterocycles, benzotriazines, and pyranoic amino acids. The chiral intermediate of the tricarboxylic acid cycle, (2R,3S)-isocitric acid, is another promising compound. For the first time our process provides large quantities of enantiopure trimethyl (2R,3S)-isocitrate which was used in subsequent chemical transformations to provide new chiral entities for further usage in total synthesis and pharmaceutical research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CA:

Citric acid

EDBM:

Electrodialysis by bipolar membranes

ICA:

(2R,3S)-Isocitric acid

2-OGA:

2-Oxoglutaric acid

2-OGcA:

2-Oxo-d-gluconic acid

SF:

Shaking flask

STR:

Stirred tank reactor

TCA cycle:

Tricarboxylic acid cycle

References

  • Akiyama S, Suzuki T, Sumino Y, Nakao Y, Fukuda H (1973) Induction and citric acid productivity of fluoroacetate-sensitive mutant strains of Candida lipolytica. Agr Biol Chem 37:879–888

    Article  CAS  Google Scholar 

  • Ammon K (1996) Bioprozessentwicklung am Beispiel der enzymatischen Vorstufensynthese von Vitamin C. PhD Thesis, Universität Dortmund, Dortmund

    Google Scholar 

  • Andersch J (1998) On the synthesis of N-heterocycles starting from biotechnologically obtained 2-Oxo-d-gluconic acid. PhD Thesis, Universität Leipzig, Leipzig

    Google Scholar 

  • Andersch J, Sicker D (1999) Reductive cyclization of carbohydrate 2-nitrophenyl-hydrazones to chiral functionalized 1,2,4-benzotriazines and benzimidazoles. J Heterocycl Chem 36:589–594

    Article  CAS  Google Scholar 

  • Andersch J, Sicker D, Wilde H (1999a) Methyl d-arabino-hex-2-ulopyranosonate as a building block for spiro[1,4-benzoxazine-2,2’-pyrans]. Carbohydr Res 316:85–94

    Article  CAS  Google Scholar 

  • Andersch J, Sicker D, Wilde H (1999b) Synthesis of spiro[pyrido[3,2-b][1,4]oxazin-2,2’-pyrans] based upon methyl d-arabino-2-hexulopyranosonate. Tetrahedron Lett 40:57–58

    Article  Google Scholar 

  • Andersch J, Sicker D, Wilde H (1999c) Synthesis of spiro[1,4-benzothiazin-2,2’-pyrans] starting from methyl d-arabino-2-hexulosonate. J Heterocycl Chem 36:457–460

    Article  CAS  Google Scholar 

  • Andersch J, Sicker D, Wilde H (1999d) Synthesis of spiro[pyrido[3,2-b][1,4]oxazin-2,2’-pyrans] based upon methyl d-arabino-2-hexulosonate. J Heterocycl Chem 40:57–58

    Google Scholar 

  • Andersch J, Hennig L, Wilde H (2000) N-Glycosidation of d-arabino-hex-2-ulosonic acid. Carbohydr Res 329:693–697

    Article  PubMed  CAS  Google Scholar 

  • Blitzke T, Hartenstein H, Sicker D, Wilde H (1993) Synthesen auf der Basis von 2-Oxoglutarsäure. III. Synthese und Reaktionen von (E)-2-Oxoglutaconsäuredimethylester. J Prakt Chem 335(8):683–686

    Article  CAS  Google Scholar 

  • Blitzke T, Greif D, Kempe R, Pink M, Pulst M, Sicker D, Wilde H. (1994) Synthesen auf der Basis von 2-Oxoglutarsäure. IV. Regioselektive Synthese substituierter2-(2-Methoxycarbonyl-2H-thiopyran-3-yl)glyoxylsäuremethylester. J Prakt Chem 336: 163–165

    Google Scholar 

  • Blitzke T, Sicker D, Wilde H (1997) Organic syntheses based on 2-oxoglutaric acid. V. Syntheses of novel 2H-1,4-benzothiazines and a 2,5-dihydro-1,5-benzothiazepine. J Heterocycl Chem 34(2):453–455

    Article  CAS  Google Scholar 

  • Chernyavskaya OG, Shishkanova NV, Il’chenko AP, Finogenova TV (2000) Synthesis of α-ketoglutaric acid by Yarrowia lipolyticayeast grown on ethanol. Appl Microbiol Biotechnol 53(2):152–158

    Article  PubMed  CAS  Google Scholar 

  • Crawford TC, Andrews GC, Faubl H, Chmurny GN (1980) The structure of biologically important carbohydrates. A carbon-13 nuclear magnetic resonance study of tautomeric equilibriums in several hexulosonic acids and related compounds. J Am Chem Soc 102(7):2220–2225

    Article  CAS  Google Scholar 

  • Elfari M, Ha SW, Bremus C, Merfort M, Khodaverdi V, Herrmann U, Sahm H, Görisch H (2005) A Gluconobacter oxydansmutant converting glucose almost quantitatively to 5-keto-d-gluconic acid. Appl Microbiol Biotechnol 66:668–674

    Article  PubMed  CAS  Google Scholar 

  • Ermakova IT, Shishkanova NV, Melnikova OF, Finogenova TV (1986) Properties of Candida lipolyticamutants with the modified glyoxylate cycle and their ability to produce citric and isocitric acid. I. Physiological, biochemical and cytological characteristics of mutants grown on glucose or hexadecane. Appl Microbiol Biotechnol 23(5):372–377

    Article  CAS  Google Scholar 

  • Finogenova TV, Shishkanova NV, Ermakova IT, Kataeva IA (1986) Properties of Candida lipolyticamutants with the modified glyoxylate cycle and their ability to produce citric and isocitric acid. II. Synthesis of citric and isocitric acid by Candida lipolytica mutants and peculiarities of their enzyme systems. Appl Microbiol Biotechnol 23:378–383

    Article  CAS  Google Scholar 

  • Finogenova TV, Shishkanova NV, Illarionowa WI, Losinov AB, Karklin RY, Peltzmane IZ, Jeschov VA (1989) Strain Candida lipolyticaHMM-149 as producer of isocitric acid. USSR Inventor’s Certificate SU915466, dated 23.06.1989

    Google Scholar 

  • Finogenova TV, Shishkanova NV, Fausek EA, Eremina SS (1991) Biosynthesis of isocitric acid from ethanol by yeasts. Appl Microbiol Biotechnol 36:231–235

    Article  CAS  Google Scholar 

  • Finogenova TV, Kamzolova SV, Dedyukhina EG, Shishkanova NV, Il’chenko AP, Morgunov IG, Chernyavskaya OG, Sokolov AP (2002) Biosynthesis of citric and isocitric acids from ethanol by mutant Yarrowia lipolyticaN 1 under continuous cultivation. Appl Microbiol Biotechnol 59(4–5):493–500

    PubMed  CAS  Google Scholar 

  • Förster A, Jacobs K, Juretzek T, Mauersberger S, Barth G (2007) Overexpression of the ICL1 gene changes the product ratio of citric acid production by Yarrowia lipolytica. Appl Microbiol Biotechnol 77:861–869

    Article  PubMed  Google Scholar 

  • Gupta A, Felder M, Verma V, Cullum J, Qazi GN (1999) A mutant of Gluconobacter oxydansdeficient in gluconic acid dehydrogenase. FEMS Microbiol Lett 179:501–506

    Article  PubMed  CAS  Google Scholar 

  • Hartenstein H, Blitzke D, Sicker D, Wilde H (1993) Synthesen auf der Basis von 2-Oxoglutarsäure. II. Zur Synthese von Heterocyclen durch Reaktionen von 3-Brom-2-oxoglutarsäuredimethylester mit Binucleophilen. J Prakt Chem 335(2):176–180

    Article  CAS  Google Scholar 

  • Heretsch P, Thomas F, Aurich A, Krautscheid H, Sicker D, Giannis A (2008) Syntheses with a chiral building block from the citric acid cycle: (2R,3S)-isocitric acid by fermentation of sunflower oil. Angew Chem Int Ed 47:1958–1960

    Article  CAS  Google Scholar 

  • Hölscher T, Schleyer U, Merfort M, Bringer-Meyer S, Görisch H, Sahm H (2009) Glucose oxidation and PQQ-dependent dehydrogenases in Gluconobacter oxydans. J Mol Microbiol Biotechnol 176:6–13

    Google Scholar 

  • Holz M (2011) Gentechnische Optimierung der Hefe Yarrowia lipolyticazur biotechnologischen Produktion von Succinat. PhD Thesis, Dresden University of Technology, Dresden

    Google Scholar 

  • Holz M, Otto C, Kretzschmar A, Yovkova V, Aurich A, Pötter M, Marx A, Barth G (2009) Overexpression of alpha-ketoglutarate dehydrogenase in Yarrowia lipolyticaand its effect on production of organic acids. Appl Microbiol Biotechnol 89:1519–1526

    Article  Google Scholar 

  • Huang HJ, Liu LM, Li Y, Du GC, Chen J (2006) Redirecting carbon flux in Torulopsis glabratafrom pyruvate to alpha-ketoglutaric acid by changing metabolic co-factors. Biotechnol Lett 28:95–98

    Article  PubMed  CAS  Google Scholar 

  • Huang C, Xu T, Zhang Y, Xue Y, Chen G (2007) Application of electrodialysis to the production of organic acids: state-of-the-art and recent developments. J Memb Sci 288(1–2):1–12

    Article  CAS  Google Scholar 

  • Il’chenko AP, Chernyavskaya OG, Shishkanova NV, Finogenova TV (2003) Biochemical characterization of the yeast Yarrowia lipolyticaoverproducing carboxylic acids from ethanol: nitrogen metabolism enzymes. Microbiol 72(4):418–422

    Article  Google Scholar 

  • Internetchemistry (2008) Kilogram quantities at last! http://www.internetchemie.info/news/2008/feb08/isoctric-acid.html. Accessed 20 Feb 2012

  • Kamzolova SV, Finogenova TV, Lunina YN, Perevoznikova OA, Minachova LN, Morgunov IG (2007) Characteristics of the growth on rapeseed oil and synthesis of citric and isocitric acids by Yarrowia lipolyticayeasts. Microbiol 76:20–24

    Article  CAS  Google Scholar 

  • Kamzolova SV, Finogenova TV, Morgunov IG (2008) Microbiological production of citric and isocitric acids from sunflower oil. Food Technol Biotechnol 46:51–59

    CAS  Google Scholar 

  • Katsuki T, Sharpless KB (1980) The first practical method for asymmetric epoxidation. J Am Chem Soc 102(18):5974–5976

    Article  CAS  Google Scholar 

  • Khodja M, Schwesinger H, Sicker D, Wilde H (1994) Synthesis of 3,4-dihydro-pyridazino[1,6-a]benzimidazoles by reductive cyclization of dialkyl 2-(2-nitrophenyl-hydrazono) glutarates. Heterocycles 37:401–411

    Article  CAS  Google Scholar 

  • Kirrbach S, Schnelle R-R, Stottmeister U, Hauptmann S, Mann G, Wilde H, Sicker D (1992) Optimierte Synthesen für Methyl- und Natrium-2-oxo-d-gluconat als Synthesebausteine. J Prakt Chem 334:537–539

    Article  CAS  Google Scholar 

  • Liang N, Wang M, Liu L, Du G, Chen J (2008) Enhancing alpha ketoglutaric acid production in Torulopsis glabrata: increase of acetyl-CoA availability. Wei Sheng Wu Xue Bao 48:874–878

    PubMed  CAS  Google Scholar 

  • Liu L, Li Y, Zhu Y, Du G, Chen J (2007) Redistribution of carbon flux in Torulopsis glabrataby altering vitamin and calcium level. Metab Eng 9:21–29

    Article  PubMed  CAS  Google Scholar 

  • Lockwood LB, Stodola FH (1946) Preliminary studies on the production of α-ketoglutaric acid by Pseudomonas fluorescens. J Biol Chem 164:81–83

    PubMed  CAS  Google Scholar 

  • Maldonado P, Desmarquest J-P, Gaillardin C, Binet D (1973) Process for getting diploid Candida lipolyticastrains for α-ketoglutarate fermentation. US Patent 3930946, Institute Francaise du Petrole, France

    Google Scholar 

  • Manufacturingchemist (2008) White biotechnology for greener chemistry. http://www.manufacturingchemist.com/technical/article_page/White_biotechnology_for_greener_chemistry/40815. Accessed 20 Feb 2012

  • Medicalnewstoday (2008) Isocitric acid from fermentation of sunflower oil: a new building block for pharma? http://www.medicalnewstoday.com/articles/96266.php. Accessed 20 Feb 2012

  • Misenheimer TJ, Anderson RF, Lagoda AA, Tyler DD (1965) Production of 2-ketogluconic acid by Serratia marcescens. Appl Environ Microbiol 13:393–396

    CAS  Google Scholar 

  • Moresi M, Sappino F (2000) Electrodialytic recovery of some fermentation products from model solutions: techno-economic feasibility study. J Memb Sci 164:129–140

    Article  CAS  Google Scholar 

  • Nakahara T, Kaimaktchiev AC, Oogaki-Chino M, Uchida Y, Tabuchi T (1987) Isocitric acid production from n-alkanes by Candida catenulata. Agric Biol Chem 51:2111–2116

    Article  CAS  Google Scholar 

  • Novalic S, Jagschits F, Okwor J, Kulbe KD (1995) Behaviour of citric acid during electrodialysis. J Memb Sci 108:201–205

    Article  CAS  Google Scholar 

  • Oogaki M, Inoue M, Kaimaktchiev AC, Nakahara T, Tabuchi T (1983) Production of isocitric acid from glucose by Candida ravautii. Agric Biol Chem 48:789–795

    Article  Google Scholar 

  • Otto C (2010) Gezielte Beeinflussung der Ausbeute und des Nebenproduktspektrums der α-Ketoglutarat-Synthese in Yarrowia lipolytic mittels “metabolic engineering”. PhD Thesis, Dresden University of Technology, Dresden

    Google Scholar 

  • Otto C, Yovkova V, Barth G (2011) Overproduction and secretion of α-ketoglutaric acid by microorganisms. Appl Microbiol Biotechnol 92:689–695

    Article  PubMed  CAS  Google Scholar 

  • Otto C, Yovkova V, Aurich A, Mauersberger S, Barth G (2012) Variation of the by-product spectrum during α-ketoglutaric acid production from raw glycerol by overexpression of fumarase and pyruvate carboxylase in Yarrowia lipolytica. Appl Microbiol Biotechnol. doi:10.1007/s00253-012-4085-1

  • Physorg (2012) Isocitric acid from fermentation of sunflower oil – a new building block for pharma? http://www.physorg.com/news121343388.html. Accessed 20 Feb 2012.

  • Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A et al (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol 23:195–200

    Article  PubMed  CAS  Google Scholar 

  • Rapp HJ (1995) Die Elektrodialyse mit bipolaren Membranen Theorie und Anwendung. PhD Thesis, Universität Stuttgart, Stuttgart

    Google Scholar 

  • Sakaguchi K, Abe S, Beppu T (1960) Method of producing allo-isocitric acid by fermentation. US Patent 2949404 16.08.1960

    Google Scholar 

  • Schmidt S, Teich L, Khodja M, Sicker D (2005a) Synthesis of pyranoid sugar α-amino acid derivatives from 2-oxo-d-gluconic acid. Lett Org Chem 2:165–171

    Article  CAS  Google Scholar 

  • Schmidt S, Wilde H, Hunger J, Sicker D (2005b) Synthese furanoider Zuckeraminosäuren ausgehend von fermentativ gewonnener 2-Oxo-d-gluconsäure. Z Naturforsch B: J Chem Sci 60:1168–1174

    CAS  Google Scholar 

  • Schwesinger H, Dalski A, Sicker D, Wilde H, Mann G (1992) Synthesen auf der Basis von 2-Oxoglutarsäure. I. Synthese substituierter 2-Nitrophenylhydrazone von 2-Oxodicarbonsäureestern und Untersuchung ihres Tautomerie- und Absorptionsverhaltens. J Prakt Chem 334:257–264

    Article  CAS  Google Scholar 

  • Specht R (2004) Produktion von 2-Oxoglutarsäure aus Pflanzenölen unter der Verwendung der Hefeart Yarrowia lipolytica. Diplomarbeit, Technische Universität Dresden, Dresden

    Google Scholar 

  • Stottmeister U, Hoppe K (1991) Organische Genuss-Säuren. In: Lebensmittel-Biotechnologie. H. Ruttloff (Ed.) Akademie Verlag Berlin, pp 516–557

    Google Scholar 

  • Stottmeister U, Behrens U, Weißbrodt E, Barth G, Franke-Rinker D, Schulze E (1982) Nutzung von Paraffinen und anderen Nichtkohlenhydrat-Kohlenstoffquellen zur mikrobiellen Citronensauresynthese. Z Allg Mikrobiol 22:399–424

    Article  PubMed  CAS  Google Scholar 

  • Stottmeister U, Puschendorf K, Thiersch A, Berger R, Düresch R, Richter H, Schmidt JST, Iske U, Jechorek M, Uhlig H (1990) Verfahren zur Gewinnung von 2-Oxogluconsäure mittels Bakterien, DD 278 362 A1 IBT/UFZ

    Google Scholar 

  • Stottmeister U, Schoenfelder M, Wilde H, Sicker D, Andersch J (2001) Novel 3-substituted 1,2,4-benzotriazines. A method for their production and the use thereof for the treatment and prophylaxis of tumours, EP20000985213.

    Google Scholar 

  • Stottmeister U, Aurich A, Wilde H, Andersch J, Schmidt S, Sicker D (2005) White biotechnology for green chemistry: fermentative 2-oxocarboxylic acids as novel building blocks for subsequent chemical syntheses. J Ind Microbiol Biotechnol 32:651–664

    Article  PubMed  CAS  Google Scholar 

  • Stubbs JJ, Lockwood LB, Roe ET, Tabenkin B, Ward GE (1940) Ketogluconic acid from glucose. Ind Eng Chem 32:1626–1631

    Article  CAS  Google Scholar 

  • Tabaka K, Kimura K, Yamaguchi Y (1969) Process for producing l-glutamic acid and α-ketoglutaric acid. US Patent 3450599, Kyowa Hakko Kogyo, Tokyo

    Google Scholar 

  • Tongwen X, Weihua Y (2002) Citric acid production by electrodialysis with bipolar membranes. Chem Eng Process 41(6):519–524

    Article  Google Scholar 

  • Tsugawa, R., Nakase, T., Yamashita, K (1969) Production of α-ketoglutaric acid by fermentation of hydrocarbons, US Patent 3616213 Ajinomoto Co. Inc., Tokyo

    Google Scholar 

  • Verseck S, Karau A, Weber M (2007) Fermentative Herstellung von alpha-Ketoglutarsäure. DE 10 2007 051 451.6, Evonik Degussa GmbH, Essen

    Google Scholar 

  • Verseck S, Karau A, Weber M (2009) Fermentative production of alpha-ketoglutaric acid. WO2009053489, Evonik Degussa GmbH, Essen

    Google Scholar 

  • Vickery HB (1962) A suggested new nomenclature for the isomers of isocitric acid. J Biol Chem 237:1739–41

    PubMed  CAS  Google Scholar 

  • Vogelbusch (2012) Biocommodities. http://www.vogelbusch-biocommodities.com/en/index.php. Accessed 20 Feb 2012

  • Weißbrodt E, Barth G, Weber H, Stottmeister U, Düresch R, Richter P (1988) Production of 2-oxoglutaric acid by yeasts. Patent DD 267 999 IBT/UFZ, dated 06.01.1988

    Google Scholar 

  • Yovkova V (2011) Genetische Optimierung der Hefe Yarrowia lipolytica für die biotechnologische Gewinnung von α-Ketoglutarsäure. PhD Thesis, Dresden University of Technology, Dresden

    Google Scholar 

  • Zhang D, Liang N, Shi Z, Liu L, Chen J, Du G (2009) Enhancement of α-ketoglutarate production in Torulopsis glabrata: redistribution of carbon flux from pyruvate to α-ketoglutarate. Biotechnol Bioproc Eng 14:134–139

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Stottmeister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Aurich, A. et al. (2012). Microbiologically Produced Carboxylic Acids Used as Building Blocks in Organic Synthesis. In: Wang, X., Chen, J., Quinn, P. (eds) Reprogramming Microbial Metabolic Pathways. Subcellular Biochemistry, vol 64. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5055-5_19

Download citation

Publish with us

Policies and ethics