Skip to main content

Molybdate Affects Sulfate Acquisition in Brassica juncea Plants

  • Conference paper
  • First Online:
Sulfur Metabolism in Plants

Abstract

In the last years Brassica juncea plants have been studied and utilized for heavy metal phytoremediation. In the present study plants of Brassica juncea were exposed for 24 h to 200 μM molybdate, and the interaction between molybdate and sulfate was evaluated. The presence of Mo in the medium affected the biomass of the plants. In particular, the effect was evident in roots, which appeared to be the primary target of molybdenum toxicity. In the plants supplied with Mo, the S content was reduced consistently with the decline of the sulfate uptake rates. However, the transcript level of the sulfate transporter BjSultr2;1 in roots was unchanged, while Mo treatment clearly enhanced the MOT1 transcript accumulation. The content of glutathione (GSH) decreased in roots and leaves of plants exposed to Mo, likely due to the competition of molybdate with sulfate for the access to the sulfur metabolic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baxter I, Muthukumar B, Park HC, Buchner P, Lahner B, Danku J, Zhao K, Lee J, Hawkesford MJ, Guerinot ML, Salt DE (2008) Variation in molybdenum content across broadly distributed populations of Arabidopsis thaliana is controlled by a mitochondrial molybdenum transporter (MOT1). PLoS Genet 4:e1000004

    Article  PubMed  Google Scholar 

  • Fitzpatrick KL, Tyerman SD, Kaiser BN (2008) Molybdate transport through the plant sulfate transporter SHST1. FEBS Lett 582:1508–1513

    Article  PubMed  CAS  Google Scholar 

  • Hale KL, McGrath S, Lombi E, Stack S, Terry N, Pickering IJ, George GN, Pilon-Smits EAH (2001) Molybdenum sequestration in Brassica: a role for anthocyanins? Plant Physiol 126:1391–1402

    Article  PubMed  CAS  Google Scholar 

  • Kaiser BN, Gridley KL, Ngaire BJ, Phillips T, Tyerman SD (2005) The role of molybdenum in agricultural plant production. Ann Bot 96:745–754

    Article  PubMed  CAS  Google Scholar 

  • Kruse T, Gehl C, Geisler M, Lehrke M, Ringel P, Hallier S, Hansch R, Mendel RR (2010) Identification and biochemical characterization of molybdenum cofactor-binding proteins from Arabidopsis thaliana. J Biol Chem 285:6623–6635

    Article  PubMed  CAS  Google Scholar 

  • MacLeod JA, Gupta UC, Stanfield B (1997) Molybdenum and sulfur relationships in plants. In: Gupta UC (ed) Molybdenum in agriculture. Press Syndicate of the University of Cambridge, USA 229–244

    Google Scholar 

  • Nautiyal N, Chatterjee C (2004) Molybdenum stress-induced changes in growth and yield of chickpea. J Plant Nutr 27:173–181

    Article  CAS  Google Scholar 

  • Quaggiotti S, Abrahamshon C, Malagoli M, Ferrari G (2003) Physiological and molecular aspects of sulphate uptake in two maize hybrids in response to S-deprivation. J Plant Physiol 160:167–173

    Article  PubMed  CAS  Google Scholar 

  • Schiavon M, Pilon-Smits EAH, Wirtz M, Hell R, Malagoli M (2008) Interaction between chromium and sulfur nutrition in Brassica juncea. J Environ Qual 37:1536–1545

    Article  PubMed  CAS  Google Scholar 

  • Schwarz G, Mendel RR, Ribbe MW (2009) Molybdenum cofactors, enzymes and pathways. Nature 460:839–847

    Article  PubMed  CAS  Google Scholar 

  • Shinmachi F, Buchner P, Stroud JL, Parmar S, Zhao F-J, McGrath SP, Hawkesford MJ (2010) Influence of sulfur deficiency on the expression of specific sulfate transporters and the distribution of sulfur, selenium, and molybdenum in wheat. Plant Physiol 153:327–336

    Article  PubMed  CAS  Google Scholar 

  • Tejada-Jimenez M, Galvan A, Fernandez E, Llamas A (2009) Homeostasis of the micronutrients Ni, Mo and Cl with specific biochemical functions. Curr Opin Plant Biol 12:358–363

    Article  PubMed  CAS  Google Scholar 

  • Tomatsu H, Takano J, Takahashi H, Watanabe-Takahashi A, Shibagaki N, Fujiwara T (2007) An Arabidopsis thaliana high-affinity molybdate transporter required for efficient uptake of molybdate from soil. Proc Natl Acad Sci USA 104:18807–18812

    Article  PubMed  CAS  Google Scholar 

  • Wangeline AL, Burkhead JL, Hale KL, Lindblom S-D, Terry N, Pilon M, Pilon-Smits EAH (2004) Overexpression of ATP sulfurylase in Brassica juncea: effects on tolerance and accumulation of twelve metals. J Environ Qual 33:54–60

    Article  PubMed  CAS  Google Scholar 

  • Wirtz M, Droux M, Hell R (2004) O-acetylserine (thiol) lyase: an enigmatic enzyme of plant cysteine biosynthesis revisited in Arabidopsis thaliana. J Exp Bot 55:1785–1798

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Malagoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Malagoli, M. et al. (2012). Molybdate Affects Sulfate Acquisition in Brassica juncea Plants. In: De Kok, L., et al. Sulfur Metabolism in Plants. Proceedings of the International Plant Sulfur Workshop, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4450-9_22

Download citation

Publish with us

Policies and ethics