Skip to main content

Determination of the probable failure mechanisms and service life of offshore concrete gravity structures in the OSPAR Maritime Area - research proposal

  • Conference paper
  • First Online:
Book cover Advances in Modeling Concrete Service Life

Part of the book series: RILEM Bookseries ((RILEM,volume 3))

  • 1374 Accesses

Abstract

Since 1973 concrete gravity structures have been used to extract oil and gas within the OSPAR Maritime Area. As oil and gas supplies are depleting these structures will require decommissioning over the next 10 to 20 years. During design and construction, removal was rarely considered and it is anticipated that this can be extremely high in cost and safety risk. Leaving the structure in situ is a consideration of which there are concerns about the service life of the concrete. Little is known about the durability and failure mechanisms of such structures. Previous research to determine the most probable service life and failure mechanisms is limited as the majority has focused on atmospheric and splash zones, considered to be worst case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Concrete Offshore in the Nineties-COIN (1990), A Summary Report, HMSO Publication, OTH90 320.

    Google Scholar 

  2. International Association of Oil & Gas Suppliers (2003), Disposal of disused offshore concrete gravity platforms in the OSPAR Maritime Area. International Association of Oil & Gas Suppliers, Report Number 338.

    Google Scholar 

  3. OSPAR (1998), OSPAR Decision 98/3 on the Disposal of Disused Offshore Installations.

    Google Scholar 

  4. North Sea Decomissioning Supply Chain Steering Group (2009), Report on industry consultation, Scottish Enterprise.

    Google Scholar 

  5. Atkins Process Limited, Olav Olsen A/S (2003), Decommissioning offshore concrete platforms, HSE.

    Google Scholar 

  6. CIRIA C674 (2010), The use of concrete in maritime engineering - a guide to good practice, CIRIA, London.

    Google Scholar 

  7. Trethewey, K.R. (1988), Corrosion: for students of science and engineering, Longman Scientific & Technical, New York.

    Google Scholar 

  8. Bertolini, L. (2004). Corrosion of steel in concrete: prevention, diagnosis, repair. Wiley-VCH, Weinheim.

    Google Scholar 

  9. Böhni, H. (2005), Corrosion in Reinforced Concrete Structures, Boca Raton, Fla, CRC Press; Woodhead, Cambridge.

    Book  Google Scholar 

  10. Isgor, O.B. and Razaqpur, A.G. (2006), Can. J. Civil Eng., vol. 33, n. 6, p. 707.

    Article  Google Scholar 

  11. Raupach, M. (1996), Mater. Struct., vol. 29, n. 188, p. 226.

    Article  Google Scholar 

  12. Gjorv, O.E., Vennesland, O., El-Busaidy, A.H.S. (1986), Mater. Perform., vol. 25, n. 12., p. 39.

    Google Scholar 

  13. Page, C.L. and Lambert, P. (1987), J. Mater. Sci., vol. 22, n. 3, p. 942.

    Article  Google Scholar 

  14. Yu, S.W. and Page, C.L. (1991), Cement Concrete Res., vol. 21, n. 4, p. 581.

    Article  Google Scholar 

  15. Hansson, C.M. (1993), Corros. Sci., vol. 35, n. 5, p. 1551.

    Article  Google Scholar 

  16. Castellote, M., Alonso, C., Andrade, C., Chadbourn, G.A., Page, C.L. (2001), Cement and Concrete Research, vol. 31, n. 4, p. 621.

    Article  Google Scholar 

  17. Gjorv, O.E., Vennesland, O. (1987), Cement Concrete Res., vol. 9, n. 2, p. 229.

    Article  Google Scholar 

  18. Thomas, M.D.A. and Bamforth, P.B. (1999), Modelling chloride diffusion in concrete: Effect of fly ash and slag. Cement Concrete Res., vol. 29, n., p. 487.

    Article  Google Scholar 

  19. Castellote, M. and Andrade, C. (2006), Mater Struct., vol. 39, n. 10, p. 955.

    Article  Google Scholar 

  20. Lindvall, A. (2007), Cement Concrete Comp., vol 29, n. 2, p. 88.

    Article  Google Scholar 

  21. Castellote, M., Andrade, C., Alonso, C. (2001), Cement Concrete Res., vol. 31, n. 10, p. 1411.

    Article  Google Scholar 

  22. Wang, Y., Li, L-Y., Page, C.L. (2005), Build. Environ., vol. 40, n. 12, p. 1573.

    Article  Google Scholar 

  23. Han, S-H., Chae, J.W., Park, W-S., Yi, J-H. 2006. Numerical modelling of deterioration in marine concrete structures. In: Proc of the 16th int offshore and polar engineering conference, San Francisco, California, USA, May 28th - June 2nd 2006.

    Google Scholar 

  24. Conciatori, D., Sadouki, H., Brühwiler, E. (2008), Cement Concrete Res., vol. 38, n. 12, p. 1401.

    Article  Google Scholar 

  25. Helland, S., Aarstein, R., Maage, M. (2010), Structural Concrete, vol. 11, n. 1, p. 15.

    Article  Google Scholar 

  26. Life-365 (2008), Service Life Prediction Model and computer program for predicting the service life and life-cycle costs of reinforced concrete exposed to chlorides, version 2.0 user manual.

    Google Scholar 

  27. Visser, J.H.M, Gaal, G.C.M., Rooij, M.R. (2002), In: Proc of 3rd int RILEM workshop on testing and modelling the chloride ingress into concrete, Madrid, Spain, 9-10th September, p. 423.

    Google Scholar 

  28. Oslakovic, I.S., Serdar, M., Bjegovic, D., Mikulic, D. (2008), In: Proc 11th int conference on durability of building materials and components, Istanbul, Turkey, 11-14th May, paper T11, p. 222.

    Google Scholar 

  29. Nokken, M., Boddy, A., Hooton, R.D., Thomas, M.D.A. (2006), Cement Concrete Res. vol. 36, n. 1,p. 200.

    Article  Google Scholar 

  30. Stanish, K. and Thomas, M.D.A. (2003), Cement Concrete Res., vol. 33, n. 1, p. 55.

    Article  Google Scholar 

  31. Bamforth, P.B. (1999), Mag. Concrete Res., vol. 51, n. 2, p. 87.

    Article  Google Scholar 

  32. Djerbi, A., Bonnet, S., Khelidj, A., Baroghel-bouny, V. (2008), Cement Concrete Res., vol 38, n. 6, p. 877.

    Article  Google Scholar 

  33. Kato, E., Kato, Y., Uomoto, T. (2005), vol. 3, n. 1, p. 85.

    Google Scholar 

  34. Ismail, M., Toumi, A., François, R., Gagné, R. (2008), Cement Concrete Res., vol. 38 n. 8–9., p. 1106.

    Article  Google Scholar 

  35. Castellote, M., Andrade, C., Alonso, C. (2002), Corros Sci, vol. 44, n. 11, p. 2409.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Thistlethwaite .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 RILEM

About this paper

Cite this paper

Jones, R., Newlands, M., Thistlethwaite, C. (2012). Determination of the probable failure mechanisms and service life of offshore concrete gravity structures in the OSPAR Maritime Area - research proposal. In: Andrade, C., Gulikers, J. (eds) Advances in Modeling Concrete Service Life. RILEM Bookseries, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2703-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2703-8_11

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2702-1

  • Online ISBN: 978-94-007-2703-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics