Skip to main content

Yeast Aging and Apoptosis

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 57))

Abstract

A concerted balance between proliferation and apoptosis is essential to the survival of multicellular organisms. Thus, apoptosis per se, although it is a destructive process leading to the death of single cells, also serves as a pro-survival mechanism that ensures healthy organismal development and acts as a life-prolonging or anti-aging program. The discovery that yeast also possess a functional and, in many cases, highly conserved apoptotic machinery has made it possible to study the relationships between aging and apoptosis in depth using a well-established genetic system and the powerful tools available to yeast researchers for investigating complex physiological and cytological interactions. The aging process of yeast, be it replicative or chronological aging, is closely related to apoptosis, although it remains unclear whether apoptosis is a causal feature of the aging process or vice versa. Nevertheless, experimental results obtained during the past several years clearly demonstrate that yeast serve as a powerful and versatile experimental system for understanding the interconnections between these two fundamentally important cellular and physiological pathways.

Equally contributed by Peter Laun, Sabrina Büttner, Mark Rinnerthaler

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aguilaniu H, Gustafsson L, Rigoulet M, Nystrom T (2003) Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299:1751–1753

    PubMed  CAS  Google Scholar 

  • Ahn SH, Henderson KA, Keeney S, Allis CD (2005) H2B (Ser10) phosphorylation is induced during apoptosis and meiosis in S. cerevisiae. Cell Cycle 4:780–783

    PubMed  CAS  Google Scholar 

  • Alderson MR, Tough TW, Davis-Smith T, Braddy S, Falk B, Schooley KA, Goodwin RG, Smith CA, Ramsdell F, Lynch DH (1995) Fas ligand mediates activation-induced cell death in human T lymphocytes. J Exp Med 181:71–77

    PubMed  CAS  Google Scholar 

  • Allen C, Buttner S, Aragon AD, Thomas JA, Meirelles O, Jaetao JE, Benn D, Ruby SW, Veenhuis M, Madeo F et al (2006) Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures. J Cell Biol 174:89–100

    PubMed  CAS  Google Scholar 

  • Arnheim G (1890) Coagulationsnekrose und Kernschwund. Virchows Archiv für pathologische Anatomie und Physiologie und für klinische Medizin 120:367–383

    Google Scholar 

  • Bandara PDS, Flattery-O’Brien JA, Grant CM, Dawes IW (1998) Involvement of the Saccharomyces cerevisiae UTH1 gene in the oxidative-stress response. Curr Genet 34:259–268

    PubMed  CAS  Google Scholar 

  • Bettiga M, Calzari L, Orlandi I, Alberghina L, Vai M (2004) Involvement of the yeast metacaspase Yca1 in ubp10Delta-programmed cell death. FEMS Yeast Res 5:141–147

    PubMed  CAS  Google Scholar 

  • Bink A, Govaert G, Francois IE, Pellens K, Meerpoel L, Borgers M, Van Minnebruggen G, Vroome V, Cammue BP, Thevissen K (2010) A fungicidal piperazine-1-carboxamidine induces mitochondrial fission-dependent apoptosis in yeast. FEMS Yeast Res 10:812–818

    PubMed  CAS  Google Scholar 

  • Birnbaum MJ, Clem RJ, Miller LK (1994) An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs. J Virol 68:2521–2528

    PubMed  CAS  Google Scholar 

  • Bischoff JR, Casso D, Beach D (1992) Human p53 inhibits growth in Schizosaccharomyces pombe. Mol Cell Biol 12:1405–1411

    PubMed  CAS  Google Scholar 

  • Bouillet P, Metcalf D, Huang DC, Tarlinton DM, Kay TW, Kontgen F, Adams JM, Strasser A (1999) Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286:1735–1738

    PubMed  CAS  Google Scholar 

  • Braun RJ, Zischka H, Madeo F, Eisenberg T, Wissing S, Buttner S, Engelhardt SM, Buringer D, Ueffing M (2006) Crucial mitochondrial impairment upon CDC48 mutation in apoptotic yeast. J Biol Chem 281:25757–25767

    PubMed  CAS  Google Scholar 

  • Breitenbach M, Madeo F, Laun P, Heeren G, Jarolim S, Fröhlich K-U, Wissing S, Pichova A (2003) Yeast as a model for ageing and apoptosis research. In: Model systems in aging, Springer, Heidelberg, pp 61–97

    Google Scholar 

  • Burhans WC, Weinberger M (2007) DNA replication stress, genome instability and aging. Nucleic Acids Res 35:7545–7556

    PubMed  CAS  Google Scholar 

  • Burtner CR, Murakami CJ, Olsen B, Kennedy BK, Kaeberlein M (2011) A genomic analysis of chronological longevity factors in budding yeast. Cell Cycle 10:1385–1396

    PubMed  Google Scholar 

  • Buttner S, Eisenberg T, Carmona-Gutierrez D, Ruli D, Knauer H, Ruckenstuhl C, Sigrist C, Wissing S, Kollroser M, Frohlich KU et al (2007) Endonuclease G regulates budding yeast life and death. Mol Cell 25:233–246

    PubMed  Google Scholar 

  • Buttner S, Eisenberg T, Herker E, Carmona-Gutierrez D, Kroemer G, Madeo F (2006) Why yeast cells can undergo apoptosis: death in times of peace, love, and war. J Cell Biol 175:521–525

    PubMed  Google Scholar 

  • Camougrand N, Grelaud-Coq A, Marza E, Priault M, Bessoule JJ, Manon S (2003) The product of the UTH1 gene, required for Bax-induced cell death in yeast, is involved in the response to rapamycin. Mol Microbiol 47:495–506

    PubMed  CAS  Google Scholar 

  • Camougrand N, Kissova I, Velours G, Manon S (2004) Uth1p: a yeast mitochondrial protein at the crossroads of stress, degradation and cell death. FEMS Yeast Res 5:133–140

    PubMed  CAS  Google Scholar 

  • Camougrand NM, Mouassite M, Velours GM, Guerin MG (2000) The “SUN” family: UTH1, an ageing gene, is also involved in the regulation of mitochondria biogenesis in Saccharomyces cerevisiae. Arch Biochem Biophys 375:154–160

    PubMed  CAS  Google Scholar 

  • Carmona-Gutierrez D, Eisenberg T, Buttner S, Meisinger C, Kroemer G, Madeo F (2010) Apoptosis in yeast: triggers, pathways, subroutines. Cell Death Differ 17:763–773

    PubMed  CAS  Google Scholar 

  • Chinnaiyan AM, O’Rourke K, Lane BR, Dixit VM (1997) Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death. Science 275:1122–1126

    PubMed  CAS  Google Scholar 

  • Chiocchetti A, Zhou J, Zhu H, Karl T, Haubenreisser O, Rinnerthaler M, Heeren G, Oender K, Bauer J, Hintner H et al (2007) Ribosomal proteins Rpl10 and Rps6 are potent regulators of yeast replicative life span. Exp Gerontol 42:275–286

    PubMed  CAS  Google Scholar 

  • Chiou SK, Rao L, White E (1994) Bcl-2 blocks p53-dependent apoptosis. Mol Cell Biol 14:2556–2563

    PubMed  Google Scholar 

  • Cleary ML, Smith SD, Sklar J (1986) Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell 47:19–28

    PubMed  CAS  Google Scholar 

  • Clem RJ, Fechheimer M, Miller LK (1991) Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science 254:1388–1390

    PubMed  CAS  Google Scholar 

  • Conradt B, Xue D (2005) Programmed cell death. WormBook 1–13

    Google Scholar 

  • Cree LM, Samuels DC, de Sousa Lopes SC, Rajasimha HK, Wonnapinij P, Mann JR, Dahl HH, Chinnery PF (2008) A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Nat Genet 40:249–254

    PubMed  CAS  Google Scholar 

  • Cvetanovic M, Mitchell JE, Patel V, Avner BS, Su Y, van der Saag PT, Witte PL, Fiore S, Levine JS, Ucker DS (2006) Specific recognition of apoptotic cells reveals a ubiquitous and unconventional innate immunity. J Biol Chem 281:20055–20067

    PubMed  CAS  Google Scholar 

  • De Felici M, Lobascio AM, Klinger FG (2007) Cell death in fetal oocytes: Many players for multiple pathways. Autophagy 4:240–242

    PubMed  Google Scholar 

  • Ellis HM, Horvitz HR (1986) Genetic control of programmed cell death in the nematode C. elegans. Cell 44:817–829

    PubMed  CAS  Google Scholar 

  • Erjavec N, Larsson L, Grantham J, Nystrom T (2007) Accelerated aging and failure to segregate damaged proteins in Sir2 mutants can be suppressed by overproducing the protein aggregation-remodeling factor Hsp104p. Genes Dev 21:2410–2421

    PubMed  CAS  Google Scholar 

  • Erjavec N, Nystrom T (2007) Sir2p-dependent protein segregation gives rise to a superior reactive oxygen species management in the progeny of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 104:10877–10881

    PubMed  CAS  Google Scholar 

  • Evans CJ, Aguilera RJ (2003) DNase II: genes, enzymes and function. Gene 322:1–15

    PubMed  CAS  Google Scholar 

  • Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148:2207–2216

    PubMed  CAS  Google Scholar 

  • Fahrenkrog B, Sauder U, Aebi U (2004) The S. cerevisiae HtrA-like protein Nma111p is a nuclear serine protease that mediates yeast apoptosis. J Cell Sci 117:115–126

    PubMed  CAS  Google Scholar 

  • Fannjiang Y, Cheng WC, Lee SJ, Qi B, Pevsner J, McCaffery JM, Hill RB, Basanez G, Hardwick JM (2004) Mitochondrial fission proteins regulate programmed cell death in yeast. Genes Dev 18:2785–2797

    PubMed  CAS  Google Scholar 

  • Fernandez-Teran MA, Hinchliffe JR, Ros MA (2006) Birth and death of cells in limb development: a mapping study. Dev Dyn 235:2521–2537

    PubMed  CAS  Google Scholar 

  • Flemming W (1885) Uber die Bildung von Richtungsfiguren in Saugethiereiern beim Untergang Graaf’scher Follikel. Arch Anat EntwGesch 1885:221–224

    Google Scholar 

  • Francis BR, White KH, Thorsness PE (2007) Mutations in the Atp1p and Atp3p subunits of yeast ATP synthase differentially affect respiration and fermentation in Saccharomyces cerevisiae. J Bioenerg Biomembr 39:127–144

    PubMed  CAS  Google Scholar 

  • Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F, Smith CL, Youle RJ (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1:515–525

    PubMed  CAS  Google Scholar 

  • Glücksmann A (1951) Cell deaths in normal vertebrate ontogeny. Biol Rev Camb Philos Soc 26:59–86

    Google Scholar 

  • Granot D, Levine A, Dor-Hefetz E (2003) Sugar-induced apoptosis in yeast cells. FEMS Yeast Res 4:7–13

    PubMed  CAS  Google Scholar 

  • Guaragnella N, Bobba A, Passarella S, Marra E, Giannattasio S (2010) Yeast acetic acid-induced programmed cell death can occur without cytochrome c release which requires metacaspase YCA1. FEBS Lett 584:224–228

    PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge J (2007) Free radicals in biology and medicine, 4th edn. Oxford University Press, New York

    Google Scholar 

  • Hamon Y, Chambenoit O, Chimini G (2002) ABCA1 and the engulfment of apoptotic cells. Biochim Biophys Acta 1585:64–71

    PubMed  CAS  Google Scholar 

  • Hampel B, Malisan F, Niederegger H, Testi R, Jansen-Durr P (2004) Differential regulation of apoptotic cell death in senescent human cells. Exp Gerontol 39:1713–1721

    PubMed  CAS  Google Scholar 

  • Hauptmann P, Riel C, Kunz-Schughart LA, Frohlich KU, Madeo F, Lehle L (2006) Defects in N-glycosylation induce apoptosis in yeast. Mol Microbiol 59:765–778

    PubMed  CAS  Google Scholar 

  • He H, Sun Y (2007) Ribosomal protein S27L is a direct p53 target that regulates apoptosis. Oncogene 26:2707–2716

    PubMed  CAS  Google Scholar 

  • Heath-Engel HM, Shore GC (2006) Mitochondrial membrane dynamics, cristae remodelling and apoptosis. Biochim Biophys Acta 1763:549–560

    PubMed  CAS  Google Scholar 

  • Hedgecock EM, Sulston JE, Thomson JN (1983) Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. Science 220:1277–1279

    PubMed  CAS  Google Scholar 

  • Heeren G, Rinnerthaler M, Laun P, von Seyerl P, Kossler S, Klinger H, Hager M, Bogengruber E, Jarolim S, Simon-Nobbe B et al (2009) The mitochondrial ribosomal protein of the large subunit, Afo1p, determines cellular longevity through mitochondrial back-signaling via TOR1. Aging (Albany NY) 1:622–636

    CAS  Google Scholar 

  • Hengartner MO (1997) Genetic control of programmed cell death and aging in the nematode Caenorhabditis elegans. Exp Gerontol 32:363–374

    PubMed  CAS  Google Scholar 

  • Henson PM, Hume DA (2006) Apoptotic cell removal in development and tissue homeostasis. Trends Immunol 27:244–250

    PubMed  CAS  Google Scholar 

  • Herker E, Jungwirth H, Lehmann KA, Maldener C, Frohlich KU, Wissing S, Buttner S, Fehr M, Sigrist S, Madeo F (2004) Chronological aging leads to apoptosis in yeast. J Cell Biol 164:501–507

    PubMed  CAS  Google Scholar 

  • Holcik M, Sonenberg N (2005) Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 6:318–327

    PubMed  CAS  Google Scholar 

  • Horvitz HR, Ellis HM, Stemberg PW (1982) Programmed cell death in nematode development. Neurosci Comment 1:56–65

    Google Scholar 

  • Huh GH, Damsz B, Matsumoto TK, Reddy MP, Rus AM, Ibeas JI, Narasimhan ML, Bressan RA, Hasegawa PM (2002) Salt causes ion disequilibrium-induced programmed cell death in yeast and plants. Plant J 29:649–659

    PubMed  CAS  Google Scholar 

  • Jacoby M (1900) Uber die fermentative Eiweissspaltung und Ammoniakbildung in der Leber. Hoppe-Seyler’s Z Physiol Chem 30:149–159

    CAS  Google Scholar 

  • Jacotot E, Ferri KF, Kroemer G (2000) Apoptosis and cell cycle: distinct checkpoints with overlapping upstream control. Pathol Biol (Paris) 48:271–279

    CAS  Google Scholar 

  • Jazwinski SM, Egilmez NK, Chen JB (1989) Replication control and cellular life span. Exp Gerontol 24:423–436

    PubMed  CAS  Google Scholar 

  • Jurgensmeier JM, Krajewski S, Armstrong RC, Wilson GM, Oltersdorf T, Fritz LC, Reed JC, Ottilie S (1997) Bax- and Bak-induced cell death in the fission yeast Schizosaccharomyces pombe. Mol Biol Cell 8:325–339

    PubMed  CAS  Google Scholar 

  • Karbowski M, Lee YJ, Gaume B, Jeong SY, Frank S, Nechushtan A, Santel A, Fuller M, Smith CL, Youle RJ (2002) Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J Cell Biol 159:931–938

    PubMed  CAS  Google Scholar 

  • Kawane K, Fukuyama H, Kondoh G, Takeda J, Ohsawa Y, Uchiyama Y, Nagata S (2001) Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science 292:1546–1549

    PubMed  CAS  Google Scholar 

  • Kawane K, Fukuyama H, Yoshida H, Nagase H, Ohsawa Y, Uchiyama Y, Okada K, Iida T, Nagata S (2003) Impaired thymic development in mouse embryos deficient in apoptotic DNA degradation. Nat Immunol 4:138–144

    PubMed  CAS  Google Scholar 

  • Kennedy BK, Austriaco NR, Zhang JS, Guarente L (1995) Mutation in the silencing gene Sir4 can delay aging in Saccharomyces cerevisiae. Cell 80:485–496

    PubMed  CAS  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    PubMed  CAS  Google Scholar 

  • Kirkwood TB, Proctor CJ (2003) Somatic mutations and ageing in silico. Mech Ageing Dev 124:85–92

    PubMed  CAS  Google Scholar 

  • Klebs E (1889) Die Allgemeine Pathologie. Zweiter Theil. Störungen des Baues und der Zusammensetzung. Verlag Gustav Fischer, Jena

    Google Scholar 

  • Klinger H, Rinnerthaler M, Lam YT, Laun P, Heeren G, Klocker A, Simon-Nobbe B, Dickinson JR, Dawes IW, Breitenbach M (2010) Quantitation of (a)symmetric inheritance of functional and of oxidatively damaged mitochondrial aconitase in the cell division of old yeast mother cells. Exp Gerontol 45:533–542

    PubMed  CAS  Google Scholar 

  • Krause KH (2007) Aging: a revisited theory based on free radicals generated by NOX family NADPH oxidases. Exp Gerontol 42:256–262

    PubMed  CAS  Google Scholar 

  • Krieser RJ, White K (2002) Engulfment mechanism of apoptotic cells. Curr Opin Cell Biol 14:734–738

    PubMed  CAS  Google Scholar 

  • Lackner LL, Nunnari JM (2009) The molecular mechanism and cellular functions of mitochondrial division. Biochim Biophys Acta 1792:1138–1144

    PubMed  CAS  Google Scholar 

  • Laun P, Heeren G, Rinnerthaler M, Rid R, Kossler S, Koller L, Breitenbach M (2008) Senescence and apoptosis in yeast mother cell-specific aging and in higher cells: a short review. Biochim Biophys Acta 1783:1328–1334

    PubMed  CAS  Google Scholar 

  • Laun P, Pichova A, Madeo F, Fuchs J, Ellinger A, Kohlwein S, Dawes I, Frohlich KU, Breitenbach M (2001) Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol Microbiol 39:1166–1173

    PubMed  CAS  Google Scholar 

  • Laun P, Rinnerthaler M, Bogengruber E, Heeren G, Breitenbach M (2006) Yeast as a model for chronological and reproductive aging – a comparison. Exp Gerontol 41:1208–1212

    PubMed  CAS  Google Scholar 

  • Lee RE, Brunette S, Puente LG, Megeney LA (2010) Metacaspase Yca1 is required for clearance of insoluble protein aggregates. Proc Natl Acad Sci USA 107:13348–13353

    PubMed  CAS  Google Scholar 

  • Leonhard K, Stiegler A, Neupert W, Langer T (1999) Chaperone-like activity of the AAA domain of the yeast Yme1 AAA protease. Nature 398:348–351

    PubMed  CAS  Google Scholar 

  • Lettre G, Hengartner MO (2006) Developmental apoptosis in C. elegans: a complex CEDnario. Nat Rev Mol Cell Biol 7:97–108

    PubMed  CAS  Google Scholar 

  • Li W, Sun L, Liang Q, Wang J, Mo W, Zhou B (2006) Yeast AMID homologue Ndi1p displays respiration-restricted apoptotic activity and is involved in chronological aging. Mol Biol Cell 17:1802–1811

    PubMed  CAS  Google Scholar 

  • Ligr M, Velten I, Frohlich E, Madeo F, Ledig M, Frohlich KU, Wolf DH, Hilt W (2001) The proteasomal substrate Stm1 participates in apoptosis-like cell death in yeast. Mol Biol Cell 12:2422–2432

    PubMed  CAS  Google Scholar 

  • Lithgow GJ, Kirkwood TB (1996) Mechanisms and evolution of aging. Science 273:80

    PubMed  CAS  Google Scholar 

  • Liu B, Larsson L, Caballero A, Hao X, Oling D, Grantham J, Nystrom T (2010) The polarisome is required for segregation and retrograde transport of protein aggregates. Cell 140:257–267

    PubMed  CAS  Google Scholar 

  • Liu H, Peng HW, Cheng YS, Yuan HS, Yang-Yen HF (2005) Stabilization and enhancement of the antiapoptotic activity of mcl-1 by TCTP. Mol Cell Biol 25:3117–3126

    PubMed  CAS  Google Scholar 

  • Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157

    PubMed  CAS  Google Scholar 

  • Longo VD, Mitteldorf J, Skulachev VP (2005) Programmed and altruistic ageing. Nat Rev Genet 6:866–872

    PubMed  CAS  Google Scholar 

  • Ludovico P, Rodrigues F, Almeida A, Silva MT, Barrientos A, Corte-Real M (2002) Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Mol Biol Cell 13:2598–2606

    PubMed  CAS  Google Scholar 

  • Ludovico P, Sousa MJ, Silva MT, Leao C, Corte-Real M (2001) Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 147:2409–2415

    PubMed  CAS  Google Scholar 

  • Luo Y, Rockow-Magnone SK, Kroeger PE, Frost L, Chen Z, Han EK, Ng SC, Simmer RL, Giranda VL (2001) Blocking Chk1 expression induces apoptosis and abrogates the G2 checkpoint mechanism. Neoplasia 3:411–419

    PubMed  CAS  Google Scholar 

  • Madeo F, Frohlich E, Frohlich KU (1997) A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol 139:729–734

    PubMed  CAS  Google Scholar 

  • Madeo F, Frohlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Frohlich KU (1999) Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 145:757–767

    PubMed  CAS  Google Scholar 

  • Madeo F, Herker E, Maldener C, Wissing S, Lachelt S, Herlan M, Fehr M, Lauber K, Sigrist SJ, Wesselborg S et al (2002) A caspase-related protease regulates apoptosis in yeast. Mol Cell 9:911–917

    PubMed  CAS  Google Scholar 

  • Managbanag JR, Witten TM, Bonchev D, Fox LA, Tsuchiya M, Kennedy BK, Kaeberlein M (2008) Shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity. PLoS ONE 3(11):e3802. doi:10.1371/journal.pone.0003802

    Google Scholar 

  • Manon S, Chaudhuri B, Guerin M (1997) Release of cytochrome c and decrease of cytochrome c oxidase in Bax-expressing yeast cells, and prevention of these effects by coexpression of Bcl-xL. FEBS Lett 415:29–32

    PubMed  CAS  Google Scholar 

  • Manon S, Priault M, Camougrand N (2001) Mitochondrial AAA-type protease Yme1p is involved in Bax effects on cytochrome c oxidase. Biochem Biophys Res Commun 289:1314–1319

    PubMed  CAS  Google Scholar 

  • Marchetti MA, Weinberger M, Murakami Y, Burhans WC, Huberman JA (2006) Production of reactive oxygen species in response to replication stress and inappropriate mitosis in fission yeast. J Cell Sci 119:124–131

    PubMed  CAS  Google Scholar 

  • Mazzoni C, Palermo V, Torella M, Falcone C (2005) HIR1, the co-repressor of histone gene transcription of Saccharomyces cerevisiae, acts as a multicopy suppressor of the apoptotic phenotypes of the LSM4 mRNA degradation mutant. FEMS Yeast Res 5:1229–1235

    PubMed  CAS  Google Scholar 

  • Medawar PB (1951) Inaugural lecture: an unsolved problem of biology. HK Lewis & Co Ltd, London, p. 24

    Google Scholar 

  • Mitsui K, Nakagawa D, Nakamura M, Okamoto T, Tsurugi K (2005) Valproic acid induces apoptosis dependent of Yca1p at concentrations that mildly affect the proliferation of yeast. FEBS Lett 579:723–727

    PubMed  CAS  Google Scholar 

  • Miura M, Zhu H, Rotello R, Hartwieg EA, Yuan J (1993) Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75:653–660

    PubMed  CAS  Google Scholar 

  • Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, Yoon HS, Nettesheim D, Chang BS, Thompson CB, Wong SL et al (1996) X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381:335–341

    PubMed  CAS  Google Scholar 

  • Narasimhan ML, Damsz B, Coca MA, Ibeas JI, Yun DJ, Pardo JM, Hasegawa PM, Bressan RA (2001) A plant defense response effector induces microbial apoptosis. Mol Cell 8:921–930

    PubMed  CAS  Google Scholar 

  • Nargund AM, Avery SV, Houghton JE (2008) Cadmium induces a heterogeneous and caspase-dependent apoptotic response in Saccharomyces cerevisiae. Apoptosis 13:811–821

    PubMed  CAS  Google Scholar 

  • Naylor K, Ingerman E, Okreglak V, Marino M, Hinshaw JE, Nunnari J (2006) Mdv1 interacts with assembled dnm1 to promote mitochondrial division. J Biol Chem 281:2177–2183

    PubMed  CAS  Google Scholar 

  • Nestelbacher R, Laun P, Breitenbach M (1999) Images in experimental gerontology. A senescent yeast mother cell. Exp Gerontol 34:895–896

    PubMed  CAS  Google Scholar 

  • Nissen F (1886) Uber das Verhalten der Kerne in den Milchdrusenzellen bei der Absonderung. Arch Mikroskop Anat 26:337–342

    Google Scholar 

  • Nystrom T (2005) Role of oxidative carbonylation in protein quality control and senescence. EMBO J 24:1311–1317

    PubMed  Google Scholar 

  • Oberst A, Bender C, Green DR (2008) Living with death: the evolution of the mitochondrial pathway of apoptosis in animals. Cell Death Differ 15:1139–1146

    PubMed  CAS  Google Scholar 

  • Odorisio T, Rodriguez TA, Evans EP, Clarke AR, Burgoyne PS (1998) The meiotic checkpoint monitoring synapsis eliminates spermatocytes via p53-independent apoptosis. Nat Genet 18:257–261

    PubMed  CAS  Google Scholar 

  • Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619

    PubMed  CAS  Google Scholar 

  • Orgel LE (1963) The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc Natl Acad Sci USA 49:517–521

    PubMed  CAS  Google Scholar 

  • Palermo V, Falcone C, Mazzoni C (2007) Apoptosis and aging in mitochondrial morphology mutants of S. cerevisiae. Folia Microbiol (Praha) 52:479–483

    CAS  Google Scholar 

  • Papa S, Skulachev VP (1997) Reactive oxygen species, mitochondria, apoptosis and aging. Mol Cell Biochem 174:305–319

    PubMed  CAS  Google Scholar 

  • Pavlov EV, Priault M, Pietkiewicz D, Cheng EH, Antonsson B, Manon S, Korsmeyer SJ, Mannella CA, Kinnally KW (2001) A novel, high conductance channel of mitochondria linked to apoptosis in mammalian cells and Bax expression in yeast. J Cell Biol 155:725–731

    PubMed  CAS  Google Scholar 

  • Pichova A, Vondrakova D, Breitenbach M (1997) Mutants in the Saccharomyces cerevisiae RAS2 gene influence life span, cytoskeleton, and regulation of mitosis. Can J Microbiol 43:774–781

    PubMed  CAS  Google Scholar 

  • Pietenpol JA, Stewart ZA (2002) Cell cycle checkpoint signaling: cell cycle arrest versus apoptosis. Toxicology 181–182:475–481

    PubMed  Google Scholar 

  • Piper PW, Harris NL, MacLean M (2006) Preadaptation to efficient respiratory maintenance is essential both for maximal longevity and the retention of replicative potential in chronologically ageing yeast. Mech Ageing Dev 127:733–740

    PubMed  Google Scholar 

  • Powers RW, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S (2006) Extension of chronological life span in yeast by decreased TOR pathway signaling. Gene Dev 20:174–184

    PubMed  CAS  Google Scholar 

  • Pozniakovsky AI, Knorre DA, Markova OV, Hyman AA, Skulachev VP, Severin FF (2005a) Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast. J Cell Biol 168:257–269

    PubMed  CAS  Google Scholar 

  • Pozniakovsky AI, Knorre DA, Markova OV, Hyman AA, Skulachev VP, Severin FF (2005b) Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast. J Cell Biol 168:257–269

    PubMed  CAS  Google Scholar 

  • Qiu J, Yoon JH, Shen B (2005) Search for apoptotic nucleases in yeast: role of Tat-D nuclease in apoptotic DNA degradation. J Biol Chem 280:15370–15379

    PubMed  CAS  Google Scholar 

  • Requena JR, Levine RL, Stadtman ER (2003) Recent advances in the analysis of oxidized proteins. Amino Acids 25:221–226

    PubMed  CAS  Google Scholar 

  • Rinnerthaler M, Jarolim S, Heeren G, Palle E, Perju S, Klinger H, Bogengruber E, Madeo F, Braun RJ, Breitenbach-Koller L et al (2006) MMI1 (YKL056c, TMA19), the yeast orthologue of the translationally controlled tumor protein (TCTP) has apoptotic functions and interacts with both microtubules and mitochondria. Biochim Biophys Acta 1757:631–638

    PubMed  CAS  Google Scholar 

  • Ritch JJ, Davidson SM, Sheehan JJ, Austriaco OPN (2010) The Saccharomyces SUN gene, UTH1, is involved in cell wall biogenesis. Fems Yeast Res 10:168–176

    PubMed  CAS  Google Scholar 

  • Ruge G (1889) Vorgange am Eifollikel der Wirbelthiere. Morphol Jahrbuch 15:491–554

    Google Scholar 

  • Scheckhuber CQ, Erjavec N, Tinazli A, Hamann A, Nystrom T, Osiewacz HD (2007) Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models. Nat Cell Biol 9:99–U129

    PubMed  CAS  Google Scholar 

  • Schmaus H, Albrecht E (1894) Über Karyrhexis. Virchows Archiv für pathologische Anatomie und Physiologie und für klinische Medizin 138:1–80

    Google Scholar 

  • Schmitt E, Paquet C, Beauchemin M, Bertrand R (2007) DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis. J Zhejiang Univ Sci B 8:377–397

    PubMed  CAS  Google Scholar 

  • Selman C, Lingard S, Choudhury AI, Batterham RL, Claret M, Clements M, Ramadani F, Okkenhaug K, Schuster E, Blanc E et al (2007) Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. FASEB J 22:807–818

    Google Scholar 

  • Severin FF, Hyman AA (2002) Pheromone induces programmed cell death in S. cerevisiae. Curr Biol 12:R233–R235

    PubMed  CAS  Google Scholar 

  • Singh KK (2004) Mitochondria damage checkpoint in apoptosis and genome stability. FEMS Yeast Res 5:127–132

    PubMed  CAS  Google Scholar 

  • Skulachev VP (2002) Programmed death in yeast as adaptation? FEBS Lett 528:23–26

    PubMed  CAS  Google Scholar 

  • Ströbe H (1892) Zur Kenntnis verschiedener cellularer Vorgange und Erscheinungen in Geschwulsten. Beitr Pathol Anat 11:1–38

    Google Scholar 

  • Sulston JE (1976) Post-embryonic development in the ventral cord of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 275:287–297

    PubMed  CAS  Google Scholar 

  • Susini L, Besse S, Duflaut D, Lespagnol A, Beekman C, Fiucci G, Atkinson AR, Busso D, Poussin P, Marine JC et al (2008) TCTP protects from apoptotic cell death by antagonizing bax function. Cell Death Differ 15:1211–1220

    PubMed  CAS  Google Scholar 

  • Syntichaki P, Troulinaki K, Tavernarakis N (2007) eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans. Nature 445:922–926

    PubMed  CAS  Google Scholar 

  • Szilard L (1959) On the nature of the aging process. Proc Natl Acad Sci USA 45:30–45

    PubMed  CAS  Google Scholar 

  • Thedieck K, Polak P, Kim ML, Molle KD, Cohen A, Jeno P, Arrieumerlou C, Hall MN (2007) PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. Plos One 2:e1217

    PubMed  Google Scholar 

  • Tsujimoto Y, Croce CM (1986) Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma. Proc Natl Acad Sci USA 83:5214–5218

    PubMed  CAS  Google Scholar 

  • Uren AG, O’Rourke K, Aravind LA, Pisabarro MT, Seshagiri S, Koonin EV, Dixit VM (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6:961–967

    PubMed  CAS  Google Scholar 

  • Vaux DL, Cory S, Adams JM (1988) Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335:440–442

    PubMed  CAS  Google Scholar 

  • Vijg J (2000) Somatic mutations and aging: a re-evaluation. Mutat Res 447:117–135

    PubMed  CAS  Google Scholar 

  • Vogt C (1842) Untersuchungen uber die Entwicklungsgeschichte der Geburtshelerkroete (Alytes obstetricians). Jent und Gassman, Solothurn

    Google Scholar 

  • Wadskog I, Maldener C, Proksch A, Madeo F, Adler L (2004) Yeast lacking the SRO7/SOP1-encoded tumor suppressor homologue show increased susceptibility to apoptosis-like cell death on exposure to NaCl stress. Mol Biol Cell 15:1436–1444

    PubMed  CAS  Google Scholar 

  • Walter D, Matter A, Fahrenkrog B (2010) Bre1p-mediated histone H2B ubiquitylation regulates apoptosis in Saccharomyces cerevisiae. J Cell Sci 123:1931–1939

    PubMed  CAS  Google Scholar 

  • Walter D, Wissing S, Madeo F, Fahrenkrog B (2006) The inhibitor-of-apoptosis protein Bir1p protects against apoptosis in S. cerevisiae and is a substrate for the yeast homologue of Omi/HtrA2. J Cell Sci 119:1843–1851

    PubMed  CAS  Google Scholar 

  • Wang YB, Lou Y, Luo ZF, Zhang DF, Wang YZ (2003) Induction of apoptosis and cell cycle arrest by polyvinylpyrrolidone K-30 and protective effect of alpha-tocopherol. Biochem Biophys Res Commun 308:878–884

    PubMed  CAS  Google Scholar 

  • Weigert K (1880) Ueber die pathologische Gerinnungs-Vorgänge. Virchows Archiv für pathologische Anatomie und Physiologie und für klinische Medizin 79:87–123

    Google Scholar 

  • Weinberger M, Feng L, Paul A, Smith DL, Jr, Hontz RD, Smith JS, Vujcic M, Singh KK, Huberman JA, Burhans WC (2007) DNA replication stress is a determinant of chronological lifespan in budding yeast. Plos One 2:e748

    PubMed  Google Scholar 

  • Weinberger M, Mesquita A, Caroll T, Marks L, Yang H, Zhang Z, Ludovico P, Burhans WC (2010) Growth signaling promotes chronological aging in budding yeast by inducing superoxide anions that inhibit quiescence. Aging (Albany NY) 2:709–726

    CAS  Google Scholar 

  • Weinberger M, Ramachandran L, Feng L, Sharma K, Sun X, Marchetti M, Huberman JA, Burhans WC (2005) Apoptosis in budding yeast caused by defects in initiation of DNA replication. J Cell Sci 118:3543–3553

    PubMed  CAS  Google Scholar 

  • Weng YF, Xiang L, Matsuura A, Zhang Y, Huang QM, Qi JH (2010) Ganodermasides A and B, two novel anti-aging ergosterols from spores of a medicinal mushroom Ganoderma lucidum on yeast via UTH1 gene. Bioorgan Med Chem 18:999–1002

    CAS  Google Scholar 

  • Williams GC (2001) Pleiotropy, natural selection, and the evolution of senescence. Sci Aging Knowl Environ 2001:cp13

    Google Scholar 

  • Williams JR, Little JB, Shipley WU (1974) Association of mammalian cell death with a specific endonucleolytic degradation of DNA. Nature 252:754–755

    PubMed  CAS  Google Scholar 

  • Winkler J, Seybert A, Konig L, Pruggnaller S, Haselmann U, Sourjik V, Weiss M, Frangakis AS, Mogk A, Bukau B (2010) Quantitative and spatio-temporal features of protein aggregation in Escherichia coli and consequences on protein quality control and cellular ageing. EMBO J 29:910–923

    PubMed  CAS  Google Scholar 

  • Wissing S, Ludovico P, Herker E, Buttner S, Engelhardt SM, Decker T, Link A, Proksch A, Rodrigues F, Corte-Real M et al (2004) An AIF orthologue regulates apoptosis in yeast. J Cell Biol 166:969–974

    PubMed  CAS  Google Scholar 

  • Wood W, Turmaine M, Weber R, Camp V, Maki RA, McKercher SR, Martin P (2000) Mesenchymal cells engulf and clear apoptotic footplate cells in macrophageless PU.1 null mouse embryos. Development 127:5245–5252

    PubMed  CAS  Google Scholar 

  • Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284:555–556

    PubMed  CAS  Google Scholar 

  • Yamaki M, Umehara T, Chimura T, Horikoshi M (2001) Cell death with predominant apoptotic features in Saccharomyces cerevisiae mediated by deletion of the histone chaperone ASF1/CIA1. Genes Cells 6:1043–1054

    PubMed  CAS  Google Scholar 

  • Yang Y, Yang F, Xiong ZY, Yan Y, Wang XM, Nishino M, Mirkovic D, Nguyen J, Wang H, Yang XF (2005) An N-terminal region of translationally controlled tumor protein is required for its antiapoptotic activity. Oncogene 24:4778–4788

    PubMed  CAS  Google Scholar 

  • Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M (1991) Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352:345–347

    PubMed  CAS  Google Scholar 

  • Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75:641–652

    PubMed  CAS  Google Scholar 

  • Zassenhaus HP, Denniger G (1994) Analysis of the role of the NUC1 endo/exonuclease in yeast mitochondrial DNA recombination. Curr Genet 25:142–149

    PubMed  CAS  Google Scholar 

  • Zhang Y, Herman B (2002) Ageing and apoptosis. Mech Ageing Dev 123:245–260

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Austrian Science Fund FWF (Vienna, Austria) for grants S9302-B05 (to M.B.) and T414-B09 (to S.B.) and to the EC (Brussels, Europe) for project MIMAGE (contract no. 512020; to M.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Laun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Laun, P., Büttner, S., Rinnerthaler, M., Burhans, W.C., Breitenbach, M. (2011). Yeast Aging and Apoptosis . In: Breitenbach, M., Jazwinski, S., Laun, P. (eds) Aging Research in Yeast. Subcellular Biochemistry, vol 57. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2561-4_10

Download citation

Publish with us

Policies and ethics