Skip to main content

Endophyte-Assisted Phytoremediation of Explosives in Poplar Trees by Methylobacterium populi BJ001T

  • Chapter
  • First Online:
Book cover Endophytes of Forest Trees

Part of the book series: Forestry Sciences ((FOSC,volume 80))

Abstract

Phytoremediation is the use of plants for the treatment of environmental pollution. For a long time, bacteria in the rhizosphere have been recognized playing a significant role in the transformation of organic contaminants by higher plants. Although plants are known to detoxify and, to some extent, metabolize organic pollutants, they are autotrophic organisms that are not capable to fully mineralize organic molecules. Plant-associated bacteria can therefore complement the biodegradation capabilities of plants. Increasing interest has been given recently to endophytic bacteria for their potential role in phytoremediation of organic pollutants. In this study, a pink-pigmented symbiotic bacterium was isolated from hybrid poplar tissues (Populus deltoides × nigra DN34) that were used for the biodegradation of the toxic explosives, TNT, RDX, and HMX. On the basis of its physiological, genotypic, and ecological characteristics, the isolate has been recognized as a novel bacterial species, Methylobacterium populi strain BJ001T. The bacterium in pure culture was shown to degrade the explosives, TNT, RDX, and HMX. TNT was fully transformed in less than 10 days with the production of reduction metabolites including amino-dinitrotoluenes and diamino-nitrotoluenes. No significant mineralization of 14C-TNT into 14CO2 was recorded. The bacterium was also shown to transform RDX and HMX in less than 40 days. After 55 days of incubation, about 60% of initial 14C-RDX and 14C-HMX were mineralized into 14CO2. The metabolites detected from RDX transformation included a mononitroso derivative and a polar compound tentatively identified as methylenedinitramine. These observations suggest that Methylobacterium populi BJ001T may play a significant role in the metabolism of explosives in poplar plants.

To Annabelle

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

TNT:

2,4,6-trinitrotoluene

RDX:

hexahydro-1,3,5-trinitro-1,3,5-triazine

HMX:

octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine

USEPA:

U.S. Environmental Protection Agency

PPFM:

pink-pigmented facultative methylotroph

MS:

Murashige and Skoog medium

2,4-D:

2,4-dichlorophenoxyacetic acid

LB:

Luria-Bertani

ADNTs:

amino-dinitrotoluenes

DNATs:

diamino-nitrotoluenes

References

  • Austin B, Goodfellow M (1979) Pseudomonas mesophilica: a new species of pink bacteria isolated from leaf surfaces. Int J Syst Bacteriol 29:373–378

    Article  Google Scholar 

  • Cole DJ (1983) Oxidation of xenobiotics in plants. Prog Pest Biochem Toxicol 3:199–253

    CAS  Google Scholar 

  • Corpe WA, Rheem S (1989) Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiol Ecol 62:243–249

    Article  CAS  Google Scholar 

  • Daar AS, Thorsteinsdottir H, Martin DK et al (2002) Top ten biotechnologies for improving health in developing countries. Nat Genet 32:229–232

    Article  PubMed  CAS  Google Scholar 

  • Dietz A, Schnoor JL (2001) Advances in phytoremediation. Environ Health Perspect 109:163–168

    Article  PubMed  CAS  Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333

    Article  PubMed  CAS  Google Scholar 

  • Eapen S, Singh S, D’Souza SF (2007) Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnol Adv 25:442–451

    Article  PubMed  CAS  Google Scholar 

  • Gisi D, Willi L, Tarber H et al (1998) Effects of bacterial host and dichloromethane dehalogenase on the competitiveness of methylotrophic bacteria growing with dichloromethane. Appl Environ Microbiol 64:1194–1202

    PubMed  CAS  Google Scholar 

  • Goodwin KD, Varner RK, Crill PM et al (1995) Consumption of tropospheric levels of methyl bromide by C1 compound-utilizing bacteria and comparison to saturation kinetics. Appl Environ Microbiol 67:5437–5443

    Article  Google Scholar 

  • Green PN (1992) The genus Methylobacterium. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer-Verlag, Berlin, pp 2342–2349

    Google Scholar 

  • Green PN, Bousfield IJ (1982) A taxonomic study of some Gram-negative facultatively methylotrophic bacteria. J Gen Microbiol 128:623–638

    Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    PubMed  CAS  Google Scholar 

  • Hawari J, Baudet S, Halasz A et al (2000) Microbial degradation of explosives: biotransformation versus mineralization. Appl Microbiol Biotechnol 54:605–618

    Article  PubMed  CAS  Google Scholar 

  • Hiraishi A, Furuhata K, Matsumoto A et al (1995) Phenotypic and genetic diversity of chlorine-resistant Methylobacterium strains isolates from various environments. Appl Environ Microbiol 61:2099–2107

    PubMed  CAS  Google Scholar 

  • Holland MA, Polacco JC (1994) PPFMs and other covert contaminants: is there more to plant physiology than just plants? Annu Rev Plant Physiol Plant Mol Biol 45:197–209

    Article  CAS  Google Scholar 

  • Ivanova EG, Doronina NV, Trotsenko YA (2001) Facultative and obligate aerobic methylobacteria synthesize cytokinins. Microbiology 70:452–458

    PubMed  CAS  Google Scholar 

  • Koenig RL, Morris RO, Polacco JC (2002) tRNA is the source of low-level trans-zeatin production in Methylobacterium spp. J Bacteriol 184:1832–1842

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB et al (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  PubMed  CAS  Google Scholar 

  • Lidstrom ME, Chistoserdova L (2002) Plants in the pink: cytokinin production by Methylobacterium. J Bacteriol 184:1818

    Article  PubMed  CAS  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  PubMed  CAS  Google Scholar 

  • Mo K, Lora CO, Wanken AE et al (1997) Biodegradation of methyl t-butyl ether by pure bacteria cultures. Appl Environ Microbiol 47:69–72

    CAS  Google Scholar 

  • Nishio T, Yoshikura T, Itoh H (1997) Detection of Methylobacterium species by 16S rRNA gene-targeted PCR. Appl Environ Microbiol 63:1594–1597

    PubMed  CAS  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  PubMed  CAS  Google Scholar 

  • Pirttilä AM, Laukkanen H, Pospiech H et al (2000) Detection of intracellular bacteria in the buds of Scotch pine (Pinus sylvestris L.) by in situ hybridization. Appl Environ Microbiol 66: 3073–3077

    Article  PubMed  Google Scholar 

  • Rosser SJ, French CE, Bruce NC (2001) Engineering plants for the phytodetoxification of explosives. In Vitro Cell Dev Biol Plant 37:330–333

    CAS  Google Scholar 

  • Salt D, Smith R, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  PubMed  CAS  Google Scholar 

  • Sandermann H (1994) Higher plant metabolism of xenobiotics: the ‘green liver’ concept. Pharmacogenetics 4:225–241

    Article  PubMed  CAS  Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SC et al (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318A–323A

    Article  CAS  Google Scholar 

  • Singer A (2006) The chemical ecology of pollutants biodegradation. In: Mackova M, Dowling D, Macek T (eds) Phytoremediation and rhizoremediation: theoretical background. Springer, Dordrecht, pp 5–21

    Chapter  Google Scholar 

  • Spain JB, Hughes JB, Knackmuss HJ (2000) Biodegradation of nitroaromatic compounds and explosives. Lewis Publishers, Boca Raton, p 434

    Google Scholar 

  • Sy A, Giraud E, Jourand P, Garcia N et al (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220

    Article  PubMed  CAS  Google Scholar 

  • Tan Z, Hurek T, Vinuesa P et al (2001) Specific detection of Bradyrhizobium and Rhizobium strains colonizing rice (Oryza sativa) roots by 16S-23S ribosomal DNA intergenic spacer-targeted PCR. Appl Environ Microbiol 67:3655–3664

    Article  PubMed  CAS  Google Scholar 

  • Thompson PL, Ramer LA, Guffey AP et al (1998) Decreased transpiration in poplar trees exposed to 2,4,6-trinitrotoluene. Environ Toxicol Chem 17:902–906

    Article  CAS  Google Scholar 

  • Tourova TP, Kuznetsov BB, Doronina NV et al (2001) Phylogenic analysis of dichloromethane-utilizing aerobic methylotrophic bacteria. Microbiology 70:92–97

    Google Scholar 

  • Trotsenko YA, Ivanova EG, Doronina NV (2001) Aerobic methylotrophic bacteria as phytosymbionts. Microbiology 70:725–736

    Article  PubMed  Google Scholar 

  • Van Aken B (2008) Transgenic plants for phytoremediation: helping nature to clean-up pollution. Trends Biotechnol 26:225–227

    Article  PubMed  Google Scholar 

  • Van Aken B (2009) Transgenic plants for enhanced phytoremediation of toxic explosives. Curr Opin Biotechnol 20:231–236

    Article  PubMed  Google Scholar 

  • Van Aken B, Agathos SN (2001) Biodegradation of nitro-substituted explosives by white-rot fungi: a mechanistic approach. Adv Appl Microbiol 48:1–77

    Article  PubMed  Google Scholar 

  • Van Aken B, Doty SL (2009) Transgenic plants and associated bacteria for phytoremediation of chlorinated compounds. Biotechnol Genet Eng 26:43–64

    Article  Google Scholar 

  • Van Aken B, Schnoor JL (2002) Evidence of perchlorate (ClO 4 ) reduction in plant tissues (poplar tree) using radio-labeled 35ClO4-. Environ Sci Technol 36:2789–2788

    Article  Google Scholar 

  • Van Aken B, Peres CM, Lafferty-Doty S et al (2004a) Methylobacterium populi sp. nov.: a novel aerobic, pink-pigmented, facultatively methylotrophic, methane-utilizing bacterium isolated from poplar trees (Populus deltoides × nigra DN34). Int J Syst Evol Microbiol 54:1191–1196

    Article  PubMed  Google Scholar 

  • Van Aken B, Yoon JM, Just CL et al (2004b) Metabolism and mineralization of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) inside poplar tissues (Populus deltoides × nigra DN34). Environ Sci Technol 38:4572–4579

    Article  PubMed  Google Scholar 

  • Van Aken B, Yoon JM, Schnoor JL (2004c) Biodegradation of nitro-substituted explosives TNT, RDX, and HMX by a phytosymbiotic Methylobacterium sp. Associated with Populus (Populus deltoides × nigra DN34). Appl Environ Microbiol 70:508–517

    Article  PubMed  Google Scholar 

  • Van Aken B, Correa PA, Schnoor JL (2010) Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44:2767–2776

    Article  PubMed  Google Scholar 

  • Wood AP, Kelly DP, McDonald IR et al (1998) A novel pink pigmented facultative methylotroph, Methylobacterium thiocyanatum sp. nov., capable of growth on thiocyanate or cyanate as sole nitrogen sources. Arch Microbiol 169:148–158

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura F (1982) Phylloplane bacteria in a pine forest. Can J Microbiol 28:580–592

    Article  Google Scholar 

Download references

Acknowledgements

We thank NSF, National Science Foundation (award number 0337208) and SERDP, Strategic Environmental Research and Development Program (award number 02 CU13-17) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Van Aken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Van Aken, B., Tehrani, R., Schnoor, J.L. (2011). Endophyte-Assisted Phytoremediation of Explosives in Poplar Trees by Methylobacterium populi BJ001T . In: Pirttilä, A., Frank, A. (eds) Endophytes of Forest Trees. Forestry Sciences, vol 80. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1599-8_14

Download citation

Publish with us

Policies and ethics