Skip to main content

Radiofrequency Energy Harvesting

  • Chapter

Abstract

Chapter 6 is dedicated to remote RF powering of autonomous sensors and in particular to RF energy harvesters. The RF energy transducer (antenna), matching networks, and ensuing rectifiers are presented. Based on circuits proposed in the literature, extensive simulations for several incoming power levels at the antenna (from −10 dBm to 10 dBm) were performed. We determine that circuit efficiency slightly depends on the number of stages used for the voltage rectifier multiplier, but varies widely with the received power (ranging, when using a shunt-inductor matching network, from 10% at −10 dBm to 80% at 10 dBm). Additionally, as the power level increases, so does the output voltage corresponding to maximum efficiency. For low power levels, LC matching networks provided higher efficiencies than shunt-inductor networks, at the cost of greater sensitivity to output voltage variations and to the value of the inductor. Experimental tests were performed with a folded dipole antenna (about 300 Ω), shunt inductor matching, a three-stage rectifier, and a storage unit composed of two series connected NiMH batteries.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. K. Finkenzeller, RFID Handbook Fundamentals and Applications in Contactless Smart Cards and Identification, 2nd edn. RFID Handbook. Fundamentals and Applications in Contactless Smart Cards and Identification (John Wiley and Sons, West Sussex, 2003)

    Google Scholar 

  2. J.-P. Curty, M. Declercq, C. Dehollain, N. Joehl, Design and Optimization of Passive UHF RFID Systems, 1st edn. (Springer Science+Business Media, New York, 2007)

    Google Scholar 

  3. M. Minhong, M.H. Mickle, C. Capelli, H. Swift, RF energy harvesting with multiple antennas in the same space. IEEE Antennas and Propagation Magazine 47, 100–106 (2005)

    Article  ADS  Google Scholar 

  4. M. Ali, G. Yang, R. Dougal, A new circularly polarized rectenna for wireless power transmission and data communication. IEEE Antennas and Wireless Propagation Letters 4, 205–208 (2005)

    Article  ADS  Google Scholar 

  5. J.O. McSpadden, T. Yoo, K. Chang, Theoretical and experimental investigation of a rectenna element for microwave power transmission. IEEE Trans. Microwave Theory and Techniques 40, 2359–2366 (1992)

    Article  ADS  Google Scholar 

  6. S.A. Bhalerao, A.V. Chaudhary, R.B. Deshmukh, R.M. Patrikar, Powering wireless sensor nodes using ambient RF energy, in Proceedings of IEEE International Conference on Systems, Man and Cybernetics, SMC (2006), pp. 2695–2700

    Google Scholar 

  7. D.M. Dobkin, The RF in RFID. Passive UHF RFID in Practice (Elsevier, Burlington, 2008)

    Google Scholar 

  8. T. Le, K. Mayaram, T. Fiez, Efficient far-field radio frequency energy harvesting for passively powered sensor networks. IEEE Journal of Solid-State Circuits 43, 1287–1302 (2008)

    Article  Google Scholar 

  9. J.A. Hagerty, F.B. Helmbrecht, W.H. McCalpin, R. Zane, Z.B. Popovic, Recycling ambient microwave energy with broad-band rectenna arrays. IEEE Trans. on Microwave Theory and Techniques 52, 1014–1024 (2004)

    Article  ADS  Google Scholar 

  10. W.C. Brown, An experimental low power density rectenna, in Proceedings of IEEE MTT-S International Microwave Symposium Digest, vol. 1 (1991), pp. 197–200

    Google Scholar 

  11. R.E. Barnett, L. Jin, S. Lazar, A RF to DC voltage conversion model for multi-stage rectifiers in UHF RFID transponders. IEEE Journal of Solid-State Circuits 44, 354–370 (2009)

    Article  Google Scholar 

  12. J.P. Curty, N. Joehl, C. Dehollain, M.J. Declercq, Remotely powered addressable UHF RFID integrated system. IEEE Journal of Solid-State Circuits 40, 2193–2202 (2005)

    Article  Google Scholar 

  13. F. de Dieuleveult, Electrónica aplicada a las altas frecuencias (Paraninfo, 2001)

    Google Scholar 

  14. S. Young-Ho, C. Kai, A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission. IEEE Trans. Microwave Theory and Techniques 50, 1784–1789 (2002)

    Article  ADS  Google Scholar 

  15. M. Ghovanloo, K. Najafi, Fully integrated wideband high-current rectifiers for inductively powered devices. IEEE Journal of Solid-State Circuits 39, 1976–1984 (2004)

    Article  Google Scholar 

  16. J.P. Curty, N. Joehl, F. Krummenacher, C. Dehollain, M.J. Declercq, A model for u-power rectifier analysis and design. IEEE Trans. Circuits and Systems I: Regular Papers 52, 2771–2779 (2005)

    Article  Google Scholar 

  17. U. Karthaus, M. Fischer, Fully integrated passive UHF RFID transponder IC with 16.7 uW minimum RF input power. IEEE Journal of Solid-State Circuits 38, 1602–1608 (2003)

    Article  Google Scholar 

  18. T. Umeda, H. Yoshida, S. Sekine, Y. Fujita, T. Suzuki, S. Otaka, A 950-MHz rectifier circuit for sensor network tags with 10-m distance. IEEE Journal of Solid-State Circuits 41, 35–41 (2006)

    Article  Google Scholar 

  19. P. Spies, F. Förster, L. Mateu, M. Pollak, Power management in energy harvesting power supplies. Presented at 1st International Workshop on Power Supply on Chip (PwrSoC), Cork, Ireland, September 22.

    Google Scholar 

  20. T. Paing, J. Shin, R. Zane, Z. Popovic, Resistor emulation approach to low-power rf energy harvesting. IEEE Trans. Power Electronics 23, 1494–1501 (2008)

    Article  Google Scholar 

  21. J.R. Smith, A.P. Sample, P.S. Powledge, S. Roy, A. Mamishev, A wirelessly-powered platform for sensing and computation. Available on: http://web.media.mit.edu/~jrs/WISP-Ubicomp-06.pdf. Accessed June 2007

  22. F. Kocer, M.P. Flynn, An RF-powered, wireless CMOS temperature sensor. IEEE Sensors Journal 6, 557–564 (2006)

    Article  Google Scholar 

  23. T. Paing, J. Morroni, A. Dolgov, J. Shin, J. Brannan, R. Zane, Z. Popovic, Wirelessly-powered wireless sensor platform, in Proceedings of European Microwave Conference (2007), pp. 999–1002

    Google Scholar 

  24. P. Singh, W. Xiquan, R. Lafollette, D. Reisner, RF-recharged microbattery for powering miniature sensors, in Proceedings of IEEE Sensors, vol. 1 (2004), pp. 349–352

    Google Scholar 

  25. P. Mars, C. Greene, RF energy harvesting and battery-free wireless sensors. Available on: http://www.cap-xx.com/resources/docs/CAP-XX&Powercast_RF_Energy.pdf. Accessed January 2010

  26. C.A. Balanis, Antenna Theory: Analysis and Design, 3rd edn. (2005)

    Google Scholar 

  27. R.W. Erickson, D. Maksimovic, Fundamentals of Power Electronics, 2nd edn. (Kluwer Academic, Norwell, 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Teresa Penella-López .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Penella-López, M.T., Gasulla-Forner, M. (2011). Radiofrequency Energy Harvesting. In: Powering Autonomous Sensors. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1573-8_6

Download citation

Publish with us

Policies and ethics