Skip to main content

The Physiology and Functional Genomics of Cyanobacterial Hydrogenases and Approaches Towards Biohydrogen Production

  • Chapter
  • First Online:

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 33))

Summary

Three different enzymes, the nitrogenase and two different hydrogenases, an uptake and a bidirectional enzyme, are involved in cyanobacterial hydrogen metabolism. In strains containing nitrogenase, H2 is produced as a byproduct during nitrogen fixation. Many cyanobacterial strains additionally express an uptake hydrogenase that recycles these reducing equivalents. Since not every nitrogen-fixing strain encodes the genes of the uptake hydrogenase, it seems to be dispensable under some environmental conditions. Genome comparisons suggest that the cyanobacterial uptake hydrogenase requires the presence of five additional accessory genes for its maturation.

The primary function of the bidirectional hydrogenase is to increase energetic yield during fermentation and light induced H2 production in transition states, when cells shift from dark anaerobic conditions to those where light is present. Under oxidizing conditions, the bidirectional enzyme can also catalyze hydrogen uptake. Comparative genomics and database searches reveal the specific association of the pyruvate:ferredoxin/flavodoxin oxidoreductase with the bidirectional hydrogenase, indicating a functional association. This chapter summarizes what is known about the physiological function of the hydrogenases, how they are integrated in the overall metabolism, their phylogenetic ancestry, and their distribution in cyanobacterial genomes.

Oxygenic phototrophs provide the framework that is needed for biological hydrogen production from sunlight and water, and they could be used as a blueprint for biomimetic systems for hydrogen generation. The genetic modifications that have been made to achieve higher production rates are described and future strategies for the use of cyanobacteria as rewarding H2 producers are outlined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Basset R and Bader KP (1997) Characterization of hydrogen photoevolution in Oscillatoria chalybea detected by means of mass spectrometry. Z. Naturforsch C 52: 775–781

    CAS  Google Scholar 

  • Abdel-Basset R and Bader KP (1998) Physiological analyses of the hydrogen gas exchange in cyanobacteria. J Photochem Photobiol B 43: 146–151

    CAS  Google Scholar 

  • Abdel-Basset R, Spiegel S and Bader KP (1998) Saturation of cyanobacterial photoevolution of molecular hydrogen by photosynthetic redox components. J Photochem Photobiol B 47: 31–38

    CAS  Google Scholar 

  • Adams MWW, Mortenson LE and Chen JS (1980) Hydrogenase. Biochim Biophys Acta 594: 105–176.

    PubMed  CAS  Google Scholar 

  • Adams MWW (1990) The structure and mechanism of iron-hydrogenases. Biochim Biophys Acta 1020: 115–145

    PubMed  CAS  Google Scholar 

  • Agervald A, Stensjö K, Holmqvist M and Lindblad P (2008) Transcription of the extended hyp-operon in Nostoc sp. strain PCC 7120. BMC Microbiol 8: 69

    Google Scholar 

  • Almon H and Böger P (1988) Hydrogen metabolism of the unicellular cyanobacterium Chroococcidiopsis thermalis ATCC 29380. FEMS Microbiol Lett. 49: 445–449

    CAS  Google Scholar 

  • Alonso-Lomillo MA, Rudiger O, Maroto-Valiente A, Velez M, Rodriguez-Ramos I, Munoz FJ, Fernandez VM and De Lacey AL (2007) Hydrogenase-coated carbon nanotubes for efficient H2 oxidation. Nano Lett 7: 1603–1608

    PubMed  CAS  Google Scholar 

  • Ananyev G, Carrieri D and Dismukes GC (2008) Optimization of metabolic capacity and flux through environmental cues to maximize hydrogen production by the cyanobacterium Arthrospira (Spirulina) maxima. Appl Environ Microbiol 74: 6102–6113

    PubMed  CAS  Google Scholar 

  • Appel J and Schulz R (1996) Sequence analysis of an operon of a NAD(P)-reducing nickel hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803 gives additional evidence for direct coupling of the enzyme to NAD(P)H-dehydrogenase (complex I). Biochim Biophys Acta 1298: 141–147

    PubMed  CAS  Google Scholar 

  • Appel J, Phunpruch S, Steinmüller K and Schulz, R (2000) The bidirectional hydrogenase of Synechocystis sp. PCC 6803 works as an electron valve during photosynthesis. Arch Microbiol 173: 333–338

    PubMed  CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50: 601–639

    PubMed  CAS  Google Scholar 

  • Arieli B, Shahak Y, Taglicht D, Hauska G and Padan E (1994) Purification and characterization of sulfide-quinone reductase, a novel enzyme driving anoxygenic photosynthesis in Oscillatoria limnetica. J Biol Chem 269: 5705–5711

    PubMed  CAS  Google Scholar 

  • Badger MR, von Caemmerer S, Ruuska S and Nakano H (2000) Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and RubisCO oxygenase. Philos Trans R Soc Lond B Biol Sci 355: 1433–1446

    PubMed  CAS  Google Scholar 

  • Battchikova N and Aro EM (2007) Cyanobacterial NDH-1 complexes: multiplicity in function and subunit composition. Physiol Plant 131: 22–32

    PubMed  CAS  Google Scholar 

  • Barz M, Beimgraben C, Staller T, Germer F, Opitz F, Marquardt C, Schwarz C, Gutekunst K, Vanselow KH, Schmitz R, LaRoche J, Schulz R and Appel J (2010) Distribution analysis of hydrogenases in surface waters of marine and freshwater environments. PLoS One 5: e13846

    Google Scholar 

  • Bauer CC, Scappino L and Haselkorn R (1993) Growth of the cyanobacterium Anabaena on molecular nitrogen: NifJ is required when iron is limited. Proc Natl Acad Sci USA 90: 8812–8816

    Google Scholar 

  • Belkin S and Padan E (1978a) Hydrogen metabolism in the facultative anoxygenic cyanobacteria (blue-green algae) Oscillatoria limnetica and Aphanothece halophytica. Arch Microbiol 116: 109–111

    PubMed  CAS  Google Scholar 

  • Belkin S and Padan E (1978b) Sulfide-dependent hydrogen evolution in the cyanobacterium Oscillatoria limnetica. FEBS Lett 94: 291–294

    CAS  Google Scholar 

  • Benemann JR and Weare NM (1974) Hydrogen Evolution by nitrogen-fixing Anabaena cylindrica cultures. Science 184: 174–175

    PubMed  CAS  Google Scholar 

  • Benemann JR (2000) Hydrogen production by microalgae. J Appl Phycol 12: 291–300

    CAS  Google Scholar 

  • Bernhard M, Benelli B, Hochkoeppler A, Zannoni D and Friedrich B (1997) Functional and structural role of the cytochrome b subunit of the membrane-bound hydrogenase complex of Alcaligenes eutrophus H16. Eur J Biochem 248: 179–186

    PubMed  CAS  Google Scholar 

  • Böck A, King PW, Bloeksch M and Posewitz MC (2006) Maturation of hydrogenases. Adv Microb Physiol 51: 1–71

    PubMed  Google Scholar 

  • Boison, G; Bothe, H; Hansel, A and Lindblad P (1999) Evidence against a common use of the diaphorase subunits by the bidirectional hydrogenase and by the respiratory complex I in cyanobacteria. FEMS Microbiol Lett 174: 159–165

    CAS  Google Scholar 

  • Boison G, Bothe H and Schmitz O (2000) Transcriptional analysis of hydrogenase genes in the Cyanobacteria Anacystis nidulans and Anabaena variabilis monitored by RT-PCR. Curr Microbiol 40: 315–321

    PubMed  CAS  Google Scholar 

  • Buchanan BB and Balmer Y (2005) Redox regulation: A broadening horizon. Annu Rev Plant Biol 56: 187–220

    PubMed  CAS  Google Scholar 

  • Burgdorf T, Lenz O, Buhrke T, van der Linden E, Jones AK, Albracht SP and Friedrich B (2005a) [NiFe]-hydrogenases of Ralstonia eutropha H16: modular enzymes for oxygen-tolerant biological hydrogen oxidation. J Mol Microbiol Biotechnol 10: 181–196

    PubMed  CAS  Google Scholar 

  • Burgdorf T, van der Linden E, Bernhard M, Yin QY, Back JW, Hartog AF, Muijsers AO, de Koster CG, Albracht SP and Friedrich B (2005b) The soluble NAD+−Reducing [NiFe]-hydrogenase from Ralstonia eutropha H16 consists of six subunits and can be specifically activated by NADPH. J Bacteriol 187: 3122–3132

    PubMed  CAS  Google Scholar 

  • Burgess BK and Lowe DJ (1996) Mechanism of molybdenum nitrogenase. Chem Rev 96: 2983–3012

    PubMed  CAS  Google Scholar 

  • Butala M, Zgur-Bertok D and Busby SJ (2009) The bacterial LexA transcriptional repressor. Cell Mol Life Sci 66: 82–93

    PubMed  CAS  Google Scholar 

  • Carrasco CD, Buettner JA and Golden JW (1995) Programmed DNA rearrangement of a cyanobacterial hupL gene in heterocysts. Proc Natl Acad Sci USA 92: 791–795

    PubMed  CAS  Google Scholar 

  • Carrasco CD, Holliday SD, Hansel A, Lindblad P and Golden JW (2005) Heterocyst-specific excision of the Anabaena sp. strain PCC 7120 hupL element requires xisC. J Bacteriol 187: 6031–6038

    PubMed  CAS  Google Scholar 

  • Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B and Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311: 1283–1287

    PubMed  CAS  Google Scholar 

  • Cooley JW and Vermaas WFJ (2001) Succinate dehydrogenase and other respiratory pathways in thylakoid membranes of Synechocystis sp. strain PCC 6803: Capacity comparisons and physiological function. J Bacteriol 183: 4251–4258

    PubMed  CAS  Google Scholar 

  • Cournac, L; Mus, F; Bernard, L, Guedeney G, Vignais P and Peltier G (2002) Limiting steps of hydrogen production in Chlamydomonas reinhardtii and Synechocystis PCC 6803 as analysed by light-induced gas exchange transients. Int J Hydr Energ 27: 1229–1237

    CAS  Google Scholar 

  • Cournac L, Guedeney G, Peltier G and Vignais PM (2004) Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp. strain PCC 6803 deficient in the type I NADPH-dehydrogenase complex. J Bacteriol 186: 1737–1746

    PubMed  CAS  Google Scholar 

  • Cracknell JA, Vincent KA, Ludwig M, Lenz O, Friedrich B and Armstrong FA (2008) Enzymatic oxidation of H2 in atmospheric O2: the electrochemistry of energy generation from trace H2 by aerobic microorganisms. J Am Chem Soc 130: 424–425

    PubMed  CAS  Google Scholar 

  • Dai S, Schwendtmayer C, Schürmann P, Ramaswamy S and Eklund H (1996) Redox signaling in chloroplasts: cleavage of disulfides by an iron-sulfur cluster. Science 287: 655–658

    Google Scholar 

  • Dietrich LE, Tice MM and Newman DK (2006) The co-evolution of life and Earth. Curr Biol 16: R395–400

    PubMed  CAS  Google Scholar 

  • Domain F, Houot L, Chauvat F and Cassier-Chauvat C (2004) Function and regulation of the cyanobacterial genes lexA, recA and ruvB: LexA is critical to the survival of cells facing inorganic carbon starvation. Mol Microbiol 53: 65–80

    PubMed  CAS  Google Scholar 

  • Dross F, Geisler V, Lenger R, Theis F, Krafft T, Fahrenholz F, Kojro E, Duchêne A, Tripier D, Juvenal K and Kröger A (1992) The quinone-reactive Ni/Fe-hydrogenase of Wolinella succinogenes. Eur J Biochem 206: 93–102

    PubMed  CAS  Google Scholar 

  • Eady RR (1996) Structure-function relationships of alternative nitrogenases. Chem Rev 96: 3013–3030

    PubMed  CAS  Google Scholar 

  • Epping EHG, Khalili A and Thar R (1999) Photosynthesis and the dynamics of oxygen consumption in a microbial mat as calculated from transient oxygen microprofiles. Limnol Ocean 44: 1936–1948

    Google Scholar 

  • Fernandez VM, Aguirre R and Hatchikian EC (1984) Reductive activation and redox properties of hydrogenase from Desulfovibrio gigas. Biochim Biophys Acta 790: 1–-7

    CAS  Google Scholar 

  • Ferreira D, Leitão E, Sjöholm J, Oliveira P, Lindblad P, Moradas-Ferreira P and Tamagnini P (2007) Transcription and regulation of the hydrogenase(s) accessory genes, hypFCDEAB, in the cyanobacterium Lyngbya majuscula CCAP 1446/4. Arch Microbiol 188: 609–617

    PubMed  CAS  Google Scholar 

  • Fromme P, Melkozernov A, Jordan P and Krauss N (2003) Structure and function of photosystem I: interaction with its soluble electron carriers and external antenna systems. FEBS Lett 555: 40–44

    PubMed  CAS  Google Scholar 

  • Forzi L, Hellwig P, Thauer RK, Sawers RG (2007) The CO and CN- ligands to the active site Fe in [NiFe]-hydrogenase of Escherichia coli have different metabolic origins. FEBS Lett 581: 3317–3321

    PubMed  CAS  Google Scholar 

  • Frenkel A, Gaffron H and Battley EH (1950) Photosynthesis and photoreduction by the blue green alga, Synechococcus elongatus, Näg. Biol Bull 99: 157–162

    PubMed  CAS  Google Scholar 

  • Fontecilla-Camps JC, Volbeda A, Cavazza C and Nicolet Y (2007) Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem Rev 107: 4273–4303

    PubMed  CAS  Google Scholar 

  • Germer F, Zebger I, Saggu M, Lendzian F, Schulz R and Appel J (2009) Overexpression, isolation and spectroscopic characterization of the bidirectional [NiFe] hydrogenase from Synechocystis sp. PCC 6803. J Biol Chem 284: 36462–36472

    PubMed  CAS  Google Scholar 

  • Ghirardi ML, Posewitz MC, Maness PC, Dubini A, Yu J and Seibert M (2007) Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annu Rev Plant Biol 58:71–91

    PubMed  CAS  Google Scholar 

  • Goldet G, Wait AF, Cracknell JA, Vincent KA, Ludwig M, Lenz O, Friedrich B and Armstrong FA (2008) Hydrogen production under aerobic conditions by membrane-bound hydrogenases from Ralstonia species. J Am Chem Soc 130: 11106–11113

    PubMed  CAS  Google Scholar 

  • Grimme, RA; Lubner, CE; Bryant, DA and Golbeck JH (2008) Photosystem I/molecular wire/metal nanoparticle bioconjugates for the photocatalytic production of H2. J Amer Chem Soc 130: 6308–6309

    CAS  Google Scholar 

  • Gross R, Simon J, Lancaster CR and Kröger A (1998) Identification of histidine residues in Wolinella succinogenes hydrogenase that are essential for menaquinone reduction by H2. Mol Microbiol 30: 639–646

    PubMed  CAS  Google Scholar 

  • Gross R, Pisa R, Sänger M, Lancaster CR and Simon J (2004) Characterization of the menaquinone reduction site in the diheme cytochrome b membrane anchor of Wolinella succinogenes NiFe-hydrogenase. J Biol Chem 279: 274–281

    PubMed  CAS  Google Scholar 

  • Guedeney G, Corneille S, Cuiné S and Peltier G (1996) Evidence for an association of ndhB, ndhJ gene products and ferredoxin-NADP-reductase as components of a chloroplastic NAD(P)H dehydrogenase complex. FEBS Lett 378: 277–280

    PubMed  CAS  Google Scholar 

  • Gupta RS and Griffiths E (2002) Critical issues in bacterial phylogeny. Theor Popul Biol 61: 423–434

    PubMed  Google Scholar 

  • Gutekunst K, Phunpruch S, Schwarz C, Schuchardt S, Schulz-Friedrich R and Appel J (2005) LexA regulates the bidirectional hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803 as a transcription activator. Mol Microbiol. 58: 810–823

    PubMed  CAS  Google Scholar 

  • Gutthann F, Egert M, Marques A and Appel J (2007) Inhibition of respiration and nitrate assimilation enhances photohydrogen evolution under low oxygen concentrations in Synechocystis sp. PCC 6803. Biochim Biophys Acta 1767: 161–169

    PubMed  CAS  Google Scholar 

  • Hackstein JH, Tjaden J and Huynen M (2006) Mitochondria, hydrogenosomes and mitosomes: products of evolutionary tinkering! Curr Genet 50: 225–245

    PubMed  CAS  Google Scholar 

  • Hallenbeck PC and Benemann JR (2002) Biological hydrogen production; fundamentals and limiting processes. Int J Hydr Energ 27: 1185–1193

    CAS  Google Scholar 

  • Happe T and Naber JD (1993) Isolation, characterization and N-terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii. Eur J Biochem 214: 475–481

    PubMed  CAS  Google Scholar 

  • Harbinson J and Hedley CL (1993) Changes in P-700 oxidation during the early stages of the induction of photosynthesis. Plant Physiol 103: 649–660

    PubMed  CAS  Google Scholar 

  • Helman Y, Tchernov D, Reinhold L, Shibata M, Ogawa T, Schwarz R, Ohad I and Kaplan A (2003) Genes encoding A-type flavoproteins are essential for photoreduction of O2 in cyanobacteria. Curr Biol 13: 230–235

    PubMed  CAS  Google Scholar 

  • Helman Y, Barkan E, Eisenstadt D, Luz B and Kaplan A (2005) Fractionation of the three stable oxygen isotopes by oxygen-producing and oxygen-consuming reactions in photosynthetic organisms. Plant Physiol 138: 2292–2298

    PubMed  CAS  Google Scholar 

  • Henderson RA (2005) Mechanistic studies on synthetic Fe-S-based clusters and their relevance to the action of nitrogenases. Chem Rev 105: 2365–2437

    PubMed  CAS  Google Scholar 

  • Herrero A, Muro-Pastor AM, Valladares A and Flores E (2004) Cellular differentiation and the NtcA transcription factor in filamentous cyanobacteria. FEMS Microbiol Rev 28: 469–487

    PubMed  CAS  Google Scholar 

  • Herrero A, Muro-Pastor AM, Flores E (2001) Nitrogen control in cyanobacteria. J Bacteriol. 183: 411–425

    PubMed  CAS  Google Scholar 

  • Hoehler, TM; Alperin, MJ; Albert, DB, Martens CS (1998) Thermodynamic control on hydrogen concentrations in anoxic sediments. Geochim Cosmochim Acta 62: 1745–1756

    CAS  Google Scholar 

  • Hoehler TM, Bebout B and Des Marais DJ (2001) The role of microbial mats in the production of reduced gases on the early Earth. Nature 412: 324–327

    PubMed  CAS  Google Scholar 

  • Hoffmann D, Gutekunst K, Klissenbauer M, Schulz-Friedrich R and Appel J (2006) Mutagenesis of hydrogenase accessory genes of Synechocystis sp. PCC 6803. Additional homologues of hypA and hypB are not active in hydrogenase maturation. Febs J 273: 4516–4527

    PubMed  CAS  Google Scholar 

  • Hoover TR, Robertson AD, Cerny RL, Hayes RN, Imperial J, Shah VK and Ludden PW (1987) Identification of the V factor needed for synthesis of the iron-molybdenum cofactor of nitrogenase as homocitrate. Nature 329: 855–857

    PubMed  CAS  Google Scholar 

  • Houchins JP and Burris RH (1981a) Physiological reactions of the reversible hydrogenase from Anabaena 7120. Plant Physiol 68: 717–721

    PubMed  CAS  Google Scholar 

  • Houchins JP, Burris RH (1981b) Comparative characte­rization of two distinct hydrogenases from Anabaena sp. strain 7120. J Bacteriol 146: 215–221

    PubMed  CAS  Google Scholar 

  • Howarth DC and Codd GA (1985) The uptake and production of molecular hydrogen by unicellular cyanobacteria. J Gen Microbiol 131: 1561–1569

    CAS  Google Scholar 

  • Howitt CA and Vermaas WF (1998) Quinol and cytochrome oxidases in the cyanobacterium Synechocystis sp. PCC 6803. Biochemistry 37: 17944–17951

    PubMed  CAS  Google Scholar 

  • Howitt CA and Vermaas WFJ (1999) The subunits of the NAD(P)-reducing Ni-containing hydrogenase do not act as part of the type-1 NAD(P)H-dehydrogenase in the cyanobacterium Synechocystis sp. PCC 6803. In: Peschek GA, Loffelhardt W, Schmetterer G (eds) Phototrophic Prokaryotes, pp 595–608, Kluwer Academic Publishers, New York

    Google Scholar 

  • Ihara M, Nishihara H, Yoon KS, Lenz O, Friedrich B, Nakamoto H, Kojima K, Honma D, Kamachi T and Okura I (2006) Light-driven hydrogen production by a hybrid complex of a [NiFe]-hydrogenase and the cyanobacterial photosystem I. Photochem Photobiol 82: 676–682

    PubMed  CAS  Google Scholar 

  • Johnson DC, Dean DR, Smith AD and Johnson MK (2005) Structure, function, and formation of biological iron-­sulfur clusters. Annu Rev Biochem 74: 247–281

    PubMed  CAS  Google Scholar 

  • Jones LW and Bishop NI (1976) Simultaneous Measurement of Oxygen and Hydrogen Exchange from the Blue-Green Alga Anabaena. Plant Physiol 57: 659–665

    PubMed  CAS  Google Scholar 

  • Jørgensen BB, Revsbech NP, Blackburn TH and Cohen Y (1979) Diurnal Cycle of Oxygen and Sulfide Microgradients and Microbial Photosynthesis in a Cyanobacterial Mat Sediment. Appl Environ Microbiol 38: 46–58

    PubMed  Google Scholar 

  • Jørgensen BB, Cohen Y and Revsbech NP (1986) Transition from Anoxygenic to Oxygenic Photosynthesis in a Microcoleus chthonoplastes Cyanobacterial Mat. Appl Environ Microbiol 51: 408–417

    PubMed  Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M and Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3: 109–136

    PubMed  CAS  Google Scholar 

  • King GM (2003) Uptake of carbon monoxide and hydrogen at environmentally relevant concentrations by mycobacteria. Appl Environ Microbiol 69: 7266–7272

    PubMed  CAS  Google Scholar 

  • King PW, Posewitz MC, Ghirardi ML and Seibert M (2006) Functional studies of [FeFe] hydrogenase maturation in an Escherichia coli biosynthetic system. J Bacteriol 188: 2163–2172

    PubMed  CAS  Google Scholar 

  • Kiss E, Kós PB and Vass I (2009) Transcriptional regulation of the bidirectional hydrogenase in the cyanobacterium Synechocystis 6803. J Biotechnol 142: 31–37

    Google Scholar 

  • Korbas M, Vogt S, Meyer-Klaucke W, Bill E, Lyon EJ, Thauer RK and Shima S (2006) The iron-sulfur cluster-free hydrogenase (Hmd) is a metalloenzyme with a novel iron binding motif. J Biol Chem 281: 30804–30813

    PubMed  CAS  Google Scholar 

  • Kortlüke C and Friedrich B (1992) Maturation of membrane-bound hydrogenase of Alcaligenes eutrophus H16. J Bacteriol 174: 6290–6293

    PubMed  Google Scholar 

  • Kuchar J and Hausinger RP (2004) Biosynthesis of metal sites. Chem Rev 104: 509–525

    PubMed  CAS  Google Scholar 

  • Lambert GR, Daday A and Smith GD (1979) Duration of Hydrogen Formation by Anabaena cylindrica B629 in Atmospheres of Argon, Air, and Nitrogen. Appl Environ Microbiol 38: 530–536

    PubMed  CAS  Google Scholar 

  • Lambert GR and Smith GD (1980) Hydrogen metabolism by filamentous cyanobacteria. Arch Biochem Biophys 205: 36–50

    PubMed  CAS  Google Scholar 

  • Leitão E, Oxelfelt F, Oliveira P, Moradas-Ferreira P and Tamagnini P (2005) Analysis of the hupSL operon of the nonheterocystous cyanobacterium Lyngbya majuscula CCAP 1446/4: regulation of transcription and expression under a light-dark regimen. Appl Environ Microbiol 71: 4567–4576

    PubMed  Google Scholar 

  • Lenz O, Zebger I, Hamann J, Hildebrandt P and Friedrich B (2007) Carbamoylphosphate serves as the source of CN-, but not of the intrinsic CO in the active site of the regulatory [NiFe]-hydrogenase from Ralstonia eutropha. FEBS Lett 581: 3322–3326

    PubMed  CAS  Google Scholar 

  • Ley RE, Harris JK, Wilcox J, Spear JR, Miller SR, Bebout BM, Maresca JA, Bryant DA, Sogin ML and Pace NR. (2006) Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol 72: 3685–3695

    PubMed  CAS  Google Scholar 

  • Lieman-Hurwitz J, Haimovich M, Shalev-Malul G, Ishii A, Hihara Y, Gaathon A, Lebendiker M and Kaplan A (2008) A cyanobacterial AbrB-like protein affects the apparent photosynthetic affinity for CO2 by modulating low-CO2-induced gene expression. Environ Microbiol 11: 927–936

    PubMed  Google Scholar 

  • Lindblad P and Sellstedt A (1990) Occurrence and localization of an uptake hydrogenase in the filamentous heterocystous cyanobacterium Nostoc PCC 73102. Protoplasma 159: 9–15

    CAS  Google Scholar 

  • Lindblad P, Christensson K, Lindberg P, Fedorov A, Pinto F and Tsygankov A (2002) Photoproduction of H2 by wildtype Anabaena sp. PCC 7120 and a hydrogen uptake deficient mutant: from laboratory experiments to outdoor culture. Int J Hydr Energ 27: 1271–1281

    CAS  Google Scholar 

  • Lissolo, T., S. Pulvin and D. Thomas. (1984) Reactivation of the hydrogenase from Desulfovibrio gigas by hydrogen. Influence of redox potential. J Biol Chem 259: 11725–11729

    PubMed  CAS  Google Scholar 

  • Long, SP; Zhu, XG; Naidu, SL and Ort DR (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29: 315–330

    PubMed  CAS  Google Scholar 

  • Lovley DR, and Goodwin S (1988) Hydrogen concentrations as an indicator of the predominant terminal electronaccepting reactions in aquatic sediments. Geochim Cosmochim Acta 52: 2993–3003

    Google Scholar 

  • Lubitz W, Reijerse E and van Gastel M (2007) [NiFe] and [FeFe] hydrogenases studied by advanced magnetic resonance techniques. Chem Rev 107: 4331–4365

    PubMed  CAS  Google Scholar 

  • Lubner CE, Knörzer P, Silva PJ, Vincent KA, Happe T, Bryant DA and Golbeck JH (2010) Wiring an [FeFe]-hydrogenase with photosystem I for light-induced ­hydrogen production. Biochem 49: 10264–10266

    Google Scholar 

  • Ludwig M, Schulz-Friedrich R and Appel J (2006) Occurrence of hydrogenases in cyanobacteria and anoxygenic photosynthetic bacteria: implications for the phylogenetic origin of cyanobacterial and algal hydrogenases. J Mol Evol 63: 758–768

    PubMed  CAS  Google Scholar 

  • Ludwig M, Schubert T, Zebger I, Wisitruangsakul N, Saggu M, Strack A, Lenz O, Hildebrandt P and Friedrich B (2009) Concerted action of two novel auxiliary proteins in assembly of the active site in a membrane-bound [NiFe] hydrogenase. J Biol Chem 284: 2159–2168

    PubMed  CAS  Google Scholar 

  • Ma WM, Deng Y, Ogawa T and Mi HL (2006) Active NDH-1 complexes from the cyanobacterium Synechocystis sp strain PCC 6803. Plant Cell Phys 47: 1432–1436

    CAS  Google Scholar 

  • Maeda S, Badger MR and Price GD (2002) Novel gene products associated with NdhD3/D4-containing NDH-1 complexes are involved in photosynthetic CO2 hydration in the cyanobacterium, Synechococcus sp. PCC7942. Mol Microbiol 43: 425–435

    PubMed  CAS  Google Scholar 

  • Manyani H, Rey L, Palacios JM, Imperial J and Ruiz-Argüeso T (2005) Gene products of the hupGHIJ operon are involved in maturation of the iron-sulfur subunit of the [NiFe] hydrogenase from Rhizobium leguminosarum bv. viciae. J Bacteriol 187: 7018–7026

    PubMed  CAS  Google Scholar 

  • Masukawa H, Mochimaru M and Sakurai H (2002) Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Appl Microbiol Biotechnol 58: 618–624

    PubMed  CAS  Google Scholar 

  • Masukawa H, Inoue K and Sakurai H (2007) Effects of disruption of homocitrate synthase genes on Nostoc sp. strain PCC 7120 photobiological hydrogen production and nitrogenase. Appl Environ Microbiol 73: 7562–7570

    PubMed  CAS  Google Scholar 

  • McLean PA and Dixon RA (1981) Requirement of nifV gene for production of wild-type nitrogenase enzyme in Klebsiella pneumoniae. Nature 292: 655–656

    PubMed  CAS  Google Scholar 

  • McTavish H (1998) Hydrogen evolution by direct electron transfer from photosystem I to hydrogenases. J Biochem 123: 644–649

    PubMed  CAS  Google Scholar 

  • Mehler AH (1951) Studies on reactivities of illuminated chloroplasts. I. Mechanism of the reduction of oxygen and other Hill reagents. Arch Biochem Biophys 33: 65–77

    PubMed  CAS  Google Scholar 

  • Mehler AH and Brown AH (1952) Studies on reactivities of illuminated chloroplasts. III. Simultaneous photoproduction of and consumption of oxygen studied with oxygen isotopes. Arch Biochem Biophy 38: 365–370

    CAS  Google Scholar 

  • Mentel M and Martin W (2008) Energy metabolism among eukaryotic anaerobes in light of Proterozoic ocean chemistry. Philos Trans R Soc Lond B Biol Sci 363: 2717–2729

    PubMed  Google Scholar 

  • Mitsui A and Suda S (1995) Alternative and cyclic appearance of H2 and O2 photoproduction activities under nongrowing conditions in an aerobic nitrogen-fixing unicellular cyanobacterium Synechococcus sp. Curr Microbiol 30: 1–6

    CAS  Google Scholar 

  • Nedergaard J, Golozoubova V, Matthias A, Asadi A, Jacobsson A and Cannon B (2001) UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency. Biochim Biophys Acta 1504: 82–106

    PubMed  CAS  Google Scholar 

  • Neuer G and Bothe H (1982) The pyruvate: ferredoxin oxidoreductase in heterocysts of the cyanobacterium Anaba­ena cylindrica. Biochim Biophys Acta 716: 358–365

    PubMed  CAS  Google Scholar 

  • Nicolet Y, de Lacey AL, Vernède X, Fernandez VM, Hatchikian EC and Fontecilla-Camps JC (2001) Crystallographic and FTIR spectroscopic evidence of changes in Fe coordination upon reduction of the active site of the Fe-only hydrogenase from Desulfovibrio desulfuricans. J Am Chem Soc 123: 1596–1601

    PubMed  CAS  Google Scholar 

  • Oda Y, Samanta SK, Rey FE, Wu L, Liu X, Yan T, Zhou J and Harwood CS (2005) Functional genomic analysis of three nitrogenase isozymes in the photosynthetic bacterium Rhodopseudomonas palustris. J Bacteriol 187: 7784–7794

    PubMed  CAS  Google Scholar 

  • Oliveira P, Leitão E, Tamagnini P, Moradas-Ferreira P and Oxelfelt F (2004) Characterization and transcriptional analysis of hupSLW in Gloeothece sp. ATCC 27152: an uptake hydrogenase from a unicellular cyanobacterium. Microbiology 150: 3647–3655

    PubMed  CAS  Google Scholar 

  • Oliveira P and Lindblad P (2008) An AbrB-Like protein regulates the expression of the bidirectional hydrogenase in Synechocystis sp. strain PCC 6803. J Bacteriol 190: 1011–1019

    PubMed  CAS  Google Scholar 

  • Ogawa T (1991) A gene homologous to the subunit-2 gene of NADH dehydrogenase is essential to inorganic carbon transport of Synechocystis PCC 6803. Proc Natl Acad Sci USA 88: 4275–4279

    PubMed  CAS  Google Scholar 

  • Ohkawa H, Pakrasi HB and Ogawa T (2000) Two types of functionally distinct NAD(P)H dehydrogenases in Synechocystis sp. strain PCC6803. J Biol Chem 275: 31630–31634

    PubMed  CAS  Google Scholar 

  • Padan E (1979) Facutative anoxygenic photosynthesis in cyanobacteria. Annu Rev Plant Physiol Plant Mol Biol 30: 27–40

    CAS  Google Scholar 

  • Pandey AS, Harris TV, Giles LJ, Peters JW and Szilagyi RK (2008) Dithiomethylether as a ligand in the hydrogenase h-cluster. J Am Chem Soc 130: 4533–4540

    PubMed  CAS  Google Scholar 

  • Papen H, Kentemich T, Schmülling T and Bothe H (1986) Hydrogenase activities in cyanobacteria. Biochimie 68: 121–132

    PubMed  CAS  Google Scholar 

  • Patterson-Fortin LM, Colvin KR and Owttrim GW (2006) A LexA-related protein regulates redox-sensitive expression of the cyanobacterial RNA helicase, crhR. Nucleic Acids Res 34: 3446–3454

    PubMed  CAS  Google Scholar 

  • Patterson-Fortin LM and Owttrim GW (2008) A Synechocystis LexA-orthologue binds direct repeats in target genes. FEBS Lett 582: 2424–2430

    PubMed  CAS  Google Scholar 

  • Peters JW and Szilagyi RK (2006) Exploring new frontiers of nitrogenase structure and mechanism. Curr Opin Chem Biol 10: 101–108

    PubMed  CAS  Google Scholar 

  • Posewitz MC, King PW, Smolinski SL, Zhang L, Seibert M and Ghirardi ML (2004) Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase. J Biol Chem 279: 25711–25720

    PubMed  CAS  Google Scholar 

  • Reissmann S, Hochleitner E, Wang H, Paschos A, Lottspeich F, Glass RS and Böck A (2003) Taming of a poison: biosynthesis of the NiFe-hydrogenase cyanide ligands. Science 299 1067–1070

    PubMed  CAS  Google Scholar 

  • Richmond A (2000) Microalgal biotechnology at the turn of the millenium: a personal view. J Appl Phycol 12: 441–451

    Google Scholar 

  • Roseboom W, De Lacey AL, Fernandez VM, Hatchikian EC and Albracht SP (2006) The active site of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans. II. Redox properties, light sensitivity and CO-ligand exchange as observed by infrared spectroscopy. J Biol Inorg Chem 11: 102–118

    PubMed  CAS  Google Scholar 

  • Rousseau F, Sétif P and Lagoutte B (1993) Evidence for the involvement of PSI-E subunit in the reduction of ferredoxin by photosystem I. EMBO J 12: 1755–1765

    PubMed  CAS  Google Scholar 

  • Schansker G, Srivastava A, Govindjee and Strasser RJ (2003) Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Funct Plant Biol 30: 785–796

    Google Scholar 

  • Schansker G, Tóth SZ and Strasser RJ (2005) Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochim Biophys Acta 1706: 250–261

    PubMed  CAS  Google Scholar 

  • Schansker G, Tóth SZ and Strasser RJ (2006) Dark recovery of the Chl a fluorescence transient (OJIP) after light adaptation: the qT-component of non-photochemical quenching is related to an activated photosystem I acceptor side. Biochim Biophys Acta 1757: 787–797

    PubMed  CAS  Google Scholar 

  • Schmitz O and Bothe H (1996a) The diaphorase subunit HoxU of the bidirectional hydrogenase as electron transferring protein in cyanobacterial respiration? Naturwissenschaften 83: 525–527

    PubMed  CAS  Google Scholar 

  • Schmitz O and Bothe H (1996b) NAD(P)+-dependent hydrogenase activity in extracts from the cyanobacterium Anacystis nidulans, FEMS Microbiol Lett 135: 97–101

    CAS  Google Scholar 

  • Schmitz O, Boison G and Bothe H (2001a) Quantitative analysis of expression of two circadian clock-controlled gene clusters coding for the bidirectional hydrogenase in the cyanobacterium Synechococcus sp. PCC7942. Mol Microbiol 41: 1409–1417

    PubMed  CAS  Google Scholar 

  • Schmitz O, Gurke J and Bothe H (2001b) Molecular evidence for the aerobic expression of nifJ, encoding pyruvate:ferredoxin oxidoreductase, in cyanobacteria. FEMS Microbiol Lett 195: 97–102

    PubMed  CAS  Google Scholar 

  • Schmitz O, Boison G, Salzmann H, Bothe H, Schütz K, Wang SH and Happe T (2002) HoxE - a subunit specific for the pentameric bidirectional hydrogenase complex (HoxEFUYH) of cyanobacteria. Biochim Biophys Acta 1554: 66–74

    PubMed  CAS  Google Scholar 

  • Schneider K and Schlegel HG (1977) Localization and stability of hydrogenases from aerobic hydrogen bacteria. Arch Microbiol 112: 229–238

    PubMed  CAS  Google Scholar 

  • Schrautemeier B and Böhme H (1985) Distinct ferredoxin for nitrogen-fixation isolated from heterocysts of the cyanobacterium Anabaena variabilis. FEBS Lett 184, 304–308

    CAS  Google Scholar 

  • Schubert T, Lenz O, Krause E, Volkmer R and Friedrich B (2007) Chaperones specific for the membrane-bound [NiFe]-hydrogenase interact with the Tat signal peptide of the small subunit precursor in Ralstonia eutropha H16. Mol Microbiol 66: 453–467

    PubMed  CAS  Google Scholar 

  • Schreiber U, Endo T, Mi HL and Asada K (1995) Quenching analysis of chlorophyll fluorescence by the saturation pulse method – particular aspects relating to the study of eukaryotic algae and cyanobacteria. Plant Cell Physiol 36: 873–882

    CAS  Google Scholar 

  • Schröder O, Bleijlevens B, de Jongh TE, Chen Z, Li T, Fischer J, Förster J, Friedrich CG, Bagley KA, Albracht SP and Lubitz W (2007) Characterization of a cyanobacterial-like uptake [NiFe] hydrogenase: EPR and FTIR spectroscopic studies of the enzyme from Acidithiobacillus ferrooxidans. J Biol Inorg Chem 12: 212–233

    PubMed  Google Scholar 

  • Seabra R, Santos A, Pereira S, Moradas-Ferreira P and Tamagnini P (2009) Immunolocalization of the uptake hydrogenase in the marine cyanobacterium Lyngbya majuscula CCAP 1446/4 and two Nostoc strains. FEMS Microbiol Lett 292: 57–62

    PubMed  CAS  Google Scholar 

  • Serebryakova LT, Zorin NA and Gogotov IN (1992) Hydrogenase activity in filamentous cyanobacteria. Microbiology 61: 107–112

    Google Scholar 

  • Serebryakova LT, Zorin NA and Lindblad P (1994) Reversible hydrogenase in Anabaena variabilis ATCC 29413 – presence and localization in non-N2 fixing cells. Arch Microbiol 161: 140–144

    Google Scholar 

  • Serebryakova LT, Medina M, Zorin NA, Gogotov IN, Cammack R (1996) Reversible hydrogenase of Anabaena variabilis ATCC 29413: catalytic properties and characterization of redox centres. FEBS Lett 383: 79–82

    PubMed  CAS  Google Scholar 

  • Serebryakova LT, Sheremetieva M, Tsygankov AA (1998) Reversible hydrogenase activity of Gloeocapsa alpicola in continuous culture. FEMS Microbiol Lett 166: 89–94

    CAS  Google Scholar 

  • Serebryakova LT and Sheremetieva ME (2006) Characteriza­tion of catalytic properties of hydrogenase isolated from the unicellular cyanobacterium Gloeocapsa alpicola CALU 743. Biochem Moscow 71: 1370–1376

    CAS  Google Scholar 

  • Serebryakova LT and Tsygankov AA (2007) Two-stage ­system for hydrogen production by immobilized cyanobacterium Gloeocapsa alpicola CALU 743. Biotechnol Prog 23: 1106–1110

    PubMed  CAS  Google Scholar 

  • Shibata M, Ohkawa H, Kaneko T, Fukuzawa H, Tabata S, Kaplan A and Ogawa T (2001) Distinct constitutive and low-CO2-induced CO2 uptake systems in cyanobacteria: genes involved and their phylogenetic relationship with homologous genes in other organisms. Proc Natl Acad Sci USA 98: 11789–11794

    PubMed  CAS  Google Scholar 

  • Shima S, Pilak O, Vogt S, Schick M, Stagni MS, Meyer-Klaucke W, Warkentin E, Thauer RK and Ermler U (2008) The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Science 321: 572–575

    PubMed  CAS  Google Scholar 

  • Sjöholm J, Oliveira P and Lindblad P (2007) Transcription and regulation of the bidirectional hydrogenase in the cyanobacterium Nostoc sp. strain PCC 7120. Appl Environ Microbiol 73: 5435–5446

    PubMed  Google Scholar 

  • Stal LJ and Moezelaar R (1997) Fermentation in cyanobacteria. FEMS Microbiol Rev 21: 179–211

    CAS  Google Scholar 

  • Summerfield TC, Toepel J and Sherman LA (2008) Low-oxygen induction of normally cryptic psbA genes in cyanobacteria. Biochemistry 47: 12939–12941

    PubMed  CAS  Google Scholar 

  • Tamagnini P, Leitão E, Oliveira P, Ferreira D, Pinto F, Harris DJ, Heidorn T and Lindblad P (2007) Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol Rev 31: 692–720

    PubMed  CAS  Google Scholar 

  • Tel-Or E, Luijk LW and Packer L (1978) Hydrogenase in N2-fixing cyanobacteria. Arch Biochem Biophys 185: 185–194

    PubMed  CAS  Google Scholar 

  • Thomann H, Bernardo M and Adams MWW (1991) Pulsed ENDOR and ESEEM spectroscopic evidence for unusual nitrogen coordinaton to the novel H2-activating Fe-S center in hydrogenase. J Amer Chem Soc 113: 7044–7046

    CAS  Google Scholar 

  • Tichy M and Vermaas W (1999) In vivo role of catalase-peroxidase in Synechocystis sp. strain PCC 6803. J Bacteriol 181: 1875–1882

    PubMed  CAS  Google Scholar 

  • Troshina O, Serebryakova L, Sheremetieva M and Lindblad P (2002) Production of H2 by the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 during fermentation. Int J Hydr Energ 27: 1283–1289

    CAS  Google Scholar 

  • Tsygankov AA, Serebryakova LT, Rao KK and Hall DO (1998) Acetylene reduction and hydrogen photoproduction by wild-type and mutant strains of Anabaena at different CO2 and O2 concentrations. FEMS Microbiol Lett 167: 13–17

    CAS  Google Scholar 

  • Tsygankov AA, Borodin VB, Rao KK and Hall DO (1999) H2 Photoproduction by batch culture of Anabaeana variabilis ATCC 29413 and its mutant PK84 in a photobioreactor. Biotech Bioeng 64: 709–715

    CAS  Google Scholar 

  • Tsygankov AA, Fedorov AS, Kosourov SN and Rao KK (2002) Hydrogen production by cyanobacteria in an automated outdoor photobioreactor under aerobic conditions. Biotechnol Bioeng 80: 777–783

    PubMed  CAS  Google Scholar 

  • van Dam PJ, Reijerse EJ and Hagen WR (1997) Identification of a putative histidine base and of a non-protein nitrogen ligand in the active site of Fe-hydrogenases by one-dimensional and two-dimensional electron spin-echo envelope-modulation spectroscopy. Eur J Biochem 248: 355–361

    PubMed  Google Scholar 

  • Van der Oost J and Cox RP (1989) Hydrogenase activity in nitrate-grown cells of the unicellular cyanobacterium Cyanothece PCC 7822. Arch Microbiol 151: 40–43

    Google Scholar 

  • Van der Oost J, Bulthuis BA, Feitz S, Krab K and Krayenhof R (1989) Fermentation of the unicellular cyanobacterium Cyanothece PCC 7822. Arch Microbiol 152: 415–419

    Google Scholar 

  • Vignais PM, Dimon B, Zorin NA, Colbeau A and Elsen S (1997) HupUV proteins of Rhodobacter capsulatus can bind H2: evidence from the H-D exchange reaction. J Bacteriol 179: 290–292

    PubMed  CAS  Google Scholar 

  • Vignais PM, Dimon B, Zorin NA, Tomiyama M and Colbeau A (2000) Characterization of the hydrogen-deuterium exchange activities of the energy-transducing HupSL hydrogenase and H2-signaling HupUV hydrogenase in Rhodobacter capsulatus. J Bacteriol 182: 5997–6004

    PubMed  CAS  Google Scholar 

  • Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25: 455–501

    PubMed  CAS  Google Scholar 

  • Vignais PM and Billoud B (2007) Occurrence, classification and biological function of hydrogenases: an overview. Chem Rev 107: 4206–4272

    PubMed  CAS  Google Scholar 

  • Vincent KA, Cracknell JA, Clark JR, Ludwig M, Lenz O, Friedrich B and Armstrong FA (2006) Electricity from low-level H2 in still air–an ultimate test for an oxygen tolerant hydrogenase. Chem Commun (Camb) 28: 5033–5035

    Google Scholar 

  • Vogt S, Lyon EJ, Shima S and Thauer RK (2007) The exchange activities of [Fe] hydrogenase (iron-sulfur-cluster-free hydrogenase) from methanogenic archaea in comparison with the exchange activities of [FeFe] and [NiFe] hydrogenases. J Biol Inorg Chem 13: 97–106

    PubMed  Google Scholar 

  • Westermann P, Jorgensen B, Lange L, Ahring BK and Christensen CH (2007) Maximizing renewable hydrogen production from biomass in a bio/catalytic refinery int. J Hydr Energ 32: 4135–4141

    CAS  Google Scholar 

  • Weyman PD, Pratte B and Thiel T (2008) Transcription of hupSL in Anabaena variabilis ATCC 29413 is regulated by NtcA and not by hydrogen. Appl Environ Microbiol 74: 2103–2110

    PubMed  CAS  Google Scholar 

  • Wolk CP, Ernst A, Elhai J (1994) Heterocyst metabolism and development. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 69–823. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Woodward J, Orr M, Cordray K and Greenbaum E (2000) Enzymatic production of biohydrogen. Nature 405: 1014–1015

    PubMed  CAS  Google Scholar 

  • Yoon JH, Shin JH, Kim MS, Sim SJ and Park TH (2006) Evaluation of conversion efficiency of light to hydrogen energy by Anabaena variabilis. Int J Hydr Energ 31: 721–727

    CAS  Google Scholar 

  • Yoshino F, Ikeda H, Masukawa H and Sakurai H (2007) High photobiological hydrogen production activity of a Nostoc sp. PCC 7422 uptake hydrogenase-deficient mutant with high nitrogenase activity. Mar Biotechnol (NY) 9: 101–112

    CAS  Google Scholar 

  • Zhang P, Battchikova N, Jansen T, Appel J, Ogawa T and Aro EM (2004) Expression and functional roles of the two distinct NDH-1 complexes and the carbon acquisition complex NdhD3/NdhF3/CupA/Sll1735 in Synechocystis sp PCC 6803. Plant Cell 16: 3326–3340

    PubMed  CAS  Google Scholar 

  • Zilberman S, Stiefel EI, Cohen MH and Car R (2006) Resolving the CO/CN ligand arrangement in CO-inactivated [FeFe] hydrogenase by first principles density functional theory calculations. Inorg Chem 45: 5715–5717

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I am especially grateful for the exceptional support I received from Rüdiger Schulz during the major part of my scientific life and I like to thank all the Ph.D. and diploma students I have been working with in the lab and who were part of exciting and many fruitful discussions. My special thanks are to Horst Senger, Reto Strasser, Georg Schmetterer, Eva-Mari Aro, Laurent Cournac, Teruo Ogawa, Aaron Kaplan, Petra Fromme, Anne Jones and Wim Vermaas. Personally I like to thank Kirstin Gutekunst who added a warm and invaluable character to my life.

Financial aid from DFG, COST 841, Innovationsfond des Landes Schleswig-Holstein, Linde AG, Arizona State University and the Intel­lectual Fusion Investment Fund for ASU by Brian and Kelly Swette is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Appel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Appel, J. (2012). The Physiology and Functional Genomics of Cyanobacterial Hydrogenases and Approaches Towards Biohydrogen Production. In: Burnap, R., Vermaas, W. (eds) Functional Genomics and Evolution of Photosynthetic Systems. Advances in Photosynthesis and Respiration, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1533-2_15

Download citation

Publish with us

Policies and ethics