Skip to main content

Ultrastructural Approaches to the Microfossil Record: Assessing Biological Affinities by Use of Transmission Electron Microscopy

  • Chapter
  • First Online:
Quantifying the Evolution of Early Life

Part of the book series: Topics in Geobiology ((TGBI,volume 36))

  • 1437 Accesses

Abstract

One of the major technological advances in biological research was the invention and development of the transmission electron microscope, which enables high resolution and high magnification studies of cross-sections of specimens. As such, it has proved to be a useful tool to describe ultrastructural features of taxonomic and phylogenetic importance in modern organisms. Here we discuss how to extend the use of transmission electron microscopy (TEM) to the fossil record, with emphasis on acritarchs (organic-walled microfossils of unknown affinity). Microfossils are traditionally studied by use of transmitted light microscopy, a method that reveals details of external morphology only. TEM however, gives an additional level of detail and reveals structures that can greatly aid in interpretation of taxonomic affinity, and thus can reveal further detail on the origination and diversification of myriad eukaryotic groups in the fossil record. In this chapter we describe the preparation procedure, show advantages and shortcomings of the technique, and discuss how to interpret the results from a geobiological perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allard B, Templier J (2000) Comparison of neutral lipid profile of various trilaminar outer cell wall (TLS)-containing microalgae with emphasis on algaenan occurrence. Phytochemistry 54:369–380

    Article  Google Scholar 

  • Arouri K, Greenwood PF, Walter MR (1999) A possible chlorophycean affinity of some Neoproterozoic acritarchs. Org Geochem 30:1323–1337

    Article  Google Scholar 

  • Arouri K, Greenwood PF, Walter MR (2000) Biological affinities of Neoproterozoic acritarchs from Australia: microscopic and chemical characterisation. Org Geochem 31:75–89

    Article  Google Scholar 

  • Barghoorn ES, Tyler SA (1965) Microorganisms from the Gunflint Chert. Science 147:563–577

    Article  Google Scholar 

  • Bozzola JJ, Russel LD (1999) Electron microscopy: principles and techniques for biologists, 2nd edn. Jones & Bartlett, Sudbury, 670 pp

    Google Scholar 

  • Brasier MD, Green OR, Jephcoat AP, Kleppe AT, Van Kranendonk MJ, Lindsay JF, Steele A, Grassineau NV (2002) Questioning the evidence for Earth’s oldest fossils. Nature 416:76–81

    Article  Google Scholar 

  • Buckland-Nicks J, Hodgson A (2000) Fertilization in Callochiton castaneus (Mollusca). Biol Bull 199:59–67

    Article  Google Scholar 

  • Cáceres CE (1997) Dormancy in invertebrates. Invert Biol 116:371–383

    Article  Google Scholar 

  • Cohen PA, Knoll AH, Kodner RB (2009) Large spinose microfossils in Ediacaran rocks as resting stages of early animals. PNAS 106:6519–6524

    Article  Google Scholar 

  • Couch K, Downes M, Burns C (2001) Morphological differences between subitaneous and diapause eggs of Boeckella triarticulata (Copepoda: Calanoida). Freshw Biol 46:925–933

    Article  Google Scholar 

  • Damiani MC, Leonardi PI, Pieroni OI, Caceres EJ (2006) Ultrastructure of the cyst wall of Haematococcus pluvialis (Chlorophyceae): wall development and behaviour during cyst germination. Phycologia 45:616–623

    Article  Google Scholar 

  • De Gregorio BT, Sharp TG, Flynn GJ, Wirick S, Hervig RL (2009) Biogenic origin for Earth’s oldest putative microfossils. Geology 37:631–634

    Article  Google Scholar 

  • Egerton RF (2005) Physical principles of electron microscopy. An introduction to TEM, SEM, and AEM. Springer, New York, 202 pp

    Book  Google Scholar 

  • Evitt WR (1963) A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs. Proc Natl Acad Sci USA 49(158–164):298–302

    Article  Google Scholar 

  • Grauvogel-Stamm L, Guignard G, Wellman CH (eds) (2009) Spore/pollen fine structure in living and fossil plants. Rev Palaeobot Palynol 156:1–262

    Google Scholar 

  • Grey K, Willman S (2009) Taphonomy of Ediacaran (late Neoproterozoic) acritarchs: significance for taxonomy and biostratigraphy. Palaios 24:239–256

    Article  Google Scholar 

  • Hagen C, Siegmund S, Braune W (2002) Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. Eur J Phycol 37:217–226

    Article  Google Scholar 

  • Hill R, Shepard W (1997) Observations on the identification of California anostracan cysts. Hydrobiologia 359:113–123

    Article  Google Scholar 

  • Inouye I, Hori T, Moestrup Ø (2003) Ultrastructural studies on Cymbomonas tetramitiformis (Prasinophyceae). I. General structure, scale microstructure, and ontogeny. Can J Bot 81:657–671

    Article  Google Scholar 

  • Javaux EJ, Marshal CP (2006) A new approach in deciphering early protist palaeobiology and evolution: combined microscopy and microchemistry of single Proterozoic acritarchs. Rev Palaeobot Palynol 139:1–15

    Article  Google Scholar 

  • Javaux EJ, Knoll AH, Walter MR (2001) Morphological and ecological complexity in early eukaryotic ecosystems. Nature 412:66–69

    Article  Google Scholar 

  • Javaux EJ, Knoll AH, Walter MR (2003) Recognizing and interpreting the fossils of early eukaryotes. Orig Life Evol Biosph 33:75–94

    Article  Google Scholar 

  • Javaux EJ, Knoll AH, Walter MR (2004) TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology 2:121–132

    Article  Google Scholar 

  • Javaux EJ, Marshall CP, Bekker A (2010) Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature 463:934–938

    Article  Google Scholar 

  • Jones TP, Rowe NP (eds) (1999) Fossil plants and spores – modern techniques. Geological Society Publishing House, Bath

    Google Scholar 

  • Jux U (1968) Ãœber den Feinbau der Wandung bei Tasmanites Newton. Palaeontogr Abt B 124:112–124

    Google Scholar 

  • Jux U (1969a) Ãœber den Feinbau der Zystenwandung von Pachysphaera marshalliae Parke, 1966. Palaeontogr Abt B 125:104–111

    Google Scholar 

  • Jux U (1969b) Ãœber den Feinbau der Zystenwandung von Halosphaera Schmitz, 1878. Palaeontogr Abt B 128:48–55

    Google Scholar 

  • Jux U (1971) Ãœber den Feinbau der Wandungen einiger paläozischer Baltisphaeidiacean. Palaeontogr Abt B 136:115–128

    Google Scholar 

  • Jux U (1977) Ãœber die wandstrukturen sphaeromorpher acritarchen: Tasmanites Newton, Tapajonites Sommer & Van Boekel, Chuaria Walcott. Palaeontogr Abt B 160:1–16

    Google Scholar 

  • Kempe A, Wirth R, Altermann W, Stark RW, Schopf JW, Heckl WM (2005) Focussed ion beam preparation and in situ nanoscopic study of Precambrian acritarchs. Precambrian Res 140:35–54

    Article  Google Scholar 

  • Kennaway GE, Eaton GL, Feist-Burkhardt S (2008) A detailed protocol for the preparation and orientation of single fossil dinoflagellate cysts for transmission electron microscopy. Palynology 32:1–15

    Article  Google Scholar 

  • Kjellström G (1968) Remarks on the chemistry and ultrastructure of the cell wall of some Palaeozoic leiospheres. Geol Fören Stockh Förh 90:118–221

    Article  Google Scholar 

  • Knoll M (1935) Aufladepotentiel und Sekundäremission elektronenbestrahlter Körper. Z techische Phys 16:467–475

    Google Scholar 

  • Knoll AH, Javaux EJ, Hewitt D, Cohen P (2006) Eukaryotic organisms in Proterozoic oceans. Philos Trans R Soc B 631:1023–1038

    Article  Google Scholar 

  • Marshall CP, Javaux EJ, Knoll AH, Walter MR (2005) Combined micro-Fourier transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of Proterozoic acritarchs: a new approach to Palaeobiology. Precambrian Res 138:208–224

    Article  Google Scholar 

  • Marshall CP, Carter EA, Leuko S, Javaux EJ (2006) Vibrational spectroscopy of extant and fossil microbes: relevance for the astrobiological exploration of Mars. Vib Spectrosc 41:182–189

    Article  Google Scholar 

  • Martin F, Kjellström G (1973) Ultrastructural study of some Ordovician acritarchs from Gotland, Sweden. Neues Jahrbuch für Geologie und Paläontologie Monatshefte 1:44–54

    Google Scholar 

  • McMullan D (1995) Scanning electron microscopy 1928–1965. Scanning 17:175–185

    Article  Google Scholar 

  • MoczydÅ‚owska M, Willman S (2009) Ultrastructure of cell walls in ancient microfossils as a proxy to their biological affinities. Precambrian Res 173:27–38

    Article  Google Scholar 

  • MoczydÅ‚owska M, Schopf JW, Willman S (2010) Micro- and nano-scale ultrastructure of cell walls in Cryogenian microfossils: revealing their biological affinity. Lethaia 43:130–136

    Google Scholar 

  • Moreau JW, Sharp TG (2004) A transmission electron microscopy study of silica and kerogen biosignatures in 1.9 Ga Gunflint microfossils. Astrobiology 4:196–210

    Article  Google Scholar 

  • Onoue Y, Toda T, Ban S (2004) Morphological features and hatching patterns of eggs in Acartia steueri (Crustacea, Copepoda) from Sagami Bay, Japan. Hydrobiologia 511:17–24

    Article  Google Scholar 

  • Peat CJ (1981) Comparative light microscopy, scanning electron microscopy and transmission electron microscopy of selected organic walled microfossils. J Microsc 122:287–294

    Article  Google Scholar 

  • Peng Y, Bao H, Yuan X (2009) New morphological observations for Paleoproterozoic acritarchs from the Chuanlinggou Formation, North China. Precambrian Res 168:223–232

    Article  Google Scholar 

  • Reimer L, Kohl H (2008) Transmission electron microscopy. Physics of image formation, 5th edn. Springer, New York, 590 pp

    Google Scholar 

  • Schiffbauer JD, Xiao S (2009) Novel application of focused ion beam electron microscopy (FIB-EM) in preparation and analysis of microfossil ultrastructures: a new view of complexity in early eukaryotic organisms. Palaios 24:616–626

    Article  Google Scholar 

  • Schopf JW (1993) Microfossils of the early Archean Apex chert: new evidence of the antiquity of life. Science 260:640–646

    Article  Google Scholar 

  • Schopf JW, Kudryavtsev AB, Agresti DG, Wdowiak TJ, Czaja AD (2002) Laser-Raman imagery of Earth’s earliest fossils. Nature 416:73–76

    Article  Google Scholar 

  • Talyzina NM, MoczydÅ‚owska M (2000) Morphological and ultrastructural studies of some acritarchs from the Lower Cambrian Lükati Formation, Estonia. Rev Palaeobot Palynol 112:1–21

    Article  Google Scholar 

  • van Waveren IM, Marcus NH (1993) Morphology of recent copepod egg envelopes from Turkey Point, Gulf of Mexico, and their implications for acritarch affinity. Spec Pap Palaeontol 48:111–124

    Google Scholar 

  • Wall D (1962) Evidence from recent plankton regarding the biological affinities of Tasmanites Newton 1875 and Leiosphaeridia Eisenack 1958. Geol Mag 99:353–362

    Article  Google Scholar 

  • Wellman CH, Grauvogel Stamm L, Guignard G (2009) Studies of spore/pollen wall ultrastructure in fossil and living plants: a review of the subject are and the contribution of Bernard Lugardon. Rev Palaeobot Palynol 156:2–6

    Article  Google Scholar 

  • Williams DB, Carter CB (2009) Transmission electron microscopy: a textbook for materials science, 2nd edn. Springer, New York, 760 pp

    Book  Google Scholar 

  • Willman S (2009) Morphology and wall ultrastructure of leiosphaeric and acanthomorphic acritarchs from the Ediacaran of Australia. Geobiology 7:8–20

    Article  Google Scholar 

  • Willman S, MoczydÅ‚owska M (2007) Wall ultrastructure of an Ediacaran acritarch from the Officer Basin, Australia. Lethaia 40:111–123

    Article  Google Scholar 

Download references

Acknowledgments

Gary Wife, Anette Axén and Stefan Gunnarsson at the Microscopy and Imaging unit at EBC, Uppsala University, are thanked for their expertise regarding preparing and sectioning the samples and microscope work. Margaret Coughling at the Harvard Medical School provided help and inspiration to PAC in developing a new preparation method and provided help and advice with microtoming.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Willman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Willman, S., Cohen, P.A. (2011). Ultrastructural Approaches to the Microfossil Record: Assessing Biological Affinities by Use of Transmission Electron Microscopy. In: Laflamme, M., Schiffbauer, J., Dornbos, S. (eds) Quantifying the Evolution of Early Life. Topics in Geobiology, vol 36. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0680-4_12

Download citation

Publish with us

Policies and ethics