Skip to main content

AMS in Granites and Lava Flows: Two End Members of a Continuum?

  • Chapter
  • First Online:
The Earth's Magnetic Interior

Part of the book series: IAGA Special Sopron Book Series ((IAGA,volume 1))

Abstract

Significant differences between granites and lava flows can require different basic assumptions when interpreting AMS results. Among the differences between both types of rocks, perhaps the earliest in being recognized was the wider range of mineral compositions found in granites. Such difference can result in complex mineral assemblages that, in turn, can complicate the interpretation of AMS results in granites relative to the AMS measured in lava flows. Closely linked to this mineralogic effect is the distinction between “primary” flow fabrics and “secondary” effects. Such distinction is a matter of concern in most granites whereas the AMS of lava flows is usually considered “primary” without further examination. As the increasing evidence obtained from lava flows shows, however, the AMS of lavas is not as simple as the general model of hydrodynamic alignment of particles would suggest and much can be learned from lava flows that can be applied directly to the interpretation of AMS in granites. In this work, the better understanding of the fabric of lava flows that has been obtained in recent years is used as the basis for a reassessment of the basic assumptions needed for the correct interpretation of AMS in both lava flows and granitic rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ade-Hall J, Palmer HC, Hubbard TP (1971) The magnetic and opaque petrological response of basalts to regional hydrothermal alteration. Geophys J Roy Astronomical Soc 24:137–174

    Google Scholar 

  • Ade-Hall J, Khan MA, Dagley P, Wilson RL (1968a) A detailed opaque petrological and magnetic investigation of a single Tertiary lava flow from Skye, Scotland – I Iron-titanium oxide petrology. Geophys J R Astron Soc 16:375–388

    Google Scholar 

  • Ade-Hall J, Khan MA, Dagley P, Wilson RL (1968b) A detailed opaque petrological and magnetic investigation of a single Tertiary lava flow from Skye, Scotland – II Spatial variations of magnetic properties and selected relationships between magnetic and opaque petrological properties. Geophys J R Astron Soc 16:389–399

    Google Scholar 

  • Ade-Hall J, Khan MA, Dagley P, Wilson RL (1968c) A detailed opaque petrological and magnetic investigation of a single Tertiary lava flow from Skye, Scotland – III Investigations into the possibility of obtaning the intensity of the ambient magnetic field (Fanc) at the time of the cooling of the flow. Geophys J Roy Astronomical Soc 16:401–415

    Google Scholar 

  • Arbaret L, Diot H, Bouchez JL (1996), Shape fabrics of particles in low concentration suspensions: 2D analogue experiments and applications to tiling in magma. J Struct Geol 18:941–950

    Article  Google Scholar 

  • Arbaret L, Diot H, Bouchez JL, Lespinasse P, de Saint-Blanquat, M. (1997) Analogue 3D simple-shear experiments of magmatic biotite subfabrics. In: Bouchez JL, Hutton DHW, Stephens WE (eds) Granite: from segregation of melt to emplacement fabrics. Kluwer, Dordrecht, pp 129–143

    Google Scholar 

  • Archanjo CJ (1993) Fabriques de plutons granitiques et déformation crustale du Nord-Est du Brésil: une étude par l’anisotropie de la susceptibilité magnétique de granites ferromagnétiques. Thesis University, Paul-Sabatier, Toulouse 167 pp

    Google Scholar 

  • Archanjo CJ, Launeau P, Bouchez JL (1995) Magnetic fabric vs. magnetite and biotite shape fabrics of the magnetite-bearing granite pluton of Gameleiras (northeast Brazil) Phys Earth Planetary Inter 89:63–75

    Article  Google Scholar 

  • Aydin A, Ferré EC, Aslan Z (2007) The magnetic susceptibility of granitic rocks as a proxy for geochemical differentiation: example from the Saruhan granitoids, NE Turkey. Tectonophysics 441:85–95

    Article  Google Scholar 

  • Benn, K. 1994. Overprinting of magnetic fabrics in granites by small strains: numerical modeling. Tectonophysics 233:153–162

    Article  Google Scholar 

  • Best MG (1982) Igneous and metamorphic petrology. W.H. Freeman and Company, New York, NY, 630 pp

    Google Scholar 

  • Borradaile GJ, Gauthier D (2003) Interpreting anomalous magnetic fabrics in ophiolite dikes. J Struct Geol 25:171–182

    Article  Google Scholar 

  • Bouchez JL (1997) Granite is never isotropic: an introduction to AMS studies of granitic rocks. In: Bouchez JL, Hutton DHW, Stephens WE (eds) Granite: from segregation of melt to emplacement fabrics. Kluwer, Dordrecht, pp 95–112

    Google Scholar 

  • Cañón-Tapia E (1994) AMS parameters: guidelines for their rational selection. Pure Appl Geophys 142:365–382

    Article  Google Scholar 

  • Cañón-Tapia E (1996) Single-grain versus distribution anisotropy: a simple three-dimensional model. Phys Earth Planetary Inter 94:149–158

    Article  Google Scholar 

  • Cañón-Tapia E (2001) Factors affecting the relative importance of shape and distribution anisotropy in rocks: theory and experiments. Tectonophysics 340:117–131

    Article  Google Scholar 

  • Cañón-Tapia E (2004a) Anisotropy of magnetic susceptibility of lava flows and dykes: an historical account. In: Martín-Hernández F, Lüneburg C, Aubourg MC, Jackson M (eds) Magnetic fabric. Methods and applications. Geological Society, London, pp 205–225

    Google Scholar 

  • Cañón-Tapia E (2004b). Flow direction and magnetic mineralogy of lava flows from the central parts of the Peninsula of Baja California, Mexico. Bull Volcanol 66:431–442

    Article  Google Scholar 

  • Cañón-Tapia E (2005) Uses of anisotropy of magnetic susceptibility in the study of emplacement processes of lava flows. In: Manga M, Ventura G (eds), Kinematics and dynamics of lava flows. Geological Society of America, Boulder, Colorado, USA, pp 29–46

    Google Scholar 

  • Cañón-Tapia E (2007) Susceptibility, parameters, anisotropy. In: Gubbins D, Herrero-Bervera E (eds), Encyclopedia of Geomagnetism and Paleomagnetism. Springer, Dordrecht, pp 937–939

    Chapter  Google Scholar 

  • Cañón-Tapia E, Castro J (2004) AMS measurements on obsidian from the Inyo Domes, CA: a comparison of magnetic and mineral preferred orientation fabrics. J Volcanol Geothermal Res 134:169–182

    Article  Google Scholar 

  • Cañón-Tapia E, Chávez-Álvarez MJ (2004a) Theoretical aspects of particle movement in flowing magma: implication for the anisotropy of magnetic susceptibility of dykes. In: Martín-Hernández F, Lüneburg C, Aubourg MC, Jackson M (eds), Magnetic fabric. Methods and applications. Geological Society, London, pp 227–249

    Google Scholar 

  • Cañón-Tapia E, Chávez-Álvarez MJ (2004b) Rotation of uniaxial ellipsoidal particles during simple shear revisited: the influence of elongation ratio, initial distribution of a multiparticle system and amount of shear in the acquisition of a stable orientation. J Struct Geol 26:2 073–2 087

    Google Scholar 

  • Cañón-Tapia E, Coe R (2002) Rock magnetic evidence of inflation of a flood basalt lava flow. Bull Volcanol 64:289–302

    Article  Google Scholar 

  • Cañón-Tapia E, Herrero-Bervera E (2009), Sampling strategies and the anisotropy of magnetic susceptibility of dykes. Tectonophysics 466:3–17

    Article  Google Scholar 

  • Cañón-Tapia E, Pinkerton H (2000) The anisotropy of magnetic susceptibility of lava flows: an experimental approach. J Volcanol Geothermal Res 98:219–233

    Article  Google Scholar 

  • Cañón-Tapia E, Walker GPL, Herrero-Bervera E (1995) Magnetic fabric and flow direction in basaltic pahoehoe lava of Xitle volcano, Mexico. J Volcanol Geothermal Res 65:249–263

    Article  Google Scholar 

  • Cañón-Tapia E, Walker GPL, Herrero-Bervera E (1996) The internal structure of lava flows – insights from AMS measurements I: near vent aa. J Volcanol Geothermal Res 70:21–36

    Article  Google Scholar 

  • Cañón-Tapia E, Walker GPL, Herrero-Bervera E (1997) The internal structure of lava flows – insights from AMS measurements II: Hawaiian pahoehoe, toothpaste lava and ‘a’a. J Volcanol Geothermal Res 76:19–46

    Article  Google Scholar 

  • Chlupácová M, Hrouda F, Janák F, Rejl L (1975) The fabric, genesis and relative age relations of the granitic rocks of the Cistá-Jesenice Massif (Czechoslovakia) as indicated by magnetic anisotropy. Gerl Beitr Geophys 84:487–500

    Google Scholar 

  • Cashman KV, Thornber, C, Kauahikaua JP (1999) Cooling and crystallization of lava in open channels, and the transition of Pahoehoe Lava to ‘a’a. Bull Volcanol 61:306, 323

    Article  Google Scholar 

  • Dragoni M, Lanza, R, Tallarico A (1997) Magnetic anisotropy produced by magma flow: theoretical model and experimental data from Ferrar dolerite sills (Antarctica) Geophys J Int 128:230–240

    Article  Google Scholar 

  • Dortman NB (1984). Physical properties of rocks and mineral deposits. Nedra, Moscow, 455 pp. (in Russian)

    Google Scholar 

  • Ellwood BB, Hrouda F, Wagner JJ (1988) Symposia on magnetic fabrics: introductory comments. Phys Earth Planetary Inter 51:249–252

    Article  Google Scholar 

  • Ferré EC, Martín-Hernández F, Teyssier, C, Jackson M (2004) Paramagnetic and ferromagnetic anisotropy of magnetic susceptibility in migmatites: measurements in high and low fields and kinematic implications. Geophys J Int 157:1119–1129

    Article  Google Scholar 

  • Fernandez A (1987) Preferred orientation developed by rigid markers in two-dimensional simple shear strain: a theoretical and experimental study. Tectonophysics 136:151–158

    Article  Google Scholar 

  • Fernandez A, Feybesse JL, Mezure JF (1983) Theoretical and experimental study of fabrics developed by different shaped markers in two-dimensional simple shear. Bull de la Soc geol de France 25:319–326

    Google Scholar 

  • Freeman B (1985) The motion of rigid ellipsoidal particles in slow flows. Tectonophysics 113:163–183

    Article  Google Scholar 

  • Gay NC (1966) Orientation of mineral lineation along the flow direction in rocks: a discussion. Tectonophysics 3:559–564

    Article  Google Scholar 

  • Gay NC (1968) The motion of rigid particles embedded in a viscous fluid during pure shear deformation of the fluid. Tectonophysics 5:81–88

    Article  Google Scholar 

  • Gleizes G, Nédélec A, Bouchez JL, Autran, A, Rochette P (1993) Magnetic susceptibility of the Mount-Louis Andorra ilmenite-type granite (Pyrenees): a new tool for the petrographic characterization and regional mapping of zoned granite plutons. J Geophys Res 98:4317–4331

    Google Scholar 

  • Grégoire V, de Saint-Blanquat M, Nédélec A, Bouchez JL (1995) Shape anisotropy versus magnetic interactions of magnetite grains: experiments and application to AMS in granitic rocks. Geophys Res Lett 20:2765–2768

    Google Scholar 

  • Hargraves RB, Johnson D, Chan CY (1991) Distribution anisotropy: The cause of AMS in igneous rocks? Geophys Res Lett 18:2193–2196

    Article  Google Scholar 

  • Hinch EJ, Leal LG (1979) Rotation of small non-axisymmetric particles in a simple shear flow. J Fluid Mech 92:591–608

    Article  Google Scholar 

  • Hon K, Kauahikaua J, Denlinger, R, Mackay K (1994) Emplacement and inflation of pahoehoe sheet flows: observations and measurements of active lava flows on Kilauea Volcano, Hawaii. Bull Geol Soc Am 106:351–370

    Article  Google Scholar 

  • Hrouda F (1982) Magnetic anisotropy of rocks and its application in geology and geophysics. Geophysical Survey 5:37–82

    Article  Google Scholar 

  • Hrouda, F, Lanza R (1989) Magnetic fabric in the Biella and Traversella stocks (Periadriatic Line): Implications for the mode of emplacement. Phys Earth Planet Interiors 56:337–348

    Article  Google Scholar 

  • Hrouda F, Chlupacova M, Rejl L (1971) The mimetic fabric of magnetite in some foliated granodiorites, as indicated by magnetic anisotropy. Earth Planet Sci Lett 11:381–384

    Article  Google Scholar 

  • Hrouda F, Chlupacova M, Schulmann K, Smid J, Zavada P (2005) On the effect of lava viscosity on the magnetic fabric intensity in alkaline volcanic rocks. Studia Geophys Geod 49:191–212

    Article  Google Scholar 

  • Hrouda F, Melka R, Schulmann K (1994) Periodical changes in fabric intensity during simple shear deformation and its implications for magnetic susceptibility anisotropy of sedimentary and volcanic rocks. Acta Univ Carol 38:37–56

    Google Scholar 

  • Hrouda F, Putis M, Madarás J (2002) The Alpine overprints of the magnetic fabrics in the basement and cover rocks of the Veporic Unit (western Carpathians, Slovakia) Tectonophysics 359:271–288

    Article  Google Scholar 

  • Hrouda F, Táborská S, Schulmann K, Jezek J. Dolejs D (1999) Magnetic fabric and rheology of co-mingled magmas in the Nasavrky plutonic complex (E Bohemia): implications for intrusive strain regime and emplacement mechanism. Tectonophysics 307:93–111

    Article  Google Scholar 

  • Iezzi, G, Ventura G (2002) Crystal fabric evolution in lava flows: results from numerical simulations. Earth Planetary Sci Lett 200:33–46

    Article  Google Scholar 

  • Ildefonse B, Arbaret, L, Diot H (1997) Rigid particles in simple shear flow: is their preferred orientation periodic or steady-state? In: Bouchez JL, Hutton DHW, Stephens WE (eds) Granite: from segregation of melt to emplacement fabrics. Petrology and structural geology. Kluwer, Dordrecht, pp 177–185

    Google Scholar 

  • Ildefonse B, Launeau P, Bouchez JL, Fernandez A (1992) Effect of mechanical ointeractions on the development of shape preferred orientations: a two-dimensional experimental approach. J Struct Geol 14:73–83

    Article  Google Scholar 

  • Ishihara S (1977) The magnetite-series and ilmenite-series granitic rocks. Mining Geol 27:293–305

    Google Scholar 

  • Jeffery GB (1922) The motion of ellipsoidal particles immersed in a viscous fluid. Proc R Soc London 102:161–179

    Article  Google Scholar 

  • Jezek J (1994) Software for modelling the motion of rigid triaxial ellipsoidal particles in viscous flow. Comput Geosci 20:409–424

    Article  Google Scholar 

  • Jezek J, Melka R, Schulmann K, Venera Z (1994) The behaviour of rigid triaxial ellipsoidal particles in viscous flows – modeling of fabric evolution in a multiparticle system. Tectonophysics 229:165–180

    Article  Google Scholar 

  • Jezek J, Schulmann K, Segeth K (1996) Fabric evolution of rigid inclusions during mixed coaxial and simple shear flows. Tectonophysics 257:203–221

    Article  Google Scholar 

  • Manga M (1998) Orientation distribution of microlites in obsidian. J Volcanol Geothermal Res 86:107–115

    Article  Google Scholar 

  • Méndez-García CH (2005) Mecanismo de emplazamiento del plutón El Testerazo, Baja California, deducido a través de mediciones de ASM. MSc thesis, CICESE, Ensenada, 94 pp

    Google Scholar 

  • Olivier P, de Saint-Blanquat M, Gleizes G, Leblanc D (1997) Homogeneity of granite fabrics at the metre and dekametre scales. In: Bouchez JL, Hutton DHW, Stephens WE (eds) Granite: from segregation of melt to emplacement fabrics. Kluwer, Dordrecht, pp 113–127

    Google Scholar 

  • Owens WH (1974) Mathematical model studies on factors affecting the magnetic anisotropy of deformed rocks. Tectonophysics 24:115–131

    Article  Google Scholar 

  • Paterson SR, Fowler TK, Schmidt KL, Yoshinobu AS, Yuan ES, Miller RB (1998) Interpreting magmatic fabric patterns in plutons. Lithos 44:53–82

    Article  Google Scholar 

  • Petford N (2003) Rheology of granitic magmas during ascent and emplacement. Ann Rev Earth Planet Sci 31:399–427

    Article  Google Scholar 

  • Polacci M, Cashman KV, Kauahikaua JP (1999) Textural characterization of the pahoehoe – ‘a’a transition in Hawaiian basalt. Bull Volcanol 60:595–609

    Article  Google Scholar 

  • Pueyo EL, Román-Berdiel MT, Bouchez JL, Casas AM, Larrasoaña JC (2004) Statistical significance of magnetic fabric data in studies of paramagnetic granites. In: Martín-Hernández F, Lüneburg C, Aubourg MC, Jackson M (eds), Magnetic fabric: methods and applications. The Geological Society, London, pp 395–420

    Google Scholar 

  • Raposo MIB, Berquó TS (2008) Tectonic fabric revealed by AARM of the proterozoic mafic dyke swarm in the Salvador City (Bahia State); São Francisco Craton, NE Brazil. Phys Earth Planetary Inter Syst 167:179–194

    Article  Google Scholar 

  • Raposo MIB, Chaves AO, Lojkasek-Lima P, DÁgrella-Filho MS, Teixeira W (2004) Magnetic fabrics and rock magnetism of Proterozoic dike swarm from the southern São Francisco Craton, Minas Gerais state, Brazil. Tectonophysics 378:43–63

    Article  Google Scholar 

  • Rochette P, Aubourg C, Perrin M (1999) Is this fabric normal? A review and case studies in volcanic formations. Tectonophysics 307:219–234

    Article  Google Scholar 

  • Rochette P, Jackson M, Aubourg C (1991) Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. Rev Geophys 30:209–226

    Article  Google Scholar 

  • Rochette P, Scaillet B, Guillot S, Pêcher A, Le Fort P (1994) Magnetic mineralogy of the High Himalayan leucogranites: structural implications. Earth Planetary Sci Lett 126; 217–234

    Article  Google Scholar 

  • Román-Berdiel T, Aranguren A, Cuevas J, Tubía JM (1998) Compressional granite-emplacement model: structural magnetic study of the Trives Massif (NW Spain). Lithos 44; 37–52

    Article  Google Scholar 

  • Stephenson A (1994) Distribution anisotropy: two simple models for magnetic lineation and foliation. Phys Earth Planetary Inter 82:49–53

    Article  Google Scholar 

  • Táborská S, Breiter K (1998) Magnetic anisotropy of an extremely fractionated granite: the Podlesí Stock, Krusné hory Mts., Czech Republic. Acta Univ Carolinae Geol 42:147–149

    Google Scholar 

  • Tarling D, Hrouda F (1993) The magnetic anisotropy of rocks. Chapman and Hall, London, 217 pp

    Google Scholar 

  • Trindade RIF, Raposo MIB, Rnesto M, Siqueira R (1999) Magnetic susceptibility and partial anhysteretic remanence anisotropies in the magnetite-bearing granite pluton of Tourão, NE Brazil. Tectonophysics 314:443–468

    Article  Google Scholar 

  • Zák J, Schulmann K, Hrouda F (2005) Multiple magmatic fabrics in the Sázava pluton (Bohemian Massif, Czech Republic): a result of superposition of wrench-dominated regional transpression on final emplacement. J Struct Geol 27:805–822

    Article  Google Scholar 

Download references

Acknowledgements

The comments made by two anonymous reviewers helped to clarify many of the ideas presented in the text are greatly appreciated. I also express my thanks to E. Herrero-Bervera for the encouragement that led me to give a more formal expression to some of the ideas presented here and that had been informally discussed several times.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgardo Cañón-Tapia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cañón-Tapia, E. (2011). AMS in Granites and Lava Flows: Two End Members of a Continuum?. In: Petrovský, E., Ivers, D., Harinarayana, T., Herrero-Bervera, E. (eds) The Earth's Magnetic Interior. IAGA Special Sopron Book Series, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0323-0_18

Download citation

Publish with us

Policies and ethics