Skip to main content

Evolvability and Self-Replication of Genetic Information in Liposomes

  • Chapter
  • First Online:
The Minimal Cell

Abstract

To realize the minimal cell by a bottom-up approach, increasingly ­complex biochemical reactions are being encapsulated in lipid vesicles (liposomes). Here, we describe the encapsulation of one of the general properties of living organisms into liposomes, i.e., replication of genetic information with self-encoded replicase, and evolvability. We also discuss the possibility of realizing a minimal cell that can ­proliferate autonomously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baba T, Ara T, Hasegawa M et al (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(2006):0008

    PubMed  Google Scholar 

  • Bangham AD, Horne RW (1964) Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol 8:660–668

    Article  CAS  PubMed  Google Scholar 

  • Benner SA, Sismour AM (2005) Synthetic biology. Nat Rev Genet 6:533–543

    Article  CAS  PubMed  Google Scholar 

  • Butland G, Peregrin-Alvarez JM, Li J et al (2005) Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433:531–537

    Article  CAS  PubMed  Google Scholar 

  • de Visser JA, Hermisson J, Wagner GP et al (2003) Perspective: evolution and detection of genetic robustness. Evolution 57:1959–1972

    Article  PubMed  Google Scholar 

  • Deamer D (2005) A giant step towards artificial life? Trends Biotechnol 23:336–338

    Article  CAS  PubMed  Google Scholar 

  • Drake JW (1993) Rates of spontaneous mutation among RNA viruses. Proc Natl Acad Sci USA 90:4171–4175

    Article  CAS  PubMed  Google Scholar 

  • Forster AC, Church GM (2006) Towards synthesis of a minimal cell. Mol Syst Biol 2:45

    Article  PubMed  Google Scholar 

  • Giaever G, Chu AM, Ni L et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Article  CAS  PubMed  Google Scholar 

  • Hanczyc MM, Fujikawa SM, Szostak JW (2003) Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302:618–622

    Article  CAS  PubMed  Google Scholar 

  • Haruna I, Spiegelman S (1965) Autocatalytic synthesis of a viral RNA in vitro. Science 150:884–886

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Ichimura T, Mizoguchi H et al (2005) Cell size and nucleoid organization of engineered Escherichia coli cells with a reduced genome. Mol Microbiol 55:137–149

    Article  CAS  PubMed  Google Scholar 

  • Hosoda K, Matsuura T, Kita H et al (2007) Kinetic analysis of the entire RNA amplification process by Qbeta replicase. J Biol Chem 282:15516–15527

    Article  CAS  PubMed  Google Scholar 

  • Hosoda K, Sunami T, Kazuta Y et al. (2008) Quantitative study of the structure of multilamellar giant liposomes as a container of protein synthesis reaction. Langmuir

    Google Scholar 

  • Hutchison CA, Peterson SN, Gill SR et al (1999) Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286:2165–2169

    Article  CAS  PubMed  Google Scholar 

  • Ichihashi N, Matsuura T, Kita H et al (2008) Importance of translation-replication balance for efficient replication by the self-encoded replicase. Chembiochem 9:3023–3028

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa K, Sato K, Shima Y et al (2004) Expression of a cascading genetic network within liposomes. FEBS Lett 576:387–390

    Article  CAS  PubMed  Google Scholar 

  • Kita H, Matsuura T, Sunami T et al (2008) Replication of genetic information with self-encoded replicase in liposomes. Chembiochem 9:2403–2410

    Article  CAS  PubMed  Google Scholar 

  • Kitano H (2004) Biological robustness. Nat Rev Genet 5:826–837

    Article  CAS  PubMed  Google Scholar 

  • Luisi PL (2002) Toward the engineering of minimal living cells. Anat Rec 268:208–214

    Article  CAS  PubMed  Google Scholar 

  • Luisi PL, Ferri F, Stano P (2006) Approaches to semi-synthetic minimal cells: a review. Naturwissenschaften 93:1–13

    Article  CAS  PubMed  Google Scholar 

  • Matsuura T, Yamaguchi M, Ko-Mitamura EP et al (2002) Importance of compartment formation for a self-encoding system. Proc Natl Acad Sci U S A 99:7514–7517

    Article  CAS  PubMed  Google Scholar 

  • Matsuura T, Yomo T (2006) In vitro evolution of proteins. J Biosci Bioeng 101:449–456

    Article  CAS  PubMed  Google Scholar 

  • Noireaux V, Libchaber A (2004) A vesicle bioreactor as a step toward an artificial cell assembly. Proc Natl Acad Sci U S A 101:17669–17674

    Article  CAS  PubMed  Google Scholar 

  • Nomura SM, Tsumoto K, Hamada T et al (2003) Gene expression within cell-sized lipid vesicles. Chembiochem 4:1172–1175

    Article  CAS  PubMed  Google Scholar 

  • Oberholzer T, Albrizio M, Luisi PL (1995) Polymerase chain reaction in liposomes. Chem Biol 2:677–682

    Article  CAS  PubMed  Google Scholar 

  • Pantazatos DP, MacDonald RC (1999) Directly observed membrane fusion between oppositely charged phospholipid bilayers. J Membr Biol 170:27–38

    Article  CAS  PubMed  Google Scholar 

  • Paul N, Joyce GF (2004) Minimal self-replicating systems. Curr Opin Chem Biol 8:634–639

    Article  CAS  PubMed  Google Scholar 

  • Posfai G, Plunkett G 3rd, Feher T et al (2006) Emergent properties of reduced-genome Escherichia coli. Science 312:1044–1046

    Article  CAS  PubMed  Google Scholar 

  • Riley M, Abe T, Arnaud MB et al (2006) Escherichia coli K-12: a cooperatively developed annotation snapshot–2005. Nucleic Acids Res 34:1–9

    Article  CAS  PubMed  Google Scholar 

  • Rual JF, Venkatesan K, Hao T et al (2005) Towards a proteome-scale map of the human protein-protein interaction network. Nature 437:1173–1178

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Obinata K, Sugawara T et al (2006) Quantification of structural properties of cell-sized individual liposomes by flow cytometry. J Biosci Bioeng 102:171–178

    Article  CAS  PubMed  Google Scholar 

  • Shimizu Y, Inoue A, Tomari Y et al (2001) Cell-free translation reconstituted with purified components. Nat Biotechnol 19:751–755

    Article  CAS  PubMed  Google Scholar 

  • Simpson ML (2006) Cell-free synthetic biology: a bottom-up approach to discovery by design. Mol Syst Biol 2:69

    Article  PubMed  Google Scholar 

  • Stamatatos L, Leventis R, Zuckermann MJ et al (1988) Interactions of cationic lipid vesicles with negatively charged phospholipid vesicles and biological membranes. Biochemistry 27:3917–3925

    Article  CAS  PubMed  Google Scholar 

  • Sunami T, Sato K, Matsuura T et al (2006) Femtoliter compartment in liposomes for in vitro selection of proteins. Anal Biochem 357:128–136

    Article  CAS  PubMed  Google Scholar 

  • Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409:387–390

    Article  CAS  PubMed  Google Scholar 

  • Takakura K, Sugawara T (2004) Membrane dynamics of a myelin-like giant multilamellar vesicle applicable to a self-reproducing system. Langmuir 20:3832–3834

    Article  CAS  PubMed  Google Scholar 

  • Uetz P, Giot L, Cagney G et al (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627

    Article  CAS  PubMed  Google Scholar 

  • Yu BJ, Sung BH, Koob MD et al (2002) Minimization of the Escherichia coli genome using a Tn5-targeted Cre/loxP excision system. Nat Biotechnol 20:1018–1023

    Article  CAS  PubMed  Google Scholar 

  • Yu W, Sato K, Wakabayashi M et al (2001) Synthesis of functional protein in liposome. J Biosci Bioeng 92:590–593

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by “Special Coordination Funds for Promoting Science and Technology: Yuragi Project” and “Global COE (Centers of Excellence) Program” of the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Yomo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Matsuura, T., Ichihashi, N., Sunami, T., Kita, H., Suzuki, H., Yomo, T. (2011). Evolvability and Self-Replication of Genetic Information in Liposomes. In: Luisi, P., Stano, P. (eds) The Minimal Cell. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9944-0_15

Download citation

Publish with us

Policies and ethics