Skip to main content

Bioactive Peptides and Proteins from Wasp Venoms

  • Chapter
  • First Online:
Toxins and Hemostasis

Abstract

The members of Vespidae family include hornets (genera Vespa and Dolichovespula), yellow jackets (genus Vespula) and paper wasps (genus Polistes). The multi-sting capacity of their stingers together with their highly toxic venoms, makes them more aggressive in the defense of the colony or capture of the pray. Clinical symptoms induced in humans include local reactions (pain, wheal, edema and swelling) caused by biologically active peptides such as bradykinin-like peptides, chemotactic peptides and mastoparans, immunological reactions caused by venom allergens such as phospholipase A (PLA), hyaluronidase, antigen 5 and serine proteases which usually leading to anaphylaxis with subsequent anaphylactic shock, and systemic toxic reactions caused by large doses of venoms, resulting in hemolysis, coagulopathy, rhabdomyolysis, acute renal failure, hepatotoxicity, aortic thrombosis and cerebral infarction. The active components in wasp venoms, especially those acts on the cardiovascular system, nervous system and immunological systems of mammal, including humans, may show a promising perspective for the future discovery and application of potential pharmacological drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aoki, J., 2004. Mechanisms of lysophosphatidic acid production. Semin. Cell. Dev. Biol. 15, 477–489.

    Article  PubMed  CAS  Google Scholar 

  • Argiolas, A., Pisano, J.J., 1985. Bombolitins, a new class of mast cell degranulating peptides from the venom of the bumblebee Megabombus pennsylvanicus. J. Biol. Chem. 260, 1437–1444.

    PubMed  CAS  Google Scholar 

  • Asgari, S., Zhang, G., Zareie, R., Schmidt, O., 2003. A serine proteinase homolog venom protein from an endoparasitoid wasp inhibits melanization of the host hemolymph. Insect Biochem. Mol. Biol. 33, 1017–1024.

    Article  PubMed  CAS  Google Scholar 

  • Backman, A., Belin, L., Dreborg, S., Halvorsen, R., Malling, H.J., Weeke, B., 1991. Standardization of allergenic preparations. Comments with reference to the second edition of the common Nordic guidelines for registration of allergenic preparations. Allergy 46, 81–84.

    Article  PubMed  CAS  Google Scholar 

  • Baldini, P.M., De Vito, P., D’aquilio, F., Vismara, D., Zalfa, F., Bagni, C., Fiaccavento, R., Di Nardo, P., 2005. Role of atrial natriuretic peptide in the suppression of lysophosphatydic acid-induced rat aortic smooth muscle (RASM) cell growth. Mol. Cell Biochem. 272, 19–28.

    Article  PubMed  CAS  Google Scholar 

  • Bhoola, K.D., Figueroa, C.D., Worthy, K., 1992. Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol. Rev. 44, 1–80.

    PubMed  CAS  Google Scholar 

  • Biló, B.M., Rueff, F., Mosbech, H., Bonifazi, F., Oude-Elberink, J.N., 2005. EAACI interest group on insect venom hypersensitivity. Diagnosis of hymenoptera venom allergy. Allergy 60, 1339–1349.

    Article  PubMed  Google Scholar 

  • Boonacker, E., Van Noorden, C.J., 2003. The multifunctional or moonlighting protein CD26/DPPIV. Eur. J. Cell. Biol. 82, 53–73.

    Article  PubMed  CAS  Google Scholar 

  • Bousquet, J., Lockey, R., Malling, H.J., 1998. Allergen immunotherapy: therapeutic vaccines for allergic diseases. J. Allergy Clin. Immunol. 102, 558–562.

    Article  PubMed  CAS  Google Scholar 

  • Cascone, O., Amaral, V., Ferrara, P., Vita, N., Guillemot, J.C., Diaz, L.E., 1995. Purification and characterization of two forms of antigen 5 from Polybia scutellaris venom. Toxicon 33, 659–665.

    Article  PubMed  CAS  Google Scholar 

  • Cerovský, V., Pohl, J., Yang, Z., Alam, N., Attygalle, A.B., 2007. Identification of three novel peptides isolated from the venom of the neotropical social wasp Polistes major major. J. Pept. Sci. 13, 445–450.

    Article  PubMed  CAS  Google Scholar 

  • Chao, S.C., Lee, Y.Y., 1999. Acute rhabdomyolysis and intravascular hemolysis following extensive wasp stings. Int. J. Dermatol. 38, 135–137.

    Article  PubMed  CAS  Google Scholar 

  • Charpin, D., Birnbaum, J., Lanteaume, A., Vervloet, D., 1992. Prevalence of allergy to hymenoptera stings in different samples of the general population. J. Allergy Clin. Immunol. 90, 331–334.

    Article  PubMed  CAS  Google Scholar 

  • Charpin, D., Vervloet, D., Haddi, E., Segalen, C., Tafforeau, M., Birnbaum, J, et al., 1990. Prevalence of allergy to Hymenoptera stings. Allergy Proc. 11, 29–32.

    Article  PubMed  CAS  Google Scholar 

  • Chen, D.M., Lee, P.T., Chou, K.J., Fang, H.C., Chung, H.M., Chen, D.M., Chang, L.K., 2004. Descending aortic thrombosis and cerebral infarction after massive wasp stings. Am. J. Med. 116, 567–569.

    Article  PubMed  Google Scholar 

  • De Graaf, D.C., Alerts, M., Danneels, E., Devreese, B., 2009. Bee, wasp and ant venomics pave the way for a component-resolved diagnosis of sting allergy. J. Proteomics 72, 145–154.

    Article  PubMed  CAS  Google Scholar 

  • De Oliveria, M.R., Palma, M.S., 1998. Polybitoxins: a group of phospholipases A2 from the venom of the neotropical social wasp paulistinha (Polybia paulista). Toxicon 36, 189–199.

    Article  Google Scholar 

  • Dohtsu, K., Okumura, K., Hagiwara, K., Palma, M.S., Nakajima, T., 1993. Isolation and sequence analysis of peptides from the venom of Protonectarina sylveirae (Hymenoptera-Vespidae). Nat. Toxins 1, 271–276.

    Article  PubMed  CAS  Google Scholar 

  • Dotimas, E.M., Hamid, K.R., Hider. R.C., Ragnarsson, U., 1987. Isolation and structure analysis of bee venom mast cell degranulating peptide. Biochim. Biophys. Acta 911, 285–293.

    Article  PubMed  CAS  Google Scholar 

  • Dudler, T., Machado, D.C., Kolbe, L., Annand, R.R., Rhodes, N., Gelb, M.H., Koelsch, K., Suter, M., Helm, B.A., 1995. A link between catalytic activity, IgE-independent mast cell activation, and allergenicity of bee venom phospholipase A2. J. Immunol. 155, 2605–2613.

    PubMed  CAS  Google Scholar 

  • Ebo, D.G., 2007. Hymenoptera venom allergy. Verh. K. Acad. Geneeskd. Belg. 69, 213–230.

    PubMed  CAS  Google Scholar 

  • Edery, H., Ishay, J., Gitter, S., Joshua, H., 1978. Venom of vespidae, in: Bettini, S. (Ed.), Arthropod Venoms. Sprinter Verlag, Berlin, New York, pp. 691–771.

    Chapter  Google Scholar 

  • Eldefrawi, A.T., Eldefrawi, M.E., Konno, K., Mansour, N.A., Nakanishi, K., Oltz, E., Usherwood, P.N., 1988. Structure and synthesis of a potent glutamate receptor antagonist in wasp venom. Proc. Natl. Acad. Sci. U.S.A. 85, 4910–4913.

    Article  PubMed  CAS  Google Scholar 

  • Evans, R., Summers, S., 1986. Clinical aspects of hymenoptera sensitivity, in: Levine, M.I., Lockey R.F. (Eds.), American Academy of Allergy and Immunology. Monography on Insect Allergy. Lambert Associates, Pittsburgh, pp. 23–28.

    Google Scholar 

  • Frew, A.J., 2003. Immunotherapy of allergic disease. J. Allergy Clin. Immunol. 111(2 Suppl), S712–S719.

    Article  PubMed  Google Scholar 

  • Goetzl, E.J., An, S., 1998. Diversity of cellular receptors and functions for the lysophopholipid growth factors lysophosphatidic acid and sphingosine 1-phosphate. FASEB J. 12, 1589–1598.

    PubMed  CAS  Google Scholar 

  • Habermann, E., 1972. Bee and wasp venoms. Science 177, 314–322.

    Article  PubMed  CAS  Google Scholar 

  • Halfon, S., Craik, C.S., 1998. Introduction: serine peptidases and their clan, in: Barrett, A.J., Rawlings, N.D., Woessner, J.F. (Eds.), Handbook of Proteolytic Enzyme. Academic Press, London, pp. 3–4.

    Google Scholar 

  • Han, J., You, D., Xu, X., Han, W., Lu, Y., Lai, R., Meng, Q., 2008. An anticoagulant serine protease from the venom of Vespa magnifica. Toxicon 51, 914–922.

    Article  PubMed  CAS  Google Scholar 

  • Hancock, R.E., Falla, T., Brown, M., 1995. Cationic bactericidal peptides. Adv. Microb. Physiol. 37, 135–175.

    Article  PubMed  CAS  Google Scholar 

  • Harvey, A.L., Bradley, K.N., Cochran, S.A., Rowan, E.G., Pratt, J.A., Quillfeldt, J.A., Jerusalinsky, D.A., 1998. What can toxins tell us for drug discovery? Toxicon 38, 745–746.

    Google Scholar 

  • Hemmer, W., Focke, M., Kolarich, D., Dalik, I., Gotz, M., Jarisch, R., 2004. Identification by immunoblot of venom glycoproteins displaying immunoglobulin E-binding N-glycans as cross-reactive allergens in honeybee and yellow jacket venom. Clin. Exp. Allergy 34, 460–469.

    Article  PubMed  CAS  Google Scholar 

  • Henriksen, A., King, T.P., Mirza, O., Monsalve, R.I., Meno, K., Ipsen, H., Larsen, J.N., Gajhede, M., Spangfort, M.D., 2001. Major venom allergen of yellow jackets, Ves v 5: structural characterization of a pathogenesis-related protein superfamily. Proteins 4, 438–448.

    Article  CAS  Google Scholar 

  • Higashijima, T., Burnier, J., Ross, E.M., 1990. Regulation of Gi and Go by mastoparan, related amphiphilic peptides, and hydrophobic amines. Mechanism and structural determinants of activity. J. Biol. Chem. 265, 14176–14186.

    PubMed  CAS  Google Scholar 

  • Higashijima, T., Inubushi, T., Ueno, T., Miyazawa, T., 1979. NMR saturation transfer and line shape analyses of cyclic tetradepsipeptide AM toxin II: conformational equilibrium with very unequal populations. FEBS Lett. 105, 337–340.

    Article  PubMed  CAS  Google Scholar 

  • Higashijima, T., Uzu, S., Nakajima, T., Ross, E.M., 1988. Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G proteins). J. Biol. Chem. 263, 6491–6494.

    PubMed  CAS  Google Scholar 

  • Hirai, Y., Kuwada, M., Yasuhara, T., Yoshida, H., Nakajima, T., 1979a. A new mast cell degranulating peptide homologous to mastoparan in the venom of Japanese hornet (Vespa xanthoptera). Chem. Pharm. Bull (Tokyo) 27, 1945–1946.

    Article  CAS  Google Scholar 

  • Hirai, Y., Yasuhara, T., Yoshida, H., Nakajima, T., Fujino, M., Kitada, C., 1979b. A new mast cell degranulating peptide “mastoparan” in the venom of Vespula lewisii. Chem. Pharm. Bull (Tokyo) 27, 1942–1944.

    Article  CAS  Google Scholar 

  • Hirata, Y., Atsumi, M., Ohizumi, Y., Nakahata, N., 2003. Mastoparan binds to glycogen phosphorylase to regulate sarcoplasmic reticular Ca2+ release in skeletal muscle. Biochem. J. 371, 81–88.

    Article  PubMed  CAS  Google Scholar 

  • Hirata, Y., Nakahata, N., Ohizumi, Y., 2000. Identification of a 97-kDa mastoparan-binding protein involving in Ca2+ release from skeletal muscle sarcoplasmic reticulum. Mol. Pharmacol. 57, 1235–1242.

    PubMed  CAS  Google Scholar 

  • Ho, C.L., Hwang, L.L., 1991. Structure and biological activities of a new mastoparan isolated from the venom of the hornet Vespa basalis. Biochem. J. 274, 453–456.

    PubMed  CAS  Google Scholar 

  • Hoffman, D.R., 1978. Allergens in hymenoptera venom V: identification of some of the enzymes and demonstration of multiple allergens in yellow jacket venom. Ann. Allergy 40, 171–176.

    PubMed  CAS  Google Scholar 

  • Hoffman, D.R., 1985. Allergens in hymenoptera venom XV: the immunologic basis of vespid venom cross-reactivity. J. Allergy Clin. Immunol. 75, 611–613.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, D.R., 1986. Allergens in hymenoptera venom XVI: studies of the structures and cross-reactivities of vespid venom phospholipases. J. Allergy Clin. Immunol. 78, 337–343.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, D.R., 1993. Allergens in hymenoptera venom XXV: the amino acid sequences of antigen 5 molecules and the structural basis of antigenic cross-reactivity. J. Allergy Clin. Immunol. 92, 707–716.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, D.R., Jacobson, R.S., 1984. Allergens in hymenoptera venom XII: how much protein is in a sting? Ann. Allergy 52, 276–278.

    CAS  Google Scholar 

  • Höller, C., Freissmuth, M., Nanoff, C., 1999. G proteins as drug targets. Cell. Mol. Life Sci. 55, 257–270.

    Article  PubMed  Google Scholar 

  • Johansson, S.G., Hourihane, J.O., Bousquet, J., Bruijnzeel-Koommen, C., Dreborg, S., Haahtela. T., Kowalski, M.L., Mygind, N., Ring, J., van Cauwenberge, P., van Hage-Hamsten, M., Wuthrich, B., 2001. A revised nomenclature for allergy. An EAACI position statement from the EAACI nomenclature task force. Allergy 56, 813–824.

    Article  PubMed  CAS  Google Scholar 

  • Kasahara, M., Gutknecht, J., Brew, K., Spurr, N., Goodfellow, P.N., 1989. Cloning and mapping of a testis-specific gene with sequence similarity to a sperm-coating glycoprotein gene. Genomics 5, 527–534.

    Article  PubMed  CAS  Google Scholar 

  • King, T.P., Alagon, A.C., Kuan, J., Sobotka, A.F., Lichtestein, L.M., 1983. Immunochemical studies of yellow jacket venom proteins. Mol. Immunol. 20, 297–308.

    Article  PubMed  CAS  Google Scholar 

  • King, T.P., Guralnick, M., 2004. Hymenoptera allergens. Clin. Allergy Immunol. 18, 339–353.

    PubMed  CAS  Google Scholar 

  • King, T.P., Joslyn, A., Kochoumian, L., 1985. Antigenic cross-reactivity of venom proteins from hornet, wasps, and yellow jackets. J. Allergy Clin. Immunol. 75, 621–628.

    Article  PubMed  CAS  Google Scholar 

  • King, T.P., Kochoumian, L., Joslyn, A., 1984. Wasp venom proteins: phospholipase A1 and B. Arch. Biochem. Biophys. 230, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • King, T.P., Kochoumian, L., Lam, T., 1987. Immunochemical observations of antigen 5, a major venom allergen of hornets, yellow jackets and wasps. Mol. Immunol. 24, 857–864.

    Article  PubMed  CAS  Google Scholar 

  • King, T.P., Lu, G., Gonzalez, M., Qian, N., Soldatova, L., 1996. Yellow jacket venom allergens, hyaluronidase and phospholipase: sequence similarity and antigenic cross-reactivity with their hornet and wasp homologs and possible implications for clinical allergy. J. Allergy Clin. Immunol. 98, 588–600.

    Article  PubMed  CAS  Google Scholar 

  • King, T.P., Sobotka, A.K., Alagon, A., Kchoumian, L., Lichtenstein, L.M., 1978. Protein allergens of white-faced hornet, yellow hornet, and yellow jacket venom. Biochemistry 17, 5165–5174.

    Article  PubMed  CAS  Google Scholar 

  • King, T.P., Valentine, M.D., 1987. Allergens of hymenopteran venoms. Clin. Rev. Allergy 5, 137–148.

    PubMed  CAS  Google Scholar 

  • Kini, R.M., 1997. Phospholipase A2 – a complex multifunctional protein puzzle, in: Kini, R.M. (Ed.), Venom Phospholipase A2 Enzymes: Structure, Function and Mechanism. Wiley, England, pp. 1–28.

    Google Scholar 

  • Kitagawa, H., Kitamura, N., Hayashida, H., Miyata, T., Nakanishi, S., 1987. Differing expression patterns and evolution of the rat kininogen gene family. J. Biol. Chem. 262, 2190–2198.

    PubMed  CAS  Google Scholar 

  • Kitamura, N., Ohkubo, H., Nakanishi, S., 1987. Molecular biology of the angiotesinogen and kininogen genes. J. Cardiovasc. Pharmacol. 7(Suppl), 49–53.

    Article  Google Scholar 

  • Kolarich, D., Léonard, R., Hemmer, W., Altmann, F., 2005. The N-glycans of yellow jacket venom hyaluronidases and the protein sequence of its major isoform in Vespula vulgaris. FEBS J. 272, 5182–5190.

    Article  PubMed  CAS  Google Scholar 

  • Konno, K., Hisada, M., Fontana, R., Lorenzi, C.C., Naoki, H., Itagaki, Y., Miwa, A., Kawai, N., Nakata, Y., Yasuhara, T., Ruggiero Neto, J., de Azevedo, W.F., Jr., Palma, M.S., Nakajima, T., 2001. Anoplin, a novel antimicrobial peptide from the venom of the solitary wasp Anoplius samariensis. Biochim. Biophys. Acta 1550, 70–80.

    Article  PubMed  CAS  Google Scholar 

  • Konno, K., Hisada, M., Naoki, H., Itagaki, Y., Fontana, R., Rangel, M., Oliveira, J.S., Cabrera, M.P., Neto, J.R., Hide, I., Nakata, Y., Yasuhara, T., Nakajima, T., 2006. Eumenitin, a novel antimicrobial peptide from the venom of the solitary eumenine wasp Eumenes rubronotatus. Peptides 27, 2624–2631.

    Article  PubMed  CAS  Google Scholar 

  • Konno, K., Hisada, M., Naoki, H., Itagaki, Y., Kawai, N., Miwa, A., Yasuhara, T., Morimoto, Y., Nakata, Y., 2000. Structure and biological activities of eumenine mastoparan-AF (EMP-AF), a new mast cell degranulating peptide in the venom of the solitary wasp (Anterhynchium flavomarginatum micado). Toxicon 38, 1505–1515.

    Article  PubMed  CAS  Google Scholar 

  • Korman, S.H., Jabbour, S., Harari, M.D., 1990. Multiple hornet (Vespa orientalis) stings with fatal outcome in a child. J. Paediatr. Child Health 26, 283–285.

    Article  PubMed  CAS  Google Scholar 

  • Kuchler, K., Gmachl, M., Sippl, M.J., Kreil, G., 1989. Analysis of the cDNA for phospholipase A2 from honeybee venom glands. The deduced amino acid sequence reveals homology to the corresponding vertebrate enzymes. Eur. J. Biochem. 184, 249–254.

    Article  PubMed  CAS  Google Scholar 

  • Kühn-wache, K., Hoffmann, T., Manhart, S., Brandt, W., Demuth, H., 2003. The specificity of DPP-IV for natural substrates is peptide structure determined, in: Hildebrandt, M., Klapp, B., Hoffmamm, T., Demuth, H.U. (Eds.), Dipeptidyl Aminopeptidase in Health and Disease. Kluwer Academic/Plenum Publishers, New York, pp. 57–63.

    Google Scholar 

  • Lai, R., Liu, H., Lee, W.H., Zhang, Y., 2001. A novel bradykinin-related peptide from skin secretions of toad Bombina maxima and its precursor containing six identical copies of the final product. Biochem. Biophys. Res. Commun. 286, 259–263.

    Article  PubMed  CAS  Google Scholar 

  • Levings, M.K., Sangregorio, R., Galbiati, F., Squadrone, S., de Waal Malefyt, R., Roncarolo, M.G., 2001. IFN-alpha and IL-10 induce the differentiation of human type 1 T regulatory cells. J. Immunol. 166, 5530–5539.

    PubMed  CAS  Google Scholar 

  • Lichtenstein, L.M., Valentine, M.D., Sobotka, A.K., 1979. Insect allergy: the state of the art. J. Allergy Clin. Immunol. 64, 5–12.

    Article  PubMed  CAS  Google Scholar 

  • Littler, S., Wypych J.I., Noble, R.W., Abeyounis, C.J., Reisman, R.E., 1985. Allergenic components of bald-faced hornet (V. maculata) venom. Int. Arch. Allergy Appl. Immunol. 76, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Lu, G., Kochoumian, L., King, T.P., 1995. Sequence identity and antigenic cross-reactivity of white face hornet venom allergen, also a hyaluronidase, with other proteins. J. Biol. Chem. 270, 4457–4465.

    Article  PubMed  CAS  Google Scholar 

  • Machado, D.C., Horton, D., Harrop, R., Peachell, P.T., Helm, B.A., 1996. Potential allergens stimulate the release of mediators of the allergic response from cells of mast cell lineage in the absence of sensitization with antigen-specific IgE. Eur. J. Immunol. 26, 2972–2980.

    Article  PubMed  CAS  Google Scholar 

  • Mamessier, E., Birbaum, J., Dupuy, P., Vervloet, D, Magnan, A., 2006. Ultra-rush venom immunotherapy induces differential T cell activation and regulatory patterns according to the severity of allergy. Clin. Exp. Allergy 36, 704–713.

    Article  PubMed  CAS  Google Scholar 

  • Markland F.S. Jr., 1997. Snake venoms. Drugs 54(Suppl 3), 1–10.

    Article  PubMed  CAS  Google Scholar 

  • McCafferty, D.G., Cudic, P., Yu, M.K., Behenna, D.D., Kruger, R., 1999. Synergy and duality in peptide antibiotic mechanisms. Curr. Opin. Chem. Biol. 3, 672–680.

    Article  PubMed  CAS  Google Scholar 

  • Mendes, M.A., de Souza, B.M., Palma, M.S., 2005. Structural and biological characterization of three novel mastoparan peptides from the venom of the neotropical social wasp Protopolybia exigua (Saussure). Toxicon 45, 101–106.

    Article  PubMed  CAS  Google Scholar 

  • Mentlein, R., Rix, H., Feller, A.C., Heymann, E., 1986. Characterization of dipeptidyl peptidase IV from lymphocytes of chronic lymphocytic leukemia of T-type. Biomed. Biochim. Acta 45, 567–574.

    PubMed  CAS  Google Scholar 

  • Mizuno, K., Nakahata, N., Ohizumi, Y., 1995. Mastoparan-induced phosphatidylcholine hydrolysis by phospholipase D activation in human astrocytoma cells. Br. J. Pharmacol. 116, 2090–2096.

    Article  PubMed  CAS  Google Scholar 

  • Mortari, M.R., Cunha, A.O., Carolino, R.O., Coutinho-Netto, J., Tomaz, J.C., Lopes, N.P., Coimbra, N.C., Dos Santos, W.F., 2007. Inhibition of acute nociceptive responses in rats after i.c.v. injection of Thr6-braykinin, isolated from the venom of the wasp of the social wasp, Polybia occidentalis. Br. J. Pharmacol. 151, 860–869.

    Article  PubMed  CAS  Google Scholar 

  • Mosbech H., 1983. Deaths resulting from bee and wasp stings in Denmark 1960–1980. Ugeskr. Laeger 145, 1757–1760.

    PubMed  CAS  Google Scholar 

  • Müller, U.R., 1998. Hymenoptera venom hypersensitivity: an update. Clin. Exp. Allergy 28, 4–6.

    Article  PubMed  Google Scholar 

  • Müller, U.R., 2001. New developments in the diagnosis and treatment of hymenoptera venom allergy. Int. Arch. Allergy. Immunol. 124, 447–453.

    Article  PubMed  Google Scholar 

  • Nakahata, N., Abe, M.T., Matsuoka, I., Nakanishi, H., 1990. Mastoparan inhibits phosphoinositide hydrolysis via pertussis toxin-insensitive G-protein in human astrocytoma cells. FEBS Lett. 260, 91–94.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima, T., 1984. Biochemistry of vespid venoms, in: Tu, A.T. (Ed.), Handbook of Natural Toxins. Marcel Dekker, New York, pp. 109–133.

    Google Scholar 

  • Nakajima, T., Uzu, S., Wakamatsu, K., Saito, K., Miyazawa, T., Yasuhara, T., Tsukamoto, Y., Fujino, M., 1986. Amphiphilic peptides in wasp venom. Biopolymers 25(Suppl), S115–S121.

    PubMed  CAS  Google Scholar 

  • Nakajima, T., Yasuhara, T., 1977. A new mast cell degranulating peptide, granuliberin-R, in the frog (Rana rugosa) skin. Chem. Pharm. Bull (Tokyo) 25, 2464–2465.

    Article  CAS  Google Scholar 

  • Nakanishi, S., 1987. Substance P precursor and kininogen: their structures, gene organizations, and regulation. Physiol. Rev. 67, 1117–1142.

    PubMed  CAS  Google Scholar 

  • Okano, Y., Takagi, H., Tohmatsu, T., Nakashima, S., Kuroda, Y., Saito, K., Nozawa, Y., 1985. A wasp venom mastoparan-induced polyphosphoinositide breakdown in rat peritoneal mast cells. FEBS Lett. 188, 363–366.

    Article  PubMed  CAS  Google Scholar 

  • Ozaki, Y., Matsumoto, Y., Yatomi, Y., Higashihara, M., Kariya, T., Kume, S., 1990. Mastoparan, wasp venom, activates platelets via pertussis toxin-sensitive GTP-binding proteins. Biochem. Biophys. Res. Commun. 170, 779–785.

    Article  PubMed  CAS  Google Scholar 

  • Perianin, A., Snyderman, R., 1989. Mastoparan, a wasp venom peptide, identifies two discrete mechanisms for elevating cytosolic calcium and inositol trisphosphates in human polymorphonuclear leukocytes. J. Immunol. 143, 1669–1673.

    PubMed  CAS  Google Scholar 

  • Pfeiffer, D.R., Gudz, T.I., Novgorodov, S.A., Erdahl, W.L., 1995. The peptide mastoparan is a potent facilitator of the mitochondrial permeability transition. J. Biol. Chem. 270, 4923–4932.

    Article  PubMed  CAS  Google Scholar 

  • Piek, T., 1982. Delta-philanthotoxin, a semi-irreversible blocker of ion-channels. Comp. Biochem. Physiol. C. 72, 311–315.

    Article  PubMed  CAS  Google Scholar 

  • Piek, T., 1984. Pharmacology of hymenoptera venom, in: Tu, A.T. (Ed.), Handbook of Natural Toxins (vol. 2). Marcel Dekker, New York, pp. 135–185.

    Google Scholar 

  • Piek, T., 1991. Neurotoxic kinins from wasp and ant venoms. Toxicon 29, 139–149.

    Article  PubMed  CAS  Google Scholar 

  • Piek, T., Hue, B., Mantel, P., Nakajima, T., Pelhate, M., Yasuhara T., 1990. Threonine 6-bradykinin in the venom of the wasp Colpa interrupta (F.) presynaptically blocks nicotinic synaptic transmission in the insect CNS. Comp. Biochem. Physiol. C. 96, 157–162.

    Article  PubMed  CAS  Google Scholar 

  • Piek, T., Hue, B., Mony, L., Nakajima, T., Pelhate, M., Yasuhara, T., 1987. Block of synaptic transmission in insect CNS by toxins from the venom of the wasp Megascolia flavifrons (Fab.). Comp. Biochem. Physiol. C. 87, 287–295.

    Article  PubMed  CAS  Google Scholar 

  • Piek, T., Spanjer, W., 1986. Chemistry and pharmacology of solitary wasp venoms, in: Piek, T. (Ed.), Venoms of the Hymenoptera. Academic Press, London, pp. 161–307.

    Google Scholar 

  • Piek, T., Mantel, P., Van Ginkel, C.J., 1984. Megascoliakinin, a bradykinin-like compound in the venom of Megascolia flavifrons Fab (Hymenoptera: Scoliidae). Comp. Biochem. Physiol. C. 78, 473–474.

    Article  PubMed  CAS  Google Scholar 

  • Pirkle, H., 1998. Thrombin-like enzymes from snake venoms: an updated inventory. Scientific and standardization committee’s resgistry of exogenous hemostatic factors. Thromb. Haemost. 79, 675–683.

    PubMed  CAS  Google Scholar 

  • Reiman, R.E., Müller U.R., Wypych, J.I., Lazell, M.I., 1984. Studies of coexisting honeybee and vespid-venom sensitivity. J. Allergy Clin. Immunol. 73, 246–252.

    Article  Google Scholar 

  • Reisman, R.E., Livingston, A., 1992. Venom immunotherapy: 10 years of experience with administration of single venoms and 50 micrograms maintenance doses. J. Allergy Clin. Immunol. 89, 1189–1195.

    Article  PubMed  CAS  Google Scholar 

  • Sahara, Y., Gotoh, M., Konno, K., Miwa, A., Tsubokawa, H., Robinson, H.P., Kawai, N., 2000. A new class of neurotoxin from wasp venom slows inactivation of sodium current. Eur. J. Neurosci. 12, 1961–1970.

    Article  PubMed  CAS  Google Scholar 

  • Sakhuja, V., Bhalla, A., Pereira, B.J., Kapoor, M.M., Bhusnurmath, S.R., Chugh, K.S., 1988. Acute renal failure following multiple hornet stings. Nephron 49, 319–321.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez, F., Blanca, M., Miranda, A., Carmona, M.J., Garcia, J., Fernandez, J., Torres, M.J., Rondon, M.C., Juarez, C., 1994. Comparison of Vespula germanica venoms obtained from different sources. Int. Arch. Allergy Immunol. 104, 385–389.

    Article  PubMed  CAS  Google Scholar 

  • Schumacher, M.J., Tveten, M.S., Egen, N.B., 1994. Rate and quantity of delivery of venom from honeybee stings. J. Allergy Clin. Immunol. 93, 831–835.

    Article  PubMed  CAS  Google Scholar 

  • Seegers, W.H., Ouyang, C., 1979. Snake venoms and blood coagulation, in: Lee, C.Y. (Ed.), Handbook of Experimental Pharmacology (vol. 52), pp. 684–750.

    Google Scholar 

  • Serrano, S.M., Maroun, R.C., 2005. Snake venom serine proteases: sequence homology vs. substrate specificity, a paradox to be solved. Toxicon 45, 1115–1132.

    Article  PubMed  CAS  Google Scholar 

  • Simmaco, M., Mignogna, G., Barra, D., 1999. Antimicrobial peptides from amphibian skin: what do they tell us? Biopolymers 47, 435–450.

    Article  Google Scholar 

  • Soldatova, L., Kochoumian, L., King, T.P., 1993. Sequence similarity of a hornet (D. maculata) venom allergen phospholipase A1 with mammalian lipases. FEBS Lett. 320, 145–149.

    Article  PubMed  CAS  Google Scholar 

  • Song, D.L., Chang, G.D., Ho, C.L., Chang, C.H., 1993. Structural requirements of mastoparan for activation of membrane-bound guanylate cyclase. Eur. J. Pharmacol. 247, 283–288.

    Article  PubMed  CAS  Google Scholar 

  • Sugama, J., Ohkubo, S., Atsumi, M., Nakahata, N., 2005. Mastoparan changes the cellular localization of Gαq/11 and Gβ through its binding to ganglioside in lipid rafts. Mol. Pharmacol. 68, 1466–1474.

    Article  PubMed  CAS  Google Scholar 

  • Takano, M., Kondo, J., Yayama, K., Otani, M., Sano, K., Okamoto, H., 1997. Molecular cloning of cDNAs for mouse low-molecular-weight and high-molecular-weight prekininogens. Biochim. Biophys. Acta 1352, 222–230.

    Article  PubMed  CAS  Google Scholar 

  • Todokoro, Y., Yumen, L., Fukushima, K., Kang, S.W., Park, J.S., Kohno, T., Wakamatsu, K., Akutsu, H., Fujiwara, T., 2006. Structure of tightly membrane-bound mastoparan-X, a G-protein-activating peptide, determined by solid-state NMR. Biophys. J. 91, 1368–1379.

    Article  PubMed  CAS  Google Scholar 

  • Watemberg, N., Weizman, Z., Shahak, E., Aviram, M., Maor, E., 1995. Fatal multiple organ failure following massive hornet stings. J. Toxicol. Clin. Toxicol. 33, 471–474.

    Article  PubMed  CAS  Google Scholar 

  • Winningham, K.M., Fitch, C.D., Schmidt, M., Hoffman, D.R., 2004. Hymenoptera venom protease allergens. J. Allergy Clin. Immunol. 114, 928–933.

    Article  PubMed  CAS  Google Scholar 

  • Wu, M., Hancock, R.E., 1999. Interaction of the cyclic antimicrobial cationic peptide bectenecin with the outer and cytoplasmic membrane. J. Biol. Chem. 274, 29–35.

    Article  PubMed  CAS  Google Scholar 

  • Wypych, J.I., Abeyounis, C.J., Reisman, R.E., 1989. Analysis of differing patterns of cross-reactivity of honeybee and yellow jacket venom-specific IgE: use of purified venom fractions. Int. Arch. Allergy Appl. Immunol. 89, 60–66.

    Article  PubMed  CAS  Google Scholar 

  • Xu, X., Li, J., Lu, Q., Yang, H., Zhang, Y., Lai, R., 2006a. Two families of antimicrobial peptides from wasp (Vespa magnifica) venom. Toxicon 47, 249–253.

    Article  PubMed  CAS  Google Scholar 

  • Xu, X., Yang, H., Yu, H., Li, J., Lai, R., 2006b. The mastoparanogen from wasp. Peptides 27, 3053–3057.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, T., Arimoto, H., Kinumi, T., Oba, Y., Uemura, D., 2007. Identification of proteins from venom of the paralytic spider wasp, Cyphononyx dorsalis elastase. Insect Biochem. Mol. Biol. 37, 278–286.

    Article  PubMed  CAS  Google Scholar 

  • Yang, H.L., Xu, X.Q., Ma, D.Y., Zhang, K.Y., Lai, R., 2007. A phospholipase A1 platelet activator from the wasp venom of Vespa magnifica (Smith). Toxicon 51, 289–296.

    Article  PubMed  CAS  Google Scholar 

  • Yasuhara, T., Mantel, P., Nakajima, T., Piek, T., 1987. Two kinins isolated from an extract of the venom reservoirs of the solitary wasp Megascolia flavifrons. Toxicon 25, 527–535.

    Article  PubMed  CAS  Google Scholar 

  • Yasuhara, T., Nakajima, T., Fukuda, K., Tsukamoto, Y., Mori, M., Kitada, C., Fujino, M., 1983. Structure and activity of chemotactic peptide from the venom sac of Vespinae, in: Munekata, E. (Ed.), Peptide Chemistry. Protein Research Foundation, Osaka, pp. 185–190.

    Google Scholar 

  • Yu, H., Yang, H., Ma, D., Lv, Y., Liu, T., Zhang, K., Lai, R., 2007. Vespid chemotactic peptide precursor from the wasp Vespa magnifica (Smith). Toxicon 50, 377–382.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Z., Yang, H., Xu, X., Wang, X., Lai, R., 2006. The first report of kininogen from invertebrates. Biochem. Biophys. Res. Commun. 347, 1099–1102.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren Lai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lai, R., Liu, C. (2010). Bioactive Peptides and Proteins from Wasp Venoms. In: Kini, R., Clemetson, K., Markland, F., McLane, M., Morita, T. (eds) Toxins and Hemostasis. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9295-3_6

Download citation

Publish with us

Policies and ethics