Skip to main content

PROMESPAR: A High Performance Computing Implementation of the Regional Atmospheric Model PROMES

  • Chapter
  • First Online:
Electronic Engineering and Computing Technology

Abstract

This paper describes the parallelization process of the code PROMES. The parallel code, called PROMESPAR, has been carried out under a distributed platform (cluster of PCs) and using Message Passing Interface (MPI) communication subroutines.

This work has been supported by National Project CGL2007-66440-C04.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Climateprediction.net. http://www.climateprediction.net/.

  2. Crossgrid. http://www.crossgrid.org/.

  3. Irisgrid. http://www.irisgrid.es.

  4. Anthes, R.A., Hsie, E.-Y., Kuo, Y.-H.: Description of the Penn State/NCAR Mesoscale Model Version 4 (MM4). NCAR Technical Note 282. NCAR, Boulder, CO 80307 (1987)

    Google Scholar 

  5. Barros, S.R.M., Dent, D., Isaksen, L., Robinson, G., Mozdzynsky, G., Wollenweber, F.: The ifs model: a parallel production weather code. Parallel Comput (21), 1621–1638 (1995)

    Google Scholar 

  6. Blackadar, A.K.: Modeling the nocturnal boundary layer. In: American Meteorological Society, Boston (ed.) Proceedings of the Third Symposium on Atmospheric Turbulence, Diffusion and Air Quality, pp. 46–49 (1976)

    Google Scholar 

  7. Castro, M., Fernández, C., Gaertner., M.A.: Descrition of a meso-scale atmospheric numerical model. Mathematics, climate and environment, pp. 230–253 (1993)

    Google Scholar 

  8. Davies, H.C.: A lateral boundary formulation for multilevel prediction models. Quart. J. Roy. Meteor. Soc. 102, 405–418 (1976)

    Google Scholar 

  9. Drake, J., Foster, I.: Introduction to the special issue on parallel computing in climate and weather modelling. Parallel Comput. (21), 1539–1544 (1995a)

    Google Scholar 

  10. Drake, J., Foster, I.: Special issue on parallel computing in climate and weather modelling. Parallel Computing (21) (1995b)

    Google Scholar 

  11. Drake, J., Foster, I., Michalakes, J., Toonen, B., Worley, P.: Design and performance of a scalable parallel community climate model. Parallel Comput. (21), 1571–1591 (1995)

    Google Scholar 

  12. Ducoudr, N., Laval, K., Perrier, A.: SECHIBA, a new set of parameterizations of the hydrologic exchanges at the landatmosphere interface within the LMD atmospheric general circulation model. J. Climate 6, 248–273 (1993)

    Article  Google Scholar 

  13. Gadd, J.J.: A split explicit integration scheme for numerical weather prediction. Q. J. R. Meteorol. Soc. 104, 569–582 (1978)

    Article  Google Scholar 

  14. Gaertner, M.A., Castro, M.: A new method for vertical interpolation of the mass field. Mon. Wea. Rev. 124, 1596–1603 (1996)

    Article  Google Scholar 

  15. Garand, L.: Some improvements and complements to the infrared emissivity algorithm including a parameterization of the absorption in the continuum region. J. Atmos. Sci. 40, 230–244 (1983)

    Article  Google Scholar 

  16. Grell, D.O., Dudhia, J., Stuffer, D.R.: A description of the fifth-generation penn state/ncar mesoscale model (mm5). Ncar/tn-398 + str, National Center for Atmosphere Research, Boulder, CO (1994)

    Google Scholar 

  17. Hack, James J., Rosinski, James M., Williamson, David L., Boville, Byron A., Truesdale, John E.: Computational design of the ncar community climate model. Parallel Comput. (21), 1545–1569 (1995)

    Google Scholar 

  18. Hammond, S., Loft, Richard D., Dennis, John M., Sato, Richard K.: Implementation and performance issues of a massively parallel atmospheric model. Parallel Comput. (21), 1593–1619 (1995)

    Google Scholar 

  19. Hsie, E.Y, Anthes, R.A., Keyser, D.: Numerical simulation of frontogenesis in a moist atmosphere. J. Atmos. Sci 41, 2581–2594 (1984)

    Article  Google Scholar 

  20. Jacobsen, I., Heise, E.: A new economic method for the computation of the surface temperature in numerical models. Beitr. Phys. Atmosph. 55, 128–141 (1982)

    MATH  Google Scholar 

  21. Kain, J.S., Fritsch, J.M.: Convective parameterization for mesoscale models: The KainFritsch scheme. The Representation of Cumulus Convection in Numerical Models. Meteor. Monogr. No. 46, Amer. Meteor. Soc. 165–170 (1993)

    Google Scholar 

  22. Mesinger, F., Arakawa, A.: Numerical methods used in atmospheric models. GARP Publication Series, 17:1–64 (1976)

    Google Scholar 

  23. Michalakes, J.: MM90: A scalable parallel implementation of the Penn State/NCAR Mesoscale Model (MM5). Parallel Computing, 23:14, 2173–2186 (1997)

    Article  MATH  Google Scholar 

  24. Michalakes, J., Canfield, T., Nanhyndiah, R., Hammond, S., Grell, G.: Parallel implementation, validation and performance of mm5. In: Proceedings of the Sixth ECMWF Workshop on the Use of Parallel Processors in Meteorology, World Scientific, River Edge, NJ pp. 266–276 (1995)

    Google Scholar 

  25. Sela, J.G.: Weather forecasting on parallel architectures. Parallel Comput (21), 1639–1654 (1995)

    Google Scholar 

  26. Shuman, F.G., Hovermale, J.B.: An operational sixlayer primitive equation model. J. Appl. Meteor, 7, 525–547 (1968)

    Article  Google Scholar 

  27. Stephens, G.L.: Radiation profiles in extended water clouds ii: parameterizaton schemes. J. Atmos. Sci. 35, 2123–2132 (1978)

    Article  Google Scholar 

  28. Wehner, M.F., Mirin, A.A., Eltgroth, P.G., Dannevik, W.P., Mechoso, C.R., Farrara, J.D., Spahr, J.A.: Performance of a distributed memory finite difference atmospheric general circulation model. Parallel Comput. (21), 1655–1675 (1995)

    Google Scholar 

  29. Zhang, D.L., Anthes, R.A.: A high resolution model of the planetary boundary layer sensitivity test and comparisons with sesame79 data. J. Appl. Meteor. 21, 1594–1629 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan E. Garrido .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Garrido, J.E., Arias, E., Cazorla, D., Cuartero, F., Fernández, I., Gallardo, C. (2010). PROMESPAR: A High Performance Computing Implementation of the Regional Atmospheric Model PROMES. In: Ao, SI., Gelman, L. (eds) Electronic Engineering and Computing Technology. Lecture Notes in Electrical Engineering, vol 60. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8776-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-8776-8_45

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8775-1

  • Online ISBN: 978-90-481-8776-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics