Skip to main content

Morphology, Physiology, Biochemistry and Functional Design of the Termite Gut: An Evolutionary Wonderland

  • Chapter
  • First Online:
Book cover Biology of Termites: a Modern Synthesis

Abstract

The chapter reviews termite gut structure and associations with mutualists, now informed by a great increase of data on intestinal microbial diversity made possible in the last decade by molecular genomics, and in the light of contemporary theories on the origin, evolution and trophic diversification of the Isoptera. Detailed morphological descriptions are not given, but the more modern synoptic literature on anatomy, histology and in situ coiling is listed and discussed in relation to current concepts of the termite gut as a bioreactor system. Knowledge of intestinal microbiology, and of microbial physiology and metabolism, has outstripped progress in understanding secretory and absorptive processes by the gut wall and associated structures, such that the primary substrates fermented in the hindgut and the end products utilised by the termite host are still not precisely identified in many cases. Current perceptions of the specialised digestive processes of fungus-growing and soil-feeding termites are summarised, and an overarching evolutionary thesis is proposed, arguing that social organisation in termites has developed primarily to safeguard the fidelity of symbiont transmission between individuals and generations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aanen DK, Eggleton P, Rouland-Lefèvre C et al (2002) The evolution of fungus-growing termites and their mutualistic symbionts. Proc Natl Acad Sci USA 99:14887–14892

    Article  PubMed  CAS  Google Scholar 

  • Adams L, Boopathy R (2005) Isolation and characterization of enteric bacteria from the hindgut of Formosan termite. Bioresource Technol 96:1592–1598

    Article  CAS  Google Scholar 

  • Anklin-Mühlemann R, Bignell DE, Veivers PC et al (1995) Morphological, microbiological and biochemical studies of the gut flora in the fungus-growing termite Macrotermes subhyalinus. J Insect Physiol 41:929–940

    Article  Google Scholar 

  • Badertscher S, Gerber C, Leuthold RH (1983) Polyethism in food supply and processing in termite colonies of Macrotermes subhyalinus (Isoptera). Behav Ecol Sociobiol 12:115–119

    Article  Google Scholar 

  • Berchtold M, Chatzinotas A, Schönhuber W et al (1999) Differential enumeration and in situ localization of microorganisms in the hindgut of the lower termite Mastotermes darwiniensis by hybridization with rRNA-targeted probes. Archiv Microbiol 172:407–416

    Article  CAS  Google Scholar 

  • Berlanga M, Paster BJ, Guerrero R (2007) Coevolution of symbiotic spirochete diversity in lower termites. Int Microbiol 10:133–139

    PubMed  CAS  Google Scholar 

  • Bignell DE (1981) Nutrition and digestion. In: Bell WJ, Adiyodi KG (eds) The American cockroach. Chapman and Hall, London, pp 57–86

    Chapter  Google Scholar 

  • Bignell DE (1984) Direct potentiometric determination of redox potentials of the gut contents in the termite Zootermopsis nevadensis and Cubitermes severus and in three other arthropods. J Insect Physiol 30:169–174

    Article  Google Scholar 

  • Bignell DE (1989) Relative assimilations of 14C-labelled microbial tissues and 14C-plant fibre ingested with leaf litter by the millipede Glomeris marginata under experimental conditions. Soil Biol Biochem 21:819–827

    Article  Google Scholar 

  • Bignell DE (1994) Soil-feeding and gut morphology in higher termites. In: Hunt JH, Nalepa CA (eds) Nourishment and evolution in insect societies. Westview Press, Boulder, CO, pp 131–159

    Google Scholar 

  • Bignell DE (2000) Introduction to symbiosis. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 189–208

    Google Scholar 

  • Bignell DE (2006) Termites as soil engineers and soil processors. In: König H and Varma, A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Berlin, pp 183–220

    Chapter  Google Scholar 

  • Bignell DE, Anderson JM, Crosse R (1991) Isolation of facultatively aerobic actinomycetes from the gut, parent soil and mound materials of the termites Procubitermes aburiensis and Cubitermes severus. FEMS Microbiol Ecol 85:151–160

    Google Scholar 

  • Bignell DE, Constantino R, Czudi C et al (2008) Macrofauna. In: Moreira FMS, Huising J, Bignell DE (eds) A handbook of tropical soil biology: sampling and characterization of below-ground biodiversity. Earthscan, London, pp 43–75

    Google Scholar 

  • Bignell DE, Eggleton P (1995) On the elevated intestinal pH of higher termites (Isoptera: Termitidae). Insect Soc 42:57–69

    Article  Google Scholar 

  • Bignell DE, Eggleton P (2000) Termites in ecosystems. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 363–387

    Google Scholar 

  • Bignell DE, Oskarsson H, Anderson JM (1979) Association of actinomycete-like bacteria with soil-feeding termites. Appl Environ Microbiol 37:339–342

    PubMed  CAS  Google Scholar 

  • Bignell DE, Oskarsson H, Anderson JM (1980) Distribution and abundance of bacteria in the gut of a soil-feeding termite Procubitermes aburiensis (Termitidae, Termitinae). J Gen Microbiol 117:393–403

    PubMed  CAS  Google Scholar 

  • Bignell DE, Oskarsson H, Anderson JM (1982) Formation of membrane-bounded secretory granules in the midgut epithelium of a termite, Cubitermes severus, and a possible intercellular route of discharge. Cell Tissue Res 222:187–200

    Article  PubMed  CAS  Google Scholar 

  • Bignell DE, Oskarsson H, Anderson JM et al (1983) Structure, microbial associations and functions of the so-called “mixed segment” of the gut in two soil-feeding termites Procubitermes aburiensis Sjöstedt and Cubitermes severus Silvestri (Termitidae, Termitinae). J Zool 201:445–480

    Article  Google Scholar 

  • Bitsch C, Noirot C (2002) Gut characters and phylogeny of the higher termites (Isoptera: Termitidae). A cladistic analysis. Ann Soc Entomol Fr 38:201–210

    Google Scholar 

  • Brauman A (2000) Effect of gut transit and mound deposit on soil organic matter transformation in the soil feeding termite: a review. Eur J Soil Biol 36:117–125

    Article  Google Scholar 

  • Brauman A, Bignell DE, Tayasu I (2000) Soil-feeding termites: biology, microbial associations and digestive mechanisms. In Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 233–259

    Google Scholar 

  • Brauman A, Doré J, Bignell DE et al (2001) Molecular phylogenetic profiling of microbial communities in guts of termites with different feeding habits. FEMS Microbiol Ecol 35:27–36

    Article  PubMed  CAS  Google Scholar 

  • Brauman A, Kane MD, Labat M et al (1992) Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257:1384–1387

    Article  PubMed  CAS  Google Scholar 

  • Brauman A, Labat M, Garcia JL (1990) Preliminary studies on the gut microbiota of the soil feeding termite Cubitermes speciosus. In: Lesel R (ed) Microbiology of poikilotherms. Elsevier Science, Amsterdam, pp 73–77

    Google Scholar 

  • Breznak JA (2000) Ecology of prokaryotic microbes in the guts of wood- and litter-feeding termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 209–231

    Google Scholar 

  • Breznak JA (2002) Phylogenetic diversity and physiology of termite gut spirochetes. Integr Comp Biol 42:313–318

    Article  PubMed  Google Scholar 

  • Breznak JA (2006) Termite gut spirochetes. In: Radolph JD, Lukehart SA (eds) Pathogenic Treponema: molecular and cellular biology. Horizon Scientific Press, Norwich, pp 421–444

    Google Scholar 

  • Breznak JA, Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39:453–487

    Article  CAS  Google Scholar 

  • Breznak JA, Leadbetter J (2006) Termite gut spirochetes. In: Dworkin M, Falkow S, Rosenberg E et al (eds) The prokaryotes, vol 7. Springer, New York, NY, pp 318–329

    Chapter  Google Scholar 

  • Brugerolle G, Radek R (2006) Symbiotic protozoa of termites. In: König H, Varma A (eds) Intestinal microorganisms of soil invertebrates. Springer, Berlin, pp 243–269

    Chapter  Google Scholar 

  • Brune A (1998) Termite guts: the world’s smallest bioreactors. Trends Biotechnol 16:16–21

    Article  CAS  Google Scholar 

  • Brune A (2006) Symbiotic associations between termites and prokaryotes. In: Dworkin M, Falkow S, Rosenberg E et al (eds) The prokaryotes, vol 7. Springer, New York, NY, pp 439–474

    Chapter  Google Scholar 

  • Brune A (2007) Woodworker’s digest. Nature 450:487–488

    Article  PubMed  CAS  Google Scholar 

  • Brune A, Emerson D, Breznak JA (1995) The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl Environ Microbiol 61:2681–2687

    PubMed  CAS  Google Scholar 

  • Brune A, Friedrich M (2000) Microecology of the termite gut: structure and function on a microscale. Curr Opin Microbiol 3:263–269

    Article  PubMed  CAS  Google Scholar 

  • Brune A, Kühl M (1996) pH profiles of the extremely alkaline hindguts of soil-feeding termites (Isoptera: Termitidae) determined with microelectrodes. J Insect Physiol 42:1121–1127

    Article  CAS  Google Scholar 

  • Butler JHA, Buckerfield JC (1979) Digestion of lignin by termites. Soil Biol Biochem 11:507–513

    Article  CAS  Google Scholar 

  • Buxton RD (1981) Changes in the composition and activities of termite communities in relation to changing rainfall. Oecologia 51:371–378

    Article  Google Scholar 

  • Capinera JL (ed) (2008) Encyclopedia of entomology. Springer, London

    Google Scholar 

  • Cookson LJ (1987) 14C-lignin degradation by three Australian termite species. Wood Sci Technol 21:11–25

    CAS  Google Scholar 

  • Cookson LJ (1988) The site and mechanisms of 14C-lignin degradation by Nasutitermes exitiosus. J Insect Physiol 34:409–414

    Article  CAS  Google Scholar 

  • Costa-Leonardo AM (1995) Morphology of the digestive tube in the termite Serritermes serrifer (Isoptera, Serritermitidae). Naturalia 20:31–44

    Google Scholar 

  • Costa-Leonardo AM, Landim CC (1997) Microorganisms of the digestive tract of Brazilian termites (Isoptera, Termitidae). Ciencia Cult J Braz Assoc Adv Sci 49:266–268

    Google Scholar 

  • Czolij R, Slaytor M, Veivers PC, O’Brien R (1984) Gut morphology of Mastotermes darwiniensis Froggatt (Isoptera: Mastotermitidae). Int J Insect Morphol Embryol 13:337–355

    Article  Google Scholar 

  • Davies RG, Eggleton P, Dubbin WE et al (2003) Evolution of termite functional diversity: analysis and synthesis of local ecological and regional influences on local species richness. J Biogeogr 30:847–877

    Article  Google Scholar 

  • De Souza OFF, Brown VK (1994) Effect of habitat fragmentation on Amazonian termite communities. J Trop Ecol 10:197–206

    Article  Google Scholar 

  • Desmukh I (1989) How important are termites in the production ecology of African savannas? Sociobiology 15:155–168

    Google Scholar 

  • Dillon RJ, Dillon VM (2004) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49:71–92

    Article  PubMed  CAS  Google Scholar 

  • Donovan SE (2002) A morphological study of the enteric valves of the Afrotropical Apicotermitinae (Isoptera: Termitidae). J Nat Hist 36:1823–1840

    Article  Google Scholar 

  • Donovan SE, Eggleton P, Bignell DE (2001a) Gut content analysis and a new feeding group classification of termites. Ecol Entomol 26:356–366

    Article  Google Scholar 

  • Donovan SE, Eggleton P, Dubbin WE et al (2001b) The effect of a soil-feeding termite, Cubitermes fungifaber (Isoptera: Termitidae) on soil properties: termites may be an important source of soil microhabital heterogeneity in tropical forests. Pedobiologia 45:1–11

    Article  Google Scholar 

  • Donovan SE, Jones DT, Sands WA, Eggleton P (2000) The morphological phylogenetics of termites (Isoptera). Biol J Linn Soc 70:467–513

    Article  Google Scholar 

  • Donovan SE, Purdy KJ, Kane MD, Eggleton P (2004) Comparison of Euryarchaea strains in the guts and food-soil of the soil-feeding termite Cubitermes fungifaber across different soil types. Appl Environ Microbiol 70:3884–3892

    Article  PubMed  CAS  Google Scholar 

  • Dow JAT (1987) Insect midgut function. Advs Insect Physiol 19:187–328

    Article  Google Scholar 

  • Droge S, Limper U, Emtiazi F et al (2004) In vitro and in vivo sulfate reduction in the gut contents of the termite Mastotermes darwiniensis and the rose-chafer Pachnoda marginata. J Gen Appl Microbiol 51:57–64

    Article  Google Scholar 

  • Ebert A, Brune A (1997) Hydrogen concentration profiles at the oxic-anoxic interface: a microsensor study the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Appl Environ Microbiol 63:4039–4046

    PubMed  CAS  Google Scholar 

  • Eggleton P (2000) Global patterns of termite diversity. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 25–51

    Google Scholar 

  • Eggleton P (2006) The termite gut habitat: its evolution and co-evolution. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Berlin, pp 373–404

    Chapter  Google Scholar 

  • Eggleton P, Bignell DE, Sands WA et al (1996) The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Forest Reserve, southern Cameroon. Phil Trans R Soc Lond B 351:51–68

    Article  Google Scholar 

  • Eggleton P, Davies RG, Bignell DE (1998) Body size and energy use in termites (Isoptera): the responses of soil-feeders and wood-feeders differ in a tropical forest assemblage. Oikos 81:525–530

    Article  Google Scholar 

  • Eggleton P, Homathevi R, Jeeva D et al (1997) The species richness and composition of termites (Isoptera) in primary and regenerating lowland dipterocarp forest in Sabah, East Malaysia. Ecotropica 3:119–128

    Google Scholar 

  • Eggleton P, Tayasu I (2001) Feeding groups, lifetypes, and the global ecology of termites. Ecol Res 16:941–960

    Article  Google Scholar 

  • Engel MS, Grimaldi DA, Krishna K (2009) Termites (Isoptera): their phylogeny, classification and rise to ecological dominance. Am Mus Novit 3650:1–27

    Article  Google Scholar 

  • Fall S, Brauman A, Chotte JL (2001) Comparative distribution of organic matter in particle and aggregate size fraction in the mounds of termites with different feeding habits in Senegal: Cubitermes nikoloensis and Macrotermes bellicosus. Appl Soil Ecol 17:131–140

    Article  Google Scholar 

  • Fall S, Hamelin J, Ndiaye F et al (2007) Differences between bacterial communities in the gut of a soil-feeding termite (Cubitermes nikoloensis) and its mound. Appl Environ Microbiol 73:5199–5208

    Article  PubMed  CAS  Google Scholar 

  • Fall S, Nazaret S, Chotte JL, Brauman A (2004) Bacterial density and community structure associated with aggregate size fractions of soil-feeding termite mounds. Microb Ecol 28:191–199

    Article  Google Scholar 

  • Fontes LR (1987) Morphology of the worker digestive tube of the soil-feeding nasute termites (Isoptera, Termitidae, Nasutitermitinae) from the Neotropical region. Rev Bras Zool 3(475-):501

    Google Scholar 

  • Friedrich MW, Schmitt-Wagner D, Leuders T, Brune A (2001) Axial differences in community structure of Crenarchaeota and Euryarchaeota in the highly compartmentalized gut of the soil-feeding termite Cubitermes orthognathus. Appl Environ Microbiol 67:4880–4890

    Article  PubMed  CAS  Google Scholar 

  • Fujita A, Abe T (2002) Amino acid concentration and distribution of lysozyme and protease activities in the guts of higher termites. Physiol Entomol 27:76–78

    Article  CAS  Google Scholar 

  • Fujita A, Minamoto T, Shimizu I, Abe T (2002) Molecular cloning of lysozyme-encoding cDNAs expressed in the salivary gland of a wood-feeding termite, Reticulitermes speratus. Insect Biochem Mol 32:1615–1624

    Article  CAS  Google Scholar 

  • Fujita A, Shimizu I, Abe T (2001) Distribution of lysozyme and protease, and amino acid concentration in the guts of a wood-feeding termite, Reticulitermes speratus (Kolbe): possible digestion of symbiont bacteria transferred by trophallaxis. Physiol Entomol 26:116–123

    Article  CAS  Google Scholar 

  • Garnier-Sillam E, Harry M (1995) Distribution of humic compounds in mounds of some soil-feeding termite species of tropical rainforests: its influence on soil structural stability. Insect Soc 42:167–185

    Article  Google Scholar 

  • Garnier-Sillam E, Toutain F (1995) Distribution of polysaccharides within the humic compounds of soil subjected to a humivorous termite Thoracotermes macrothorax Sjöstedt. Pedobiologia 39:462–469

    CAS  Google Scholar 

  • Geib SM, Filley TR, Hatcher PG et al (2008) Lignin degradation in wood-feeding insects. Proc Natl Acad Sci USA 105:12932–12937

    Article  PubMed  CAS  Google Scholar 

  • Godoy MC (2004) Gut structure of two species of the Neotropical genus Tauritermes Krishna (Isoptera: Kalotermitidae). Neotrop Entomol 33:163–167

    Article  Google Scholar 

  • Harazano K, Yamashita M, Shinzato N et al (2007) Isolation and characterization of aromatics-degrading microorganisms from the gut of the lower termite Coptotermes formosanus. Biosci Biotechnol Biochem 67:889–892

    Article  Google Scholar 

  • Herlemann DPR, Geissinger O, Brune A (2007) The termite group I phylum is highly diverse and widespread in the environment. Appl Environ Microbiol 73:6682–6685

    Article  PubMed  CAS  Google Scholar 

  • Hethener P, Brauman A, Garcia J-L (1992) Clostridium termitidis sp. nov., a cellulolytic bacterium from the gut a wood-feeding termite, Nasutitermes lujae. Syst Appl Micobiol 15:52–58

    Article  CAS  Google Scholar 

  • Higashi M, Yamamura N, Abe T (2000) Theories on the sociality of termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 169–187

    Google Scholar 

  • Holdaway FG (1933) The composition of different regions of mounds of Eutermes exitiosus Hill. Aust J Council Sci Indust Res 6:160–165

    CAS  Google Scholar 

  • Hölldobler B, Wilson EO (2009) The superorganism. W.W. Norton and Company, New York, NY

    Google Scholar 

  • Holt JA, Lepage M (2000) Termites and soil properties. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 389–407

    Google Scholar 

  • Hongoh Y, Deevong P, Hattori S et al (2006a) Phylogenetic diversity, localization and cell morphologies of members of the candidate phylum TG3 and a subphylum in the phylum Fibrobacteres, recently discovered bacterial groups in termite guts. Appl Environ Microbiol 72:6780–6788

    Article  PubMed  CAS  Google Scholar 

  • Hongoh Y, Deevong P, Inoue T et al (2005) Intra-and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol 71:6590–6599

    Article  PubMed  CAS  Google Scholar 

  • Hongoh Y, Ekpornprasit L, Inoue T et al (2006b) Intracolony variation of bacterial gut microbiota among castes and ages in the fungus-growing termite Macrotermes gilvus. Mol Ecol 15:505–516

    Article  PubMed  CAS  Google Scholar 

  • Hongoh Y, Ohkuma M, Kudo T (2003) Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera: Rhinotermitidae). FEMS Microbiol Ecol 44:231–242

    Article  PubMed  CAS  Google Scholar 

  • Hopkins DW, Chudek JA, Bignell DE et al (1998) Application of 13C NMR to investigate the transformations and biodegradation of organic materials by some soil- and litter-dwelling insects. Biodegradation 9:423–431

    Article  PubMed  CAS  Google Scholar 

  • Hungate RE (1946) The symbiotic utilization of cellulose. J Elisha Mitch Sci S 62:9–24

    CAS  Google Scholar 

  • Hyodo F, Azuma J-I, Abe T (1999) Estimation of effect of passage through the gut of a lower termite Coptotermes formosanus Shiraki, on lignin by solid-state CP/MAS 13C NMR. Holzforschung 53:244–246

    Article  CAS  Google Scholar 

  • Hyodo F, Inoue T, Azuma J-J, Abe T (2000) Role of the mutualistic fungus in lignin degradation in the fungus-growing termite Macrotermes gilvus (Isoptera; Macrotermitinae). Soil Biol Biochem 32:653–658

    Article  CAS  Google Scholar 

  • Hyodo F, Tayasu I, Inoue T et al (2003) Differential role of symbiotic fungi in lignin degradation and food provision for fungus-growing termites (Macrotermitinae: Isoptera). Funct Ecol 17:186–193

    Article  Google Scholar 

  • Inoue T, Kitade O, Yoshimura T, Yamaoka I (2000) Symbiotic associations with protists. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 235–242

    Google Scholar 

  • Inoue T, Murashima K, Azuma J-I et al (1997) Cellulose and xylan utilisation in the lower termite Reticulitermes speratus. J Insect Physiol 43:235–242

    Article  PubMed  CAS  Google Scholar 

  • Inward DJG, Vogler AP, Eggleton P (2007) A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol Phylogenet Evol 44:953–967

    Article  PubMed  CAS  Google Scholar 

  • Ji R, Brune A (2001) Tansformation and mineralization of 14C-labelled bacterial cells, protein, peptidoglycan, and cellulose by soil-feeding termites. Biol Fert Soils 33:166–174

    Article  CAS  Google Scholar 

  • Ji R, Brune A (2005) Digestion of peptidic residues in humic substances by an alkali-stable and humic-acid tolerant proteolytic activity in the gut of soil-feeding termites. Soil Biol Biochem 37:1648–1655

    Article  CAS  Google Scholar 

  • Ji R, Brune A (2006) Nitrogen mineralization, ammonia accumulation, and emission of gaseous NH3 by soil-feeding termites. Biogeochemistry 78:267–283

    Article  CAS  Google Scholar 

  • Ji R, Kappler A, Brune A (2000) Transformation and mineralization of synthetic 14C-labelled humic model compounds by soil-feeding termites. Soil Biol Biochem 32:1281–1291

    Article  CAS  Google Scholar 

  • Johnson RA (1979) Configuration of the digestive tube as an aid to identification of worker Termitidae (Isoptera). Syst Entomol 4:31–38

    Article  Google Scholar 

  • Jones DT, Susilo F-X, Bignell DE et al (2003) Termite assemblage collapses along a land-use intensification gradient in lowland central Sumatra, Indonesia. J Appl Ecol 40:380–391

    Article  Google Scholar 

  • Kambhampati S, Eggelton P (2000) Taxonomy and phylogeny of termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 1–23

    Google Scholar 

  • Kappler A, Brune A (1999) Influence of gut alkalinity and oxygen status on mobilization and size-class distribution of humic acids in the hindgut of soil-feeding termites. Appl Soil Ecol 13:219–229

    Article  Google Scholar 

  • Kappler A, Brune A (2002) Dynamics of redox potential and changes in redox state of iron and humic acids during gut passage in soil-feeding termites (Cubitermes spp.). Soil Biol Biochem 34:221–227

    Article  CAS  Google Scholar 

  • Katsumata KS, Jin Z, Hori K, Iiyama K (2007) Structural changes in lignin of tropical woods during digestion by termite, Cryptotermes brevis. J Wood Sci 53:419–426

    Article  CAS  Google Scholar 

  • Köhler T, Stingl U, Meuser K, Brune A (2008) Novel lineages of Planctomycetes densely colonize the alkaline gut of soil-feeding termites (Cubitermes spp.). Environ Microbiol 10:1260–1270

    Article  PubMed  CAS  Google Scholar 

  • Konate S, Le Roux X, Verdier B, Lepage M (2003) Effect of underground fungus-growing termites on carbon dioxide emission at the point- and landscape-scales in an African savanna. Funct Ecol 17:305–314

    Article  Google Scholar 

  • König H (2006) Bacillus species in the intestine of termites and other soil invertebrates. J Appl Microbiol 101:620–627

    Article  PubMed  Google Scholar 

  • König H, Fröhlich A, Berchtold M, Wenzel M (2002) Diversity and microhabitats of the hindgut flora of termites. Recent Res Devel Microbiol 6:125–156

    Google Scholar 

  • König H, Fröhlich J, Hertel H (2006) Diversity and lignocellulolytic activities of cultured microorganisms. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Berlin, pp 271–301

    Chapter  Google Scholar 

  • Korb J (2007) Termites. Curr Biol 17:R995–R999

    Article  PubMed  CAS  Google Scholar 

  • Korb J (2008) Termites, hemimetabolous diploid white ants? Front Zool 5:15

    Article  PubMed  Google Scholar 

  • Kovoor J (1968) L’intestin d’un termite supérieur (Microcerotermes edentatus Wasman, Amitermitinae). Histophysiologie, et flore bacterienne symbiotique. Bull Biol Fr Belg 102:45–58

    Google Scholar 

  • Kuhnigk T, Borst E-M, Ritter A et al (1994) Degradation of lignin monomers by the hindgut flora of xylophagous termites. Syst Appl Microbiol 17:76–85

    Article  CAS  Google Scholar 

  • Kuhnigk T, Branks J, Krekeler D et al (1996) A feasible role of sulfate-reducing bacteria in the termite gut. Syst Appl Microbiol 19:139–149

    Article  CAS  Google Scholar 

  • Landim CC, Costa-Leonardo AM (1990) Functional adaptations of the epithelium from different gut segments of Grigiotermes bequaerti (Isoptera, Termitidae, Apicotermitinae). Rev Bras Entomol 34:669–678

    Google Scholar 

  • Lavelle P, Bignell DE, Lepage M et al (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33:59–193

    Google Scholar 

  • Leadbetter JR, Breznak JA (1996) Physiological ecology of Methanobrevibacter filiformis sp. nov. and Methanobrevibacter curvatus sp. nov. isolated from the hindgut of the termite Reticulitermes flavipes. Appl Environ Microbiol 62:3620–3631

    PubMed  CAS  Google Scholar 

  • Leadbetter JR, Schmidt TM, Graber JR, Breznak JA (1999) Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 283:686–689

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre T, Miambi E, Pando A et al (2009) Gut-specific actinobacterial community structure and diversity associated with the wood-feeding termite species, Nasutitermes corniger (Motschulsky) described by nested PCR-DGGE analysis. Insect Soc 56:269–276

    Article  Google Scholar 

  • Lilburn TG, Kim KS, Ostrom NE et al (2001) Nitrogen fixation by symbiotic and free-living spirochetes. Science 292:2495–2498

    Article  PubMed  CAS  Google Scholar 

  • Lo N, Tokuda G, Watanabe H et al (2000) Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr Biol 10:801–804

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie LM, Muigai AT, Osir EO et al (2007) Bacterial diversity in the intestinal tract of the fungus-cultivating termite Macrotermes michaelseni (Sjöstedt). Afr J Biotechnol 6:658–667

    CAS  Google Scholar 

  • Margulis L, Jorgensen JZ, Dolan S et al (1998) The Arthromitus stage of Bacillus cereus: intestinal symbionts of animals. Proc Natl Acad Sci USA 95:1236–1241

    Article  PubMed  CAS  Google Scholar 

  • Miyata R, Noda N, Tamaki H et al (2007) Influence of feed components on symbiotic bacterial community structure in the gut of the wood-feeding higher termite Nasutitermes takasagoensis. Biosci Biotechnol Biochem 71:1244–1251

    Article  PubMed  CAS  Google Scholar 

  • Mora P, Lattaud C, Rouland C (1998) Enzymes involved in lignin degradation among termites with various feeding habits. Actes des Colloques Insectes Soc 11:77–80

    Google Scholar 

  • Nalepa C, Bignell DE, Bandi C (2001) Detritivory, coprophagy and the evolution of digestive mutualisms in Dictyoptera. Insect Soc 48:194–201

    Article  Google Scholar 

  • Ngugi DK, Tsanuo MK, Boga HI (2007) Benzoic acid-degrading bacteria from the intestinal tract of Macrotermes michaelseni Sjöstedt. J Basic Microbiol 47:87–92

    Article  CAS  Google Scholar 

  • Noirot C (1992) From wood-feeding to soil-feeding: an important trend in termite evolution. In: Billen J (ed) Biology and evolution of social insects. Leuven University Press, Leuven, pp 107–119

    Google Scholar 

  • Noirot C (1995) The gut of termites (Isoptera). Comparative anatomy, systematics, phylogeny. I. Lower termites. Ann Soc Entomol Fr 31:197–226

    Google Scholar 

  • Noirot C (2001) The gut of termites (Isoptera). Comparative anatomy, systematics, phylogeny. II. higher termites (Termitidae). Ann Soc Entomol Fr 37:431–471

    Google Scholar 

  • Noirot C, Darlington JPEC (2000) Termite nests: architecture, regulation and defence. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 121–139

    Google Scholar 

  • Noirot C, Noirot-Timothée C (1977) Fine structure of the rectum in termites (Isoptera): a comparative study. Tissue Cell 9:693–710

    Article  PubMed  CAS  Google Scholar 

  • Nunes L, Bignell DE, Lo N, Eggleton P (1997) On the respiratory quotient (RQ) of termites (Insecta: Isoptera). J Insect Physiol 43:749–758

    Article  PubMed  CAS  Google Scholar 

  • O’Brien RW, Slaytor M (1982) Role of microorganisms in the metabolism of termites. Aust J Biol Sci 35:239–262

    Google Scholar 

  • Odelson DA, Breznak JA (1983) Volatile fatty acid production by the hindgut microbiota of xylophagous termites. Appl Environ Microbiol 45:1602–1613

    PubMed  CAS  Google Scholar 

  • Ohkuma M (2003) Termite symbiotic systems: efficient biorecycling of lignocellulose. Appl Microb Biot 61:1–9

    CAS  Google Scholar 

  • Ohkuma M (2008) Symbioses of flagellates and prokaryotes in the gut of lower termites. Trends Microbiol 16:345–352

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma M, Iida T, Ohtoko K et al (2005) Molecular phylogeny of parabasalids inferred from small subunit rRNA sequences, with emphasis on the Hypermastigea. Mol Phylogenet Evol 35:646–655

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma M, Kudo T (1996) Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. Appl Environ Microbiol 62:461–468

    PubMed  CAS  Google Scholar 

  • Ohkuma M, Kudo T (1998) Phylogenetic analysis of the symbiotic intestinal microflora of the termite Cryptotermes domesticus. FEMS Microbiol Lett 164:389–395

    Article  CAS  Google Scholar 

  • Ohkuma M, Noda S, Hongoh Y, Kudo T (2002) Diverse bacteria related to the Bacteroides subgroup of the CFB phylum within the gut communities of various termites. Biosci Biotechnol Biochem 66:87–84

    Google Scholar 

  • Ohkuma M, Noda S, Horikoshi K, Kudo T (1995) Phylogeny of symbiotic methanogens in the gut of the termite Reticulitermes speratus. FEMS Microbiol Lett 134:45–50

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma M, Noda S, Usami R et al (1996) Diversity of nitrogen fixing genes in the symbiotic intestinal microflora of the termite Reticulitermes speratus. Appl Environ Microbiol 62:2747–2752

    PubMed  CAS  Google Scholar 

  • Ohkuma M, Sato T, Noda S et al (2007) The candidate phylum ‘termite group 1’ of bacteria: phylogenetic diversity, distribution, and endosymbiont members of various gut flagellated protists. FEMS Microbiol Ecol 60:467–476

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma M, Shimizu H, Thongaram T et al (2003) An alkaliphilic and xylanolytic Paenibacillus species isolated from the gut of a soil-feeding termite. Microbes Environ 18:145–151

    Article  Google Scholar 

  • Pasti MB, Belli ML (1985) Cellulolytic activity of actinomycetes isolated from termites (Termitidae) guts. FEMS Microbiol Lett 26:107–112

    Article  CAS  Google Scholar 

  • Paul J, Saxena S, Varma A (1993) Ultrastructural studies of the termite (Odontotermes obesus) gut microflora and its cellulolytic properties. World J Microbiol Biotechnol 9:108–112

    Article  CAS  Google Scholar 

  • Potrikus CJ, Breznak JA (1981) Gut bacteria recycle uric acid nitrogen in termites: a strategy for nutrient conservation. Proc Natl Acad Sci USA 78:4601–4605

    Article  PubMed  CAS  Google Scholar 

  • Potts RC, Hewitt PH (1973) The distribution of intestinal bacteria and cellulose activity in the harvester termite Trinervitermes trinervoides (Nasutitermitinae). Insect Soc 20:215–220

    Article  CAS  Google Scholar 

  • Purdy KJ (2007) The distribution and diversity of Euryarchaeota in termite guts. Adv Appl Microbiol 62:63–80

    Article  PubMed  CAS  Google Scholar 

  • Roose-Amsaleg C, Brygoo Y, Harry M (2004) Ascomycete diversity in soil-feeding termite nests and soils from a tropical rainforest. Environ Microbiol 6:462–469

    Article  PubMed  CAS  Google Scholar 

  • Rouland C, Chararas C, Renoux J (1986) Etudes comparées des osidases de trois espèces de termites Africain à regime alimentaire différent. CR Acad Sci III Vie 302:341–345

    CAS  Google Scholar 

  • Rouland C, Chararas C, Renoux J (1989) Les osidases digestives présente dans l’intestin moyen, l’intestin postérieur et les glandes salivaires du termite humivore Crenetermes albotarsalis. CR Acad Sci III Vie 308:281–285

    CAS  Google Scholar 

  • Rouland C, Lenoir-Labé F (1998) Microflore intestinale symbiotique des insectes xylophages: mythe ou réalité? Cah Agric 7:37–47

    Google Scholar 

  • Rouland-Lefèvre C, Bignell DE (2001) Cultivation of symbiotic fungi by termites of the subfamily Macrotermitinae. In: Seckbach J (ed) Symbiosis: mechanisms and model systems. Kluwer Academic Publishers, Dordrecht, pp 731–756

    Google Scholar 

  • Rouland-Lefèvre C, Inoue T, Johima T (2006) Termitomyces/termite interactions. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Berlin, pp 335–350

    Chapter  Google Scholar 

  • Sands WA (1972) The soldierless termites of Africa (Isoptera: Termitidae). Bull Br Mus Nat Hist (Ent) Suppl 18:3–244

    Google Scholar 

  • Sands WA (1992) The termite genus Amitermes in Africa and the Middle East. Nat Res Inst Bull 51:1–140

    Google Scholar 

  • Sands WA (1995) New species and genera of soil-feeding termites (Isoptera: Termitidae) from African savannas. J Nat Hist 29:1483–1515

    Article  Google Scholar 

  • Sands WA (1998) The identification of worker castes of termite genera from soils of Africa and the Middle East. CAB International, Wallingford

    Google Scholar 

  • Schafer A, Konrad R, Kuhnigk T et al (1996) Hemicellulose-degrading bacteria and yeasts from the termite gut. J Appl Bacteriol 80:471–478

    Article  PubMed  CAS  Google Scholar 

  • Schmitt-Wagner D, Brune A (1999) Hydrogen profiles and localization of methanogenic activities in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl Environ Microbiol 65:4490–4496

    PubMed  CAS  Google Scholar 

  • Schmitt-Wagner D, Friedrich MW, Wagner B, Brune A (2003a) Phylogenetic diversity, abundance and axial distribution of bacteria in the intestinal tract of two soil-feeding termites (Cubitermes spp.). Appl Environ Microbiol 69:6007–6017

    Article  PubMed  CAS  Google Scholar 

  • Schmitt-Wagner D, Friedrich MW, Wagner B, Brune A (2003b) Axial dynamics, and interspecies similarlity of bacterial community structure in the highly compartmentalized gut of soil-feeding termites (Cubitermes spp.). Appl Environ Microbiol 69:6018–6024

    Article  PubMed  CAS  Google Scholar 

  • Shinzato N, Matsumoto T, Yamaoka I et al (2007) Phylogenetic diversity of symbiotic methanogens living in the hindgut of the lower termite Reticulitermes speratus analysed by PCR and in situ hybridization. Appl Environ Microbiol 65:837–840

    Google Scholar 

  • Shulz MW, Slaytor M, Hogan ME, O’Brien RW (1986) Components of cellulose from the higher termite, Nasutitermes walkeri (Hill). Insect Biochem 16:929–932

    Article  Google Scholar 

  • Slaytor M (2000) Energy metabolism in the termite and its gut microbiota. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 307–332

    Google Scholar 

  • Slaytor M, Veivers PC, Lo N (1997) Aerobic and anaerobic metabolism in the higher termite Nasutitermes walkeri (Hill). Insect Biochem Mol Biol 27:291–303

    Article  CAS  Google Scholar 

  • Sleaford F, Bignell DE, Eggleton P (1996) A pilot analysis of gut contents in termites from the Mbalmayo Forest Reserve, Cameroon. Ecol Entomol 21:279–288

    Article  Google Scholar 

  • Taguchi F, Chang JD, Mizukami N et al (1993) Isolation of a hydrogen-producing bacterium, Clostridium beijerinckii strain AM21B, from termites. Can J Microbiol 39:726–730

    Article  CAS  Google Scholar 

  • Tanaka H, Aoyagi H, Shina S et al (2006) Influence of the diet components on the symbiotic microorganisms community in hindgut of Coptotermes formosanus Shiraki. Appl Microbiol Biotechnol 71:907–917

    Article  PubMed  CAS  Google Scholar 

  • Taprab Y, Johjima T, Maeda Y et al (2006) Symbiotic fungi produce laccases potentially involved in phenol degradation in fungus combs of fungus-growing termites in Thailand. Appl Environ Microbiol 71:7696–7704

    Article  CAS  Google Scholar 

  • Tayasu I, Abe T, Eggleton P, Bignell DE (1997) Nitrogen and carbon isotope ratios in termites (Isoptera): an indicator of trophic habit along the gradient from wood-feeding to soil-feeding. Ecol Entomol 22:343–351

    Article  Google Scholar 

  • Tholen A, Brune A (1999) Localization and in situ activities of homoacetogenic bacteria in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl Environ Microbiol 65:4497–4505

    PubMed  CAS  Google Scholar 

  • Tholen A, Brune A (2000) Impact of oxygen on the metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes. Environ Microbiol 2:436–449

    Article  PubMed  CAS  Google Scholar 

  • Thongaram T, Hongoh Y, Kosono S et al (2005) Comparison of bacterial communities in the alkaline gut segment among various species of higher termites. Extremophiles 9:229–238

    Article  PubMed  Google Scholar 

  • Thongaram T, Kosono S, Ohkuma M et al (2003) Gut of higher termites as a niche for alkaliphiles as shown by culture-based and culture-independent studies. Microbes Environ 18:152–159

    Article  Google Scholar 

  • Thorne BT, Grimaldi DA, Krishna K (2000) Early fossil history of the termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 77–93

    Google Scholar 

  • Tokuda G, Lo N, Watanabe H et al (2004) Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage. Mol Ecol 13:3219–3228

    Article  PubMed  CAS  Google Scholar 

  • Tokuda G, Nakamura T, Murakami R, Yamaoka I (2001) Morphology of the digestive system in the wood-feeding termite Nasutitermes takasagoensis (Shiraki) [Isoptera: Termitidae]. Zool Sci 18:869–877

    Article  Google Scholar 

  • Tokuda G, Watanabe H (2007) Hidden cellulases in termites: revision of an old hypothesis. Biol Lett 3:336–339

    Article  PubMed  CAS  Google Scholar 

  • Tokuda G, Watanabe H, Matsumoto T, Noda H (1997) Cellulose digestion in the wood-eating higher termite, Nasutitermes takasagoensis (Shiraki): distribution of cellulases and properties of Endo-ß-1, 4-glucanase. Zool Sci 14:83–93

    Article  PubMed  CAS  Google Scholar 

  • Tokuda G, Yamaoka I, Noda H (2000) Localization of symbiotic clostridia in the mixed segment of the termite Nasutitermes takasagoensis (Shiraki). Appl Environ Microbiol 66:2199–2207

    Article  PubMed  CAS  Google Scholar 

  • Tokura M, Ohkuma M, Kudo T (2000) Molecular phylogeny of methanogens associated with flagellated protists in the gut and with the gut epithelium of termites. FEMS Microbiol Ecol 33:233–240

    Article  PubMed  CAS  Google Scholar 

  • Traniello JFA, Leuthold RH (2000) Behaviour and ecology of foraging in termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 141–168

    Google Scholar 

  • Trinkerl M, Breunig A, Schauder R, König H (1990) Desulphovibrio termitidis sp. nov., a carbohydrate-degrading sulfate-reducing bacterium from the hindgut of a termite. Syst Appl Microbiol 13:372–377

    Article  CAS  Google Scholar 

  • Vu AT, Nguyen NC, Leadbetter JR (2004) Iron reduction in the metal-rich guts of wood-feeding termites. Geobiology 2:239–247

    Article  CAS  Google Scholar 

  • Ward N, Staley JT, Fuerst JA et al (2006) The order Planctomycetales, including the genera Planctomyces, Pirellula, Gemmata and Isosphaera and the Candidatus genera Bracadia, Kuenenia and Scalindua. In: Dworkin M, Falkow S, Rosenberg E et al (eds) The prokaryotes, vol 7. Springer, New York, NY, pp 757–793

    Chapter  Google Scholar 

  • Warnecke F, Luginbühl P, Ivanova N et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Shinzate N, Fukatsu T (2003) Isolation of actinomycetes from termites’ guts. Biosci Biotechnol Biochem 67:1797–1801

    Article  PubMed  CAS  Google Scholar 

  • Watanabe H, Tokuda G (2001) Animal cellulases. Cell Mol Life Sci 58:1167–1178

    Article  PubMed  CAS  Google Scholar 

  • Wenzel M, Schönig I, Berchtold M et al (2002) Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis. J Appl Microbiol 92:32–40

    Article  PubMed  CAS  Google Scholar 

  • Wolfersberger MG (2000) Amino acid transport in insects. Annu Rev Entomol 45:111–120

    Article  PubMed  CAS  Google Scholar 

  • Wood TG (1996) The agricultural importance of termites in the tropics. Agr Zool Rev 7:117–155

    Google Scholar 

  • Wood TG, Sands WA (1978) The role of termites in ecosystems. In: Brian MV (ed) Production ecology of ants and termite. Cambridge University Press, Cambridge, pp 245–292

    Google Scholar 

  • Yamada A, Inoue T, Wjwatwitaya D, Ohkuma M (2007) A new concept of the feeding group composition of termites (Isoptera) in tropical ecosystems: carbon source competitions among fungus-growing termites, soil-feeding termites, litter-layer microbes, and fire. Sociobiology 50:135–153

    Google Scholar 

  • Yara K, Jahana K, Hayashi H (1989) In situ morphology of the gut microbiota of the fungus-growing termite Odontotermes formosanus (Termitidae: Macrotermitinae). Sociobiology 15:2247–2260

    Google Scholar 

  • Zhou XG, Smith JA, Koehler PG et al (2007) Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes. Gene 395:29–39

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Bignell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Bignell, D.E. (2010). Morphology, Physiology, Biochemistry and Functional Design of the Termite Gut: An Evolutionary Wonderland. In: Bignell, D., Roisin, Y., Lo, N. (eds) Biology of Termites: a Modern Synthesis. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3977-4_14

Download citation

Publish with us

Policies and ethics