Skip to main content

The Dissociation Catastrophe in Fluctuating-Charge Models and its Implications for the Concept of Atomic Electronegativity

  • Chapter

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 19))

Abstract

We have recently developed the QTPIE (charge transfer with polarization current equilibration) fluctuating-charge model, a new model with correct dissociation behavior for nonequilibrium geometries. The correct asymptotics originally came at the price of representing the solution in terms of charge-transfer variables instead of atomic charges. However, we have found an exact reformulation of fluctuating-charge models in terms of atomic charges again, which is made possible by the symmetries of classical electrostatics. We show how this leads to the distinction between two types of atomic electronegativities in our model. While one is a intrinsic property of individual atoms, the other takes into account the local electrical surroundings. This distinction could resolve some confusion surrounding the concept of electronegativity as to whether it is an intrinsic property of elements, or otherwise. We also use the QTPIE model to create a three-site water model and discuss simple applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. J. Giese, D. M. York, J. Chem. Phys. 120, 9903–9906 (2004)

    Article  CAS  Google Scholar 

  2. S. J. Stuart, B. J. Berne, J. Phys. Chem. 100, 11934–11943 (1996)

    Article  CAS  Google Scholar 

  3. A. Warshel, M. Kato, A. V. Pisliakov, J. Chem. Theory Comput. 3, 2034–2045 (2007)

    Article  CAS  Google Scholar 

  4. A. Warshel, M. Levitt, J. Mol. Bio. 103, 227–249 (1976)

    Article  CAS  Google Scholar 

  5. P. Ren, J. W. Ponder, J. Phys. Chem. B 107, 5933–5947 (2003)

    Article  CAS  Google Scholar 

  6. G. Lamoureux, B. Roux, J. Chem. Phys. 119, 3025–3039 (2003)

    Article  CAS  Google Scholar 

  7. H. Yu, W. F. van Gunsteren, Comput. Phys. Commun. 172, 69–85 (2005)

    Article  CAS  Google Scholar 

  8. S. Patel, C. L. Brooks, III, Molec. Simul. 32, 231–249 (2006)

    Article  CAS  Google Scholar 

  9. S. W. Rick, S. J. Stuart, in Reviews in Computational Chemistry, ed. by K. B. Lipkowitz, D. B. Boyd (Wiley, New York, 2002), Vol. 18

    Google Scholar 

  10. F. H. Streitz, J. W. Mintmire, Phys. Rev. B 50, 11996 (1994)

    Article  CAS  Google Scholar 

  11. U. W. Schmitt, G. A. Voth, J. Chem. Phys. 111, 9361–9381 (1999)

    Article  CAS  Google Scholar 

  12. S. M. Valone, S. R. Atlas, Phil. Mag. 86, 2683–2711 (2006)

    Article  CAS  Google Scholar 

  13. A. Warshel, Annu. Rev. Biophys. Biomol. Struct. 32, 425–443 (2003)

    Article  CAS  Google Scholar 

  14. M. S. Gordon, L. Slipchenko, H. Li, J. H. Jensen, D. C. Spellmeyer, R. Wheeler, in Annual Reports in Computational Chemistry, ed. by D. C. Spellmeyer, R. A. Wheeler (Elsevier, Amsterdam, 2007), Vol. 3

    Google Scholar 

  15. N. Gresh, G. A. Cisneros, T. A. Darden, J. P. Piquemal, J. Chem. Theory Comput. 3, 1960–1986 (2007)

    Article  CAS  Google Scholar 

  16. A. K. Rappé, W. A. Goddard, III, J. Phys. Chem. 95, 3358–3363 (1991)

    Article  Google Scholar 

  17. A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard, III, W. M. Skiff, J. Am. Chem. Soc. 114, 10024–10035 (1992)

    Article  Google Scholar 

  18. W. J. Mortier, S. K. Ghosh, S. Shankar, J. Am. Chem. Soc. 108, 4315–4320 (1986)

    Article  CAS  Google Scholar 

  19. W. J. Mortier, K. Vangenechten, J. Gasteiger, J. Am. Chem. Soc. 107, 829–835 (1985)

    Article  CAS  Google Scholar 

  20. A. C. T. Van Duin, S. Dasgupta, F. Lorant, W. A. Goddard, III, J. Phys. Chem. A 105, 9396–9409 (2001)

    Article  Google Scholar 

  21. S. W. Rick, B. J. Berne, J. Am. Chem. Soc. 118, 672–679 (1996)

    Article  CAS  Google Scholar 

  22. S. W. Rick, S. J. Stuart, B. J. Berne, J. Chem. Phys. 101, 6141–6156 (1994)

    Article  CAS  Google Scholar 

  23. L. Pauling, The Nature of the Chemical Bond, 2nd edition (Cornell University Press, Ithaca, NY, 1945)

    Google Scholar 

  24. H. O. Pritchard, H. A. Skinner, Chem. Rev. 55, 745–786 (1955)

    Article  CAS  Google Scholar 

  25. R. P. Iczkowski, J. L. Margrave, J. Am. Chem. Soc. 83, 3547–3551 (1961)

    Article  CAS  Google Scholar 

  26. J. Hinze, H. H. Jaffé, J. Am. Chem. Soc. 84, 540–546 (1962)

    Article  CAS  Google Scholar 

  27. J. Hinze, M. A. Whitehead, H. H. Jaffé, J. Am. Chem. Soc. 85, 148–154 (1963)

    Article  CAS  Google Scholar 

  28. J. Hinze, H. H. Jaffé, J. Phys. Chem. 67, 1501–1506 (1963)

    Article  CAS  Google Scholar 

  29. R. G. Parr, R. A. Donnelly, M. Levy, W. E. Palke, J. Chem. Phys.68, 3801–3807 (1978)

    Article  CAS  Google Scholar 

  30. R. G. Pearson, J. Am. Chem. Soc. 85, 3533–3539 (1963)

    Article  CAS  Google Scholar 

  31. R. G. Pearson, Science 151, 172–177 (1966)

    Article  CAS  Google Scholar 

  32. R. G. Pearson, J. Songstad, J. Am. Chem. Soc. 89, 1827–1836 (1967)

    Article  CAS  Google Scholar 

  33. R. G. Parr, R. G. Pearson, J. Am. Chem. Soc. 105, 7512–7516 (1983)

    Article  CAS  Google Scholar 

  34. R. T. Sanderson, Science 114, 670–672 (1951)

    Article  CAS  Google Scholar 

  35. D. M. York, W. Yang, J. Chem. Phys. 104, 159–172 (1996)

    Article  CAS  Google Scholar 

  36. S. Patel, C. L. Brooks, III, J. Comp. Chem. 25, 1–16 (2004)

    Article  CAS  Google Scholar 

  37. S. Patel, A. D. Mackerell, Jr, C. L. Brooks, III, J. Comp. Chem. 25, 1504–1514 (2004)

    Article  CAS  Google Scholar 

  38. J. Chen, T. J. Martinez, Chem. Phys. Lett. 438, 315–320 (2007)

    Article  CAS  Google Scholar 

  39. R. S. Mulliken, J. Chem. Phys. 2, 782–793 (1934)

    Article  CAS  Google Scholar 

  40. R. W. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules, 1st edition (Oxford, United Kingdom, 1989)

    Google Scholar 

  41. G. Del Re, J. Chem. Soc. 4031–4040 (1958)

    Google Scholar 

  42. J. Gasteiger, M. Marsili, Tetrahedron 36, 3219–3228 (1980)

    Article  CAS  Google Scholar 

  43. J. Chen, D. Hundertmark, T. J. Martínez, J. Chem. Phys. 129, 214113 (2008)

    Article  Google Scholar 

  44. J. L. Banks, G. A. Kaminski, R. Zhou, D. T. Mainz, B. J. Berne, R. A. Friesner, J. Chem. Phys. 110, 741 (1999)

    Article  CAS  Google Scholar 

  45. R. Chelli, P. Procacci, R. Righini, S. Califano, J. Chem. Phys. 111, 8569–8575 (1999)

    Article  CAS  Google Scholar 

  46. R. A. Nistor, J. G. Polihronov, M. H. Müser, N. J. Mosey, J. Chem. Phys. 125, 094108 (2006)

    Article  Google Scholar 

  47. L. Pauling, J. Am. Chem. Soc. 54, 3570–3582 (1932)

    Article  CAS  Google Scholar 

  48. D. R. Lide, CRC Handbook of Chemistry and Physics, 87 edition (CRC Press: Boca Raton, FL, 2006)

    Google Scholar 

  49. A. V. Gubskaya, P. G. Kusalik, J. Chem. Phys. 117, 5290–5302 (2002)

    Article  CAS  Google Scholar 

  50. H.-J. Werner, F. R. Manby, P. J. Knowles, J. Chem. Phys. 118, 8149–8160 (2003)

    Article  CAS  Google Scholar 

  51. T. H. Dunning, Jr., J. Chem. Phys. 90, 1007–1023 (1989)

    Article  CAS  Google Scholar 

  52. J. Nocedal, S. J. Wright, Numerical Optimization (Springer, New York, 2002)

    Google Scholar 

  53. N. Rosen, Phys. Rev. 38, 255–276 (1931)

    Article  CAS  Google Scholar 

  54. P. Bultinck, R. Carbo-Dorca, Chem. Phys. Lett. 364, 357–362 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiahao Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Chen, J., Martínez, T.J. (2009). The Dissociation Catastrophe in Fluctuating-Charge Models and its Implications for the Concept of Atomic Electronegativity. In: Piecuch, P., Maruani, J., Delgado-Barrio, G., Wilson, S. (eds) Advances in the Theory of Atomic and Molecular Systems. Progress in Theoretical Chemistry and Physics, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2596-8_19

Download citation

Publish with us

Policies and ethics