Skip to main content

Abstract

Global utilisation of confined and traded hydrogen is projected to increase more than 300 billion cubic meters through 2018 with an annual growth rate of 3.5 %. The maximum share of growth through 2018 is likely to occur in China though the world’s largest hydrogen consumption will continue with the USA. This view is supported by the published research in the recent past. Published articles on biohydrogen research are highest from China followed by the USA and India. Published data on biohydrogen also suggested that biohydrogen production from the Asian countries is mainly focusing on dark fermentation, whilst the European countries are focusing on dark and photofermentation. So far, the current biohydrogen production system is appropriate for decentralised small-scale systems, integrated with waste from agriculture and industries or from waste-processing facilities, using reactors operating with mixed microflora (aerobic, anaerobic, thermophilic, purple non-sulphur photosynthetic bacteria) or pure cultures enriched from natural sources. Seed inocula for biohydrogen production have been obtained from heat sludge, compost, waste water, food waste, etc. With many social, economic and environmental benefits, hydrogen energy is considered as a future of the sustainable energy source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah R, Amrane A, Djelal H, Taha S, Fourcade F, Labasque T, Geneste F, Floner D (2015) Energetic valorization of ammonium resulting from nitrate electrochemical reduction-feasibility of biohydrogen production. Biochem Eng J 94:145–152

    Article  CAS  Google Scholar 

  • Abo-Hashesh M, Ghosh D, Tourigny A, Taous A, Hallenbeck PC (2011) Single stage photofermentative hydrogen production from glucose: an attractive alternative to two stage photofermentation or co-culture approaches. Int J Hydrog Energy 36(21):13889–13895

    Article  CAS  Google Scholar 

  • Akil K, Jayanthi S (2014) The biohydrogen potential of distillery wastewater by dark fermentation in an anaerobic sequencing batch reactor. Int J Green Energy 11(1):28–39

    Article  Google Scholar 

  • Akman MC, Erguder TH, Gündüz U, Eroğlu İ (2015) Investigation of the effects of initial substrate and biomass concentrations and light intensity on photofermentative hydrogen gas production by response surface methodology. Int J Hydrog Energy 40(15):5042–5049

    Article  CAS  Google Scholar 

  • Androga DD, Ozgür E, Eroglu I, Yücel M, Gündüz U (2012) Photofermentative hydrogen production in outdoor conditions. In: Minic D (ed) Hydrogen energy - challenges and perspectives. InTech.. doi:10.5772/50390, Available from: http://www.intechopen.com/books/hydrogen-energy-challenges-and-perspectives/photofermentative-hydrogen-production-in-outdoor-conditions

    Google Scholar 

  • Androga DD, Sevinç P, Koku H, Yücel M, Gündüz U, Eroglu I (2014) Optimization of temperature and light intensity for improved photofermentative hydrogen production using Rhodobacter capsulatus DSM 1710. Int J Hydrog Energy 39(6):2472–2480

    Article  CAS  Google Scholar 

  • Arimi MM, Knodel J, Kiprop A, Namango SS, Zhang Y, Geißen SU (2015) Strategies for improvement of biohydrogen production from organic-rich wastewater: a review. Biomass Bioenergy 75:101–118

    Article  CAS  Google Scholar 

  • Armor JN (1999) The multiple roles for catalysis in the production of H2. Appl Catal Gen 176(2):159–176

    Article  CAS  Google Scholar 

  • Atif AAY, Fakhru’l-Razi A, Ngan MA, Morimoto M, Iyuke SE, Veziroglu NT (2005) Fed batch production of hydrogen from palm oil mill effluent using anaerobic microflora. Int J Hydrog Energy 30(13):1393–1397

    Article  CAS  Google Scholar 

  • Avcioglu SG, Ozgur E, Eroglu I, Yucel M, Gunduz U (2011) Biohydrogen production in an outdoor panel photobioreactor on dark fermentation effluent of molasses. Int J Hydrog Energy 36(17):11360–11368

    Article  CAS  Google Scholar 

  • Babu ML, Sarma PN, Mohan SV (2013) Microbial electrolysis of synthetic acids for biohydrogen production: influence of biocatalyst pretreatment and pH with the function of applied potential. J Microbial Biochem Technol. S6: 003. doi:10.4172/1948-5948.S6-003

  • Baghchehsaraee B, Nakhla G, Karamanev D, Margaritis A (2010) Fermentative hydrogen production by diverse microflora. Int J Hydrog Energy 35(10):5021–5027

    Article  CAS  Google Scholar 

  • Balat H, Kırtay E (2010) Hydrogen from biomass–present scenario and future prospects. Int J Hydrog Energy 35(14):7416–7426

    Article  CAS  Google Scholar 

  • Beckers L, Masset J, Hamilton C, Delvigne F, Toye D, Crine M, Thonart P, Hiligsmann S (2015) Investigation of the links between mass transfer conditions, dissolved hydrogen concentration and biohydrogen production by the pure strain Clostridium butyricum CWBI1009. Biochem Eng J 98:18–28

    Article  CAS  Google Scholar 

  • Boran E, Ozgur E, Yucel M, Gunduz U, Eroglu I (2012a) Biohydrogen production by Rhodobacter capsulatus Hup− mutant in pilot solar tubular photobioreactor. Int J Hydrog Energy 37(21):16437–16445

    Article  CAS  Google Scholar 

  • Boran E, Özgür E, Yücel M, Gündüz U, Eroglu I (2012b) Biohydrogen production by Rhodobacter capsulatus in solar tubular photobioreactor on thick juice dark fermenter effluent. J Clean Prod 31:150–157

    Article  CAS  Google Scholar 

  • Brown MR, Chesbro W, Mule R, Peace C, Petersen G, Leary M (2008) Current anaerobic digestion technologies used for treatment of Municipal Organic Solid Waste. California Integrated Waste Management Board, Sacramento, CA

    Google Scholar 

  • Budiman PM, Wu TY, Ramanan RN, Md. Jahim J (2015) Improvement of biohydrogen production through combined reuses of palm oil mill effluent together with pulp and paper mill effluent in photofermentation. Energy Fuels 29(9):5816–5824

    Article  CAS  Google Scholar 

  • Cai G, Jin B, Monis P, Saint C (2013) A genetic and metabolic approach to redirection of biochemical pathways of Clostridium butyricum for enhancing hydrogen production. Biotechnol Bioeng 110(1):338–342

    Article  CAS  Google Scholar 

  • Carmona-Martínez AA, Trably E, Milferstedt K, Lacroix R, Etcheverry L, Bernet N (2015) Long-term continuous production of H2 in a microbial electrolysis cell (MEC) treating saline wastewater. Water Res 81:149–156

    Article  CAS  Google Scholar 

  • Chandrasekhar K, Lee YJ, Lee DW (2015) Biohydrogen production: strategies to improve process efficiency through microbial routes. Int J Mol Sci 16(4):8266–8293

    Article  CAS  Google Scholar 

  • Ciranna A (2014) Biohydrogen production in extreme conditions: a comprehensive study of the fermentative metabolism of a polyextremophilic bacterium. Tampere University of Technology. Publication:1228, Tampere 2014

    Google Scholar 

  • Costa JAV, De Morais MG (2011) The role of biochemical engineering in the production of biofuels from microalgae. Bioresour Technol 102(1):2–9

    Article  CAS  Google Scholar 

  • Dahiya S, Sarkar O, Swamy YV, Mohan SV (2015) Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen. Bioresour Technol 182:103–113

    Article  CAS  Google Scholar 

  • Das D, Veziroǧlu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy 26(1):13–28

    Article  CAS  Google Scholar 

  • Dasgupta CN, Suseela MR, Mandotra SK, Kumar P, Pandey MK, Toppo K, Lone JA (2015) Dual uses of microalgal biomass: an integrative approach for biohydrogen and biodiesel production. Appl Energy 146:202–208

    Article  CAS  Google Scholar 

  • Davila-Vazquez G, Cota-Navarro CB, Rosales-Colunga LM, de León-Rodríguez A, Razo-Flores E (2009) Continuous biohydrogen production using cheese whey: improving the hydrogen production rate. Int J Hydrog Energy 34(10):4296–4304

    Article  CAS  Google Scholar 

  • De Vrije T, Budde MA, Lips SJ, Bakker RR, Mars AE, Claassen PA (2010) Hydrogen production from carrot pulp by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Int J Hydrog Energy 37:15616–15631

    Google Scholar 

  • Derwent R, Simmonds P, O'Doherty S, Manning A, Collins W, Stevenson D (2006) Global environmental impacts of the hydrogen economy. Int J Nucl Hydrog Prod Appl 1(1):57–67

    Google Scholar 

  • Dhar BR, Elbeshbishy E, Hafez H, Lee HS (2015) Hydrogen production from sugar beet juice using an integrated biohydrogen process of dark fermentation and microbial electrolysis cell. Bioresour Technol 198:223–230

    Article  CAS  Google Scholar 

  • Dwidar M, Park JY, Mitchell RJ, Sang BI (2012) The future of butyric acid in industry. Sci World J 2012:471417

    Article  CAS  Google Scholar 

  • EIA, US (energy information administration) (2008) The impact of increased use of hydrogen on petroleum consumption and carbon dioxide emissions report, SR-OIAF-CNEAF/2008-04

    Google Scholar 

  • El-Bery H, Tawfik A, Kumari S, Bux F (2013) Effect of thermal pre-treatment on inoculum sludge to enhance bio-hydrogen production from alkali hydrolysed rice straw in a mesophilic anaerobic baffled reactor. Environ Technol 34(13,14):1965–1972

    Article  CAS  Google Scholar 

  • Elreedy A, Tawfik A (2015) Effect of hydraulic retention time on hydrogen production from the dark fermentation of petrochemical effluents contaminated with Ethylene Glycol. Energy Procedia 74:1071–1078

    Article  CAS  Google Scholar 

  • Elsamadony M, Tawfik A (2015a) Potential of biohydrogen production from organic fraction of municipal solid waste (OFMSW) using pilot-scale dry anaerobic reactor. Bioresour Technol 196:9–16

    Article  CAS  Google Scholar 

  • Elsamadony M, Tawfik A (2015b) Dry anaerobic co-digestion of organic fraction of municipal waste with paperboard mill sludge and gelatin solid waste for enhancement of hydrogen production. Bioresour Technol 191:157–165

    Article  CAS  Google Scholar 

  • Elsamadony M, Tawfik A, Suzuki M (2015) Surfactant-enhanced biohydrogen production from organic fraction of municipal solid waste (OFMSW) via dry anaerobic digestion. Appl Energy 149:272–282

    Article  CAS  Google Scholar 

  • Eroglu I, Aslan K, Gunduz U, Yucel M, Turker L (1998) Continuous hydrogen production by Rhodobacter sphaeroides O.U. 001. In: Zaborsky OR (ed) Biohydrogen. Plenum Press, New York, pp 143–149

    Google Scholar 

  • Eroglu E, Gündüz U, Yücel M, Türker L, Eroğlu İ (2004) Photobiological hydrogen production by using olive mill wastewater as a sole substrate source. Int J Hydrog Energy 29(2):163–171

    Article  CAS  Google Scholar 

  • Faloye FD, Kana EG, Schmidt S (2014) Optimization of biohydrogen inoculum development via a hybrid pH and microwave treatment technique–Semi pilot scale production assessment. Int J Hydrog Energy 39(11):5607–5616

    Article  CAS  Google Scholar 

  • FAO (1997) Hydrogen production. Renewable biological systems for alternative sustainable energy production. Miyamoto, K (ed.) Food and Agriculture Organization of the United Nations. http://www.fao.org/docrep/w7241e/w7241e0g.htm

  • Farghaly A, Tawfik A, Eldin MG (2015) Continuous biological treatment of paperboard mill wastewater along with hydrogen production. Energy Procedia 74:926–932

    Article  CAS  Google Scholar 

  • Ghimire A, Valentino S, Frunzo L, Trably E, Escudié R, Pirozzi F, Lens PN, Esposito G (2015) Biohydrogen production from food waste by coupling semi-continuous dark-photofermentation and residue post-treatment to anaerobic digestion: a synergy for energy recovery. Int J Hydrog Energy 40(46):16045–16055

    Article  CAS  Google Scholar 

  • Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol 27(5):287–297

    Article  CAS  Google Scholar 

  • Han SK, Shin HS (2004) Biohydrogen production by anaerobic fermentation of food waste. Int J Hydrog Energy 29(6):569–577

    Article  CAS  Google Scholar 

  • Hasyim R, Imai T, Sompong O, Sulistyowati L (2011) Biohydrogen production from sago starch in wastewater using an enriched thermophilic mixed culture from hot spring. Int J Hydrog Energy 36(21):14162–14171

    Article  CAS  Google Scholar 

  • Hawkes FR, Hussy I, Kyazze G, Dinsdale R, Hawkes DL (2007) Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int J Hydrog Energy 32(2):172–184

    Article  CAS  Google Scholar 

  • He Z, Zhang F, Ge Z (2013) Using microbial fuel cells to treat raw sludge and primary effluent for bioelectricity generation: final report

    Google Scholar 

  • Hosseinkhani B, Hennebel T, Boon N (2014) Potential of biogenic hydrogen production for hydrogen driven remediation strategies in marine environments. New Biotechnol 31(5):445–450

    Article  CAS  Google Scholar 

  • Hsiao CL, Chang JJ, Wu JH, Chin WC, Wen FS, Huang CC, Chen CC, Lin CY (2009) Clostridium strain co-cultures for biohydrogen production enhancement from condensed molasses fermentation solubles. Int J Hydrog Energy 34(17):7173–7181

    Article  CAS  Google Scholar 

  • http://www.marketsandmarkets.com/Market-Reports/hydrogen-generation-market-494.html. Accessed on 12 Jan 2016

  • Hwang JH, Kim HC, Choi JA, Abou-Shanab RAI, Dempsey BA, Regan JM, Kim JR, Song H, Nam IH, Kim SN, Lee W (2014) Photoautotrophic hydrogen production by eukaryotic microalgae under aerobic conditions. Nat Commun 5(3234):1–6

    Google Scholar 

  • IPHE (2010) Hydrogen and fuel cell global commercialization & development update:1–10. http://www.iphe.net/docs/Resources/IPHE_FINAL_SON_press_quality.pdf

  • Ivanova G, Rákhely G, Kovács KL (2009) Thermophilic biohydrogen production from energy plants by Caldicellulosiruptor saccharolyticus and comparison with related studies. Int J Hydrog Energy 34(9):3659–3670

    Article  CAS  Google Scholar 

  • Kang Q, Appels L, Tan T, Dewil R (2014) Bioethanol from lignocellulosic biomass: current findings determine research priorities. Sci World J 2014. DOI: 10.1155/2014/298153

  • Karadag D, Mäkinen AE, Efimova E, Puhakka JA (2009) Thermophilic biohydrogen production by an anaerobic heat treated-hot spring culture. Bioresour Technol 100(23):5790–5795

    Article  CAS  Google Scholar 

  • Keskin T, Hallenbeck PC (2012) Hydrogen production from sugar industry wastes using single-stage photofermentation. Bioresour Technol 112:131–136

    Article  CAS  Google Scholar 

  • Koku H, Eroglu I, Gunduz U, Yucel M, Turker L (2003) Kinetics of biological hydrogen production by the photosynthetic bacterium Rhodobacter sphaeroides OU 001. Int J Hydrog Energy 28(4):381–388

    Article  CAS  Google Scholar 

  • Kongjan P, Angelidaki I (2010) Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: effect of reactor configuration. Bioresour Technol 101(20):7789–7796

    Article  CAS  Google Scholar 

  • Koutinas A, Kanellaki M, Bekatorou A, Kandylis P, Pissaridi K, Dima A, Boura K, Lappa K, Tsafrakidou P, Stergiou PY, Foukis A (2016) Economic evaluation of technology for a new generation biofuel production using wastes. Bioresour Technol 200:178–185

    Article  CAS  Google Scholar 

  • Krishna RH, Mohan SV, Swamy AVVS (2013) Bio hydrogen production from pharmaceutical waste water treatment by a suspended growth reactor using environmental anaerobic technology. Am Chem Sc J 3(2):80–97

    Article  Google Scholar 

  • Kumar A, Singh JS (2016) Microalgae and cyanobacteria biofuels: a sustainable alternate to crop-based fuels. In: Singh JS, Singh DP (eds) Microbes and environmental management. Studium Press, USA

    Google Scholar 

  • Kumar GS, Kumari S, Reddy K, Bux F (2013) Trends in biohydrogen production: major challenges and state-of-the-art developments. Environ Technol 34(13–14):1653–1670

    Article  CAS  Google Scholar 

  • Kumar G, Bakonyi P, Sivagurunathan P, Nemestóthy N, Belafi-Bako K, Lin CY (2015) Improved microbial conversion of de-oiled Jatropha waste into biohydrogen via inoculum pretreatment: process optimization by experimental design approach. Biofuel Res J 2(1):209–2014

    Article  CAS  Google Scholar 

  • Lai Z, Zhu M, Yang X, Wang J, Li S (2014) Optimization of key factors affecting hydrogen production from sugarcane bagasse by a thermophilic anaerobic pure culture. Biotechnol Biofuels 7(1):1

    Article  CAS  Google Scholar 

  • Lay CH, Kuo SY, Sen B, Chen CC, Chang JS, Lin CY (2012) Fermentative biohydrogen production from starch-containing textile wastewater. Int J Hydrog Energy 37(2):2050–2057

    Article  CAS  Google Scholar 

  • Lee DH, Lee DJ (2008) Hydrogen economy in Taiwan and biohydrogen. Int J Hydrog Energy 33:1607–1618

    Article  CAS  Google Scholar 

  • Ljunggren M, Zacchi G (2010) Techno-economic analysis of a two-step biological process producing hydrogen and methane. Bioresour Technol 101(20):7780–7788

    Article  CAS  Google Scholar 

  • Mallikarjun Y (2012) Bio-hydrogen produced from wastewater, industrial effluents. The Hindu Hyderabad, 25 July 2012. http://www.thehindu.com/

  • Mangayil R, Karp M, Santala V (2012) Bioconversion of crude glycerol from biodiesel production to hydrogen. Int J Hydrog Energy 37(17):12198–12204

    Article  CAS  Google Scholar 

  • Marone A, Varrone C, Fiocchetti F, Giussani B, Izzo G, Mentuccia L, Rosa S, Signorini A (2015) Optimization of substrate composition for biohydrogen production from buffalo slurry co-fermented with cheese whey and crude glycerol, using microbial mixed culture. Int J Hydrog Energy 40(1):209–218

    Article  CAS  Google Scholar 

  • Mars AE, Veuskens T, Budde MA, Van Doeveren PF, Lips SJ, Bakker RR, De Vrije T, Claassen PA (2010) Biohydrogen production from untreated and hydrolyzed potato steam peels by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Int J Hydrog Energy 35(15):7730–7737

    Article  CAS  Google Scholar 

  • Masset J, Calusinska M, Hamilton C, Hiligsmann S, Joris B, Wilmotte A, Thonart P (2012) Fermentative hydrogen production from glucose and starch using pure strains and artificial co-cultures of Clostridium spp. Biotechnol Biofuels 5(1):35

    Article  CAS  Google Scholar 

  • McLellan B, Shoko E, Dicks AL, Da Costa JD (2005) Hydrogen production and utilisation opportunities for Australia. Int J Hydrog Energy 30(6):669–679

    Article  CAS  Google Scholar 

  • Mohan VS (2008) Fermentative hydrogen production with simultaneous wastewater treatment: influence of pretreatment and system operating conditions. J Sci Ind Res 67:950–961

    CAS  Google Scholar 

  • Mohan SR (2015) Structure and growth of research on bio hydrogen generation using wastewater. Int J Hydrog Energy 40:16056–16069

    Article  CAS  Google Scholar 

  • Moodley P, Kana EG (2015) Optimization of xylose and glucose production from sugarcane leaves (Saccharum officinarum) using hybrid pretreatment techniques and assessment for hydrogen generation at semi-pilot scale. Int J Hydrog Energy 40(10):3859–3867

    Article  CAS  Google Scholar 

  • Mullai P, Rene ER, Sridevi K (2013a) Biohydrogen production and kinetic modeling using sediment microorganisms of pichavaram mangroves. Ind Bio Med Res Int. doi:10.1155/2013/265618

    Google Scholar 

  • Mullai P, Yogeswari MK, Sridevi K (2013b) Optimisation and enhancement of biohydrogen production using nickel nanoparticles–a novel approach. Bioresour Technol 141:212–219

    Article  CAS  Google Scholar 

  • Nasr NES (2012) Investigation of bio-hydrogen and bio-methane production from thin stillage. electronic thesis and dissertation repository. Paper 491. http://ir.lib.uwo.ca/etd/491

  • Nasr M, Tawfik A, Ookawara S, Suzuki M, Kumari S, Bux F (2015) Continuous biohydrogen production from starch wastewater via sequential dark-photo fermentation with emphasize on maghemite nanoparticles. J Ind Eng Chem 21:500–506

    Article  CAS  Google Scholar 

  • Nath K, Das D (2004) Biohydrogen production as a potential energy resource-present state of art. J Sci Ind Res 63:729–738

    CAS  Google Scholar 

  • National Hydrogen Energy Roadmap (2002) By United States Department of Energy. https://www.hydrogen.energy.gov/pdfs/national_h2_roadmap.pdf. Accessed 4 Mar 2016

  • Nissila M (2013) Biohydrogen, bioelectricity and bioalcohols from cellulosic materials. Tampere University of Technology. Publication 1103, Tempere. TUTCRIS Portal (http://www.tut.fi/tutcris)

  • Ntoampe M (2012) Microbial fuel and chemical production using sweet potatoes, PhD thesis submitted to the Faculty of Engineering and the Built Envirnonment, University of the Witwatersrand Johannesnurg. Accessed through http://wiredspace.wits.ac.za/jspui/bitstream/10539/11742/2/THESIS%20final.pdf

  • Nyberg M, Heidorn T, Lindblad P (2015) Hydrogen production by the engineered cyanobacterial strain Nostoc PCC 7120 ΔhupW examined in a flat panel photobioreactor system. J Biotechnol 215:35–43

    Article  CAS  Google Scholar 

  • Obazu FO (2013) Development of bio-reactor for the production of hydrogen from plant biomass. Doctoral dissertation, Lund University

    Google Scholar 

  • Obazu FO, Afolabi AS, Daramola MO, Gray VM (2015a) Biohydrogen production by bacterial granules adapted to grow at different thermophilic temperatures. In: Proceedings of the world congress on engineering, vol 2

    Google Scholar 

  • Obazu FO, Afolabi A, Daramola MO, Gray VM (2015b) Sustenance of dark fermentative hydrogen production by an undefined bacterial culture. In: Proceedings of the world congress on engineering, vol 2

    Google Scholar 

  • Ohimain EI, Izah SC (2015) Estimation of potential biohydrogen from palm oil mills’ effluent in Nigeria using different microorganisms under light independent fermentation. J Environ Treat Technol 3(2):97–104

    Google Scholar 

  • Oil Review Middle East (2015) Air liquide starts its largest hydrogen project in Saudi Arabia. Oil review Middle East 24 June 2015, http://www.oilreviewmiddleeast.com/petrochemicals/air-liquide-starts-its-largest-hydrogen-project-in-saudi-arabia. Accessed on 6 Feb 2016

  • Orozco RL, Redwood MD, Yong P, Caldelari I, Sargent F, Macaskie LE (2010) Towards an integrated system for bio-energy: hydrogen production by Escherichia coli and use of palladium-coated waste cells for electricity generation in a fuel cell. Biotechnol Lett 32(12):1837–1845

    Article  CAS  Google Scholar 

  • Ortigueira J, Pinto T, Gouveia L, Moura P (2015) Production and storage of biohydrogen during sequential batch fermentation of Spirogyra hydrolyzate by Clostridium butyricum. Energy 88:528–536

    Article  CAS  Google Scholar 

  • Ozgur E, Mars AE, Peksel B, Louwerse A, Yücel M, Gündüz U, Claassen PA, Eroğlu İ (2010) Biohydrogen production from beet molasses by sequential dark and photofermentation. Int J Hydrog Energy 35(2):511–517

    Article  CAS  Google Scholar 

  • Ozkan E, Uyar B, Özgür E, Yücel M, Eroglu I, Gündüz U (2012) Photofermentative hydrogen production using dark fermentation effluent of sugar beet thick juice in outdoor conditions. Int J Hydrog Energy 37(2):2044–2049

    Article  CAS  Google Scholar 

  • Pachapur VL, Sarma SJ, Brar SK, Le Bihan Y, Buelna G, Verma M (2015) Biohydrogen production by co-fermentation of crude glycerol and apple pomace hydrolysate using co-culture of Enterobacter aerogenes and Clostridium butyricum. Bioresour Technol 193:297–306

    Article  CAS  Google Scholar 

  • Pachapur VL, Sarma SJ, Brar SK, Bihan YL, Buelna G, Verma M (2016) Hydrogen production from biodiesel industry waste by using a co-culture of Enterobacter aerogenes and Clostridium butyricum. Biofuels: 1–19

    Google Scholar 

  • Panagiotopoulos IA, Pasias S, Bakker RR, de Vrije T, Papayannakos N, Classen PAM, Koukios EG (2013) Biodiesel and biohydrogen production from cotton seed cake in a biorefinery concept. Bioresour Technol 136:78–86

    Article  CAS  Google Scholar 

  • Parihar RK, Upadhyay K (2015) Production of bio-hydrogen gas from wastewater by anaerobic fermentation process: a review. Int J Chem Stu 3(3):7–14. SCIENCEDOMAIN. www.sciencedomain.org

  • Pattanamanee W, Chisti Y, Choorit W (2015) Photofermentive hydrogen production by Rhodobacter sphaeroides S10 using mixed organic carbon: effects of the mixture composition. Appl Energy 157:245–254

    Article  CAS  Google Scholar 

  • Patterson T, Esteves S, Dinsdale R, Guwy A, Maddy J (2015) Life cycle assessment of biohydrogen and biomethane production and utilisation as a vehicle fuel. Bioresour Technol 131:235–245

    Article  CAS  Google Scholar 

  • Pawar SS, van Niel EW (2013) Thermophilic biohydrogen production: how far are we? Appl Microbiol Biotechnol 97(18):7999–8009

    Article  CAS  Google Scholar 

  • Pawar SS, Nkemka VN, Zeidan AA, Murto M, van Niel EW (2013) Biohydrogen production from wheat straw hydrolysate using Caldicellulosiruptor saccharolyticus followed by biogas production in a two-step uncoupled process. Int J Hydrog Energy 38(22):9121–9130

    Article  CAS  Google Scholar 

  • Penfold DW, Forster CF, Macaskie LE (2003) Increased hydrogen production by Escherichia coli strain HD701 in comparison with the wild-type parent strain MC4100. Enzym Microb Technol 33(2):185–189

    Article  CAS  Google Scholar 

  • Qureshi N, Annous BA, Ezeji TC, Karcher P, Maddox IS (2005) Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microb Cell Fact 4(1):24

    Article  CAS  Google Scholar 

  • Rachman MA, Prasetyo J (2014) Electricity from bio-waste-based gas hydrogen as a source of renewable energy biomass. In: Informatics, Electronics & Vision (ICIEV), International conference on IEEE 2014:1–5

    Google Scholar 

  • Rachman MA, Eniya LD, Widyastuti ET (2015) Biohydrogen production from fermentation of sweet Sorghum (Sorghum Biocular L) by interobacter aerogenes Adh-43 in the packed-bed reactor. J Technol 75(6): 67–72

    Google Scholar 

  • Raji A, Kahn MTE (2013) Efficient and effective domestic energy generation. Energize 19–21. http://www.ee.co.za/wp-content/uploads/2014/06/energize-oct-2013-pgs19-21.pdf

  • Redwood MD (2008) Bio-hydrogen and biomass-supported palladium catalyst for energy production and waste-minimisation. Doctoral dissertation, University of Birmingham

    Google Scholar 

  • Redwood MD, Macaskie LE (2006) A two-stage, two-organism process for biohydrogen from glucose. Int J Hydrog Energy 31(11):1514–1521

    Article  CAS  Google Scholar 

  • Redwood MD, Paterson-Beedle M, Macaskie LE (2009) Integrating dark and light bio-hydrogen production strategies: towards the hydrogen economy. Rev Environ Sci Biotechnol 8(2):149–185

    Article  CAS  Google Scholar 

  • Reungsang A, Sangyoka S, Imai T, Chaiprasert P (2004) Biohydrogen production from cassava starch manufacturing wastewater. In: The joint international conference on “Sustainable Energy and Environment (SEE):1–3

    Google Scholar 

  • Rittmann S, Herwig C (2012) A comprehensive and quantitative review of dark fermentative biohydrogen production. Microbial Cell Fact 11(1):1

    Article  CAS  Google Scholar 

  • Salleh SF, Kamaruddin A, Uzir MH, Karim KA, Mohamed AR (2015) Investigation of the links between heterocyst and biohydrogen production by diazotrophic cyanobacterium A. variabilis ATCC 29413. Arch Microbiol:101–113. doi: 10.1007/s00203-015-1164-6

  • Sarma SJ, Brar SK, Le Bihan Y, Buelna G, Rabeb L, Soccol CR, Naceur M, Rachid B (2013) Evaluation of different supplementary nutrients for enhanced biohydrogen production by Enterobacter aerogenes NRRL B 407 using waste derived crude glycerol. Int J Hydrog Energy 38(5):2191–2198

    Article  CAS  Google Scholar 

  • Schneider T, Graeff-Hönninger S, French WT, Hernandez R, Claupein W, Holmes WE, Merkt N (2012) Screening of industrial wastewaters as feedstock for the microbial production of oils for biodiesel production and high-quality pigments. J Comb. http://dx.doi.org/10.1155/2012/153410

  • Seelert T, Ghosh D, Yargeau V (2015) Improving biohydrogen production using Clostridium beijerinckii immobilized with magnetite nanoparticles. Appl Microbiol Biotechnol 99(9):4107–4116

    Article  CAS  Google Scholar 

  • Seengenyoung J, Sompong O, Thong TI, Prasertsan P (2011) Effect of inoculum size for biohydrogen production from palm oil mill effluent. TIChE international conference, 2011

    Google Scholar 

  • Sekoai PT, Daramola MO (2015) Biohydrogen production as a potential energy fuel in South Africa. Biofuel Res J 2(2):223–226

    Article  CAS  Google Scholar 

  • Sekoai PT, Kana EBG (2014) Semi-pilot scale production of hydrogen from Organic Fraction of Solid Municipal Waste and electricity generation from process effluents. Biomass Bioenergy 60:156–163

    Article  CAS  Google Scholar 

  • Sen B, Chou YP, Wu SY, Liu CM (2016) Pretreatment conditions of rice straw for simultaneous hydrogen and ethanol fermentation by mixed culture. Int J Hydrog Energy 41(7):4421–4428

    Article  CAS  Google Scholar 

  • Sewsynker Y, Kana EBG, Lateef A (2015) Modelling of biohydrogen generation in microbial electrolysis cells (MECs) using a committee of artificial neural networks (ANNs). Biotechnol Biotechnol Equip 29(6):1208–1215

    Article  CAS  Google Scholar 

  • Show KY, Lee DJ, Tay JH (2012) Biohydrogen production: current perspectives and the way forward. Int J Hydrog Energy 34(17):7349–7357

    Google Scholar 

  • Sibanyoni JM (2012) Nanostructured light weight hydrogen storage materials, PhD thesis

    Google Scholar 

  • Sinbuathong N, Kanchanakhan B, Leungprasert S (2015) Biohydrogen production from normal starch wastewater with heat–treated mixed microorganisms from a starch factory. Int J Glob Warming 7(3):293–306

    Article  Google Scholar 

  • Singh A, Sevda S, Abu Reesh IM, Vanbroekhoven K, Rathore D, Pant D (2015) Biohydrogen production from lignocellulosic biomass: technology and sustainability. Energies 8(11):13062–13080

    Article  CAS  Google Scholar 

  • Skonieczny MT, Yargeau V (2009) Biohydrogen production from wastewater by Clostridium beijerinckii: effect of pH and substrate concentration. Int J Hydrog Energy 34(8):3288–3294

    Article  CAS  Google Scholar 

  • Sompong O, Hniman A, Prasertsan P, Imai T (2011) Biohydrogen production from cassava starch processing wastewater by thermophilic mixed cultures. Int J Hydrog Energy 36(5):3409–3416

    Article  CAS  Google Scholar 

  • Soydemir G, Keris-Sen UD, Sen U, Gurol MD (2016) Biodiesel production potential of mixed microalgal culture grown in domestic wastewater. Bioproc Biosyst Eng 39(1):45–51

    Article  CAS  Google Scholar 

  • Sung S (2004) Biohydrogen production from renewable organic wastes, DOE Award Number: DE-FC36-00G010530, Iowa State University 2207 Pearson Hall, Room 15 Ames, IA 50011-2207 PhD thesis

    Google Scholar 

  • Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wünschiers R, Lindblad P (2002) Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66(1):1–20

    Article  CAS  Google Scholar 

  • Tang GL, Huang J, Sun ZJ, Tang QQ, Yan CH, Liu GQ (2008) Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: influence of fermentation temperature and pH. J Biosci Bioeng 106(1):80–87

    Article  CAS  Google Scholar 

  • Tawfik A, El-Qelish M, Salem A (2015) Efficient anaerobic co-digestion of municipal food waste and kitchen wastewater for bio-hydrogen production. Int J Green Energy 12(12):1301–1308

    Article  CAS  Google Scholar 

  • Thompson LJ, Gray VM, Kalala B, Lindsay D, Reynolds K, von Holy A (2008) Biohydrogen production by Enterobacter cloacae and Citrobacter freundii in carrier induced granules. Biotechnol Lett 30(2):271–274

    Article  CAS  Google Scholar 

  • Uyar B, Eroglu I, Yücel M, Gündüz U (2009) Photofermentative hydrogen production from volatile fatty acids present in dark fermentation effluents. Int J Hydrog Energy 34(10):4517–4523

    Article  CAS  Google Scholar 

  • Uyar B, Gürgan M, Özgür E, Gündüz U, Yücel M, Eroglu I (2015) Hydrogen production by hup− mutant and wild-type strains of Rhodobacter capsulatus from dark fermentation effluent of sugar beet thick juice in batch and continuous photobioreactors. Bioproc Biosyst Eng 38(10):1935–1942

    Article  CAS  Google Scholar 

  • Varrone C, Giussani B, Izzo G, Massini G, Marone A, Signorini A, Wang A (2012) Statistical optimization of biohydrogen and ethanol production from crude glycerol by microbial mixed culture. Int J Hydrog Energy 37(21):16479–16488

    Article  CAS  Google Scholar 

  • Vatsala TM, Raj SM, Manimaran A (2008) A pilot-scale study of biohydrogen production from distillery effluent using defined bacterial co-culture. Int J Hydrog Energy 33(20):5404–5415

    Article  CAS  Google Scholar 

  • Waligórska M, Seifert K, Szymańska K, Łaniecki M (2006) Optimization of activation conditions of Rhodobacter sphaeroides in hydrogen generation process. J Appl Microbiol 101(4):775–784

    Article  CAS  Google Scholar 

  • Wang X, Jin B (2009) Process optimization of biological hydrogen production from molasses by a newly isolated Clostridium butyricum W5. J Biosci Bioeng 107(2):138–144

    Article  CAS  Google Scholar 

  • Wang X, Jin B, Mulcahy D (2008) Impact of carbon and nitrogen sources on hydrogen production by a newly isolated Clostridium butyricum W5. Int J Hydrog Energy 33(19):4998–5005

    Article  CAS  Google Scholar 

  • Wang X, Wang N, Wang L (2011) Hydrogen production by sorption enhanced steam reforming of propane: a thermodynamic investigation. Int J Hydrog Energy 36(1):466–472

    Article  CAS  Google Scholar 

  • Wei J, Liu ZT, Zhang X (2010) Biohydrogen production from starch wastewater and application in fuel cell. Int J Hydrog Energy 35(7):2949–2952

    Article  CAS  Google Scholar 

  • Wen Q, Wu Y, Zhao LX, Sun Q, Kong FY (2010) Electricity generation and brewery wastewater treatment from sequential anode-cathode microbial fuel cell. J Zhejiang Univ Sci B 11(2):87–93

    Article  CAS  Google Scholar 

  • Winter CJ (2005) Into the hydrogen energy economy—milestones. Int J Hydrog Energy 30(7):681–685

    Article  CAS  Google Scholar 

  • Won SG, Lau AK (2015) Effects of manipulating cyclic duration and pH on fermentative hydrogen production in an anaerobic sequencing batch reactor. J Environ Sci Health (A) 50(7):750–756

    Article  CAS  Google Scholar 

  • Wu TY, Hay JXW, Kong LB, Juan JC, Jahim JM (2012) Recent advances in reuse of waste material as substrate to produce biohydrogen by purple non-sulfur (PNS) bacteria. Renew Sustain Energy Rev 16(5):3117–3122

    Article  CAS  Google Scholar 

  • Xia A, Jacob A, Tabassum MR, Herrmann C, Murphy JD (2016) Production of hydrogen, ethanol and volatile fatty acids through co-fermentation of macro-and micro-algae. Bioresour Technol 205:118–125

    Article  CAS  Google Scholar 

  • Xu J, Deshusses MA (2015) Fermentation of swine wastewater-derived duckweed for biohydrogen production. Int J Hydrog Energy 40(22):7028–7036

    Article  CAS  Google Scholar 

  • Yetis M, Gündüz U, Eroglu I, Yücel M, Türker L (2000) Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides OU 001. Int J Hydrog Energy 25(11):1035–1041

    Article  CAS  Google Scholar 

  • Yigit DO, Gunduz U, Turker L, Yucel M, Eroglu I (1999) Identification of by-products in hydrogen producing bacteria; Rhodobacter sphaeroides OU 001 grown in the waste water of a sugar refinery. J Biotechnol 70(1):125–131

    Article  CAS  Google Scholar 

  • Zhang ML, Fan YT, Xing Y, Pan CM, Zhang GS, Lay JJ (2007) Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenergy 31(4):250–254

    Article  CAS  Google Scholar 

  • Zhang X, Sherman DM, Sherman LA (2014) The uptake hydrogenase in the unicellular diazotrophic cyanobacterium Cyanothece sp. strain PCC 7822 protects nitrogenase from oxygen toxicity. J Bacteriol 196(4):840–849

    Article  CAS  Google Scholar 

  • Zheng H, Zeng RJ, Angelidaki I (2008) Biohydrogen production from glucose in upflow biofilm reactors with plastic carriers under extreme thermophilic conditions (70 C). Biotechnol Bioeng 100(5):1034–1038 http://www.saasta.ac.za/images/stories/HydrogenF.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dheeraj Rathore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer India

About this chapter

Cite this chapter

Singh, R., Singh, A., Rathore, D. (2017). Biohydrogen: Global Trend and Future Perspective. In: Singh, A., Rathore, D. (eds) Biohydrogen Production: Sustainability of Current Technology and Future Perspective. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3577-4_14

Download citation

Publish with us

Policies and ethics