Skip to main content

Structural Insights into the Life History of Thrombin

  • Chapter

Abstract

Thrombin is the ultimate coagulation factor. Not only is it the final protease generated by the blood coagulation cascade, it has more than 12 substrates and 5 cofactors. How thrombin specificity is directed during the four stages of hemostasis is of great interest to the medical community, as insufficient thrombin activity leads to bleeding and excessive activity results in thrombosis. Over the last three decades we have learned a great deal about how thrombin is generated and how it recognizes its several cofactors, substrates, and inhibitors. Although much has been inferred from biochemical studies, our current understanding is primarily based on numerous crystallographic structures of thrombin complexes. In this chapter I provide an overview of the multiple roles thrombin plays in the initiation, amplification, propagation, and attenuation phases of hemostasis, and describe how the special structural features of thrombin are exploited to achieve regulation and substrate selectivity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Owen, CAJ (2001) Prothrombin. In: Nichols WL, Bowie EJ (eds) A history of blood coagulation. Mayo Foundation for Medical Education and Research, Rochester, MN, pp 27–35

    Google Scholar 

  2. Marcum, JA (1998) Defending the priority of “remarkable researches”: the discovery of fibrin ferment. Hist Philos Life Sci 20:51–76

    PubMed  CAS  Google Scholar 

  3. Davie EW, Kulman JD (2006) An overview of the structure and function of thrombin. Semin Thromb Hemost 32(Suppl 1):3–15

    Article  PubMed  CAS  Google Scholar 

  4. Lane DA, Philippou H, Huntington JA (2005) Directing thrombin. Blood 106:2605–2612

    Article  PubMed  CAS  Google Scholar 

  5. Monroe DM, Hoffman M (2006) What does it take to make the perfect clot? Arterioscler Thromb Vasc Biol 26:41–48

    Article  PubMed  CAS  Google Scholar 

  6. Jesty J, Beltrami E (2005) Positive feedbacks of coagulation: their role in threshold regulation. Arterioscler Thromb Vasc Biol 25:2463–2469

    Article  PubMed  CAS  Google Scholar 

  7. Mann KG, Brummel K, Butenas S (2003) What is all that thrombin for? J Thromb Haemost 1:1504–1514

    Article  PubMed  CAS  Google Scholar 

  8. Furie B, Liebman HA, Blanchard RA, et al (1984) Comparison of the native prothrombin antigen and the prothrombin time for monitoring oral anticoagulant therapy. Blood 64:445–451

    PubMed  CAS  Google Scholar 

  9. Deguchi H, Takeya H, Gabazza EC, et al (1997) Prothrombin kringle 1 domain interacts with factor Va during the assembly of prothrombinase complex. Biochem J 321 (Pt 3):729–735

    PubMed  CAS  Google Scholar 

  10. Bianchini EP, Orcutt SJ, Panizzi P, et al (2005) Ratcheting of the substrate from the zymogen to proteinase conformations directs the sequential cleavage of prothrombin by prothrombinase. Proc Natl Acad Sci U S A 102:10099–10104

    Article  PubMed  CAS  Google Scholar 

  11. Boissel JP, Le Bonniec B, Rabiet MJ, et al (1984) Covalent structures of beta and gamma autolytic derivatives of human alpha-thrombin. J Biol Chem 259:5691–5697

    PubMed  CAS  Google Scholar 

  12. De Cristofaro R, Akhavan S, Altomare C, et al (2004) A natural prothrombin mutant reveals an unexpected influence of A-chain structure on the activity of human alpha-thrombin. J Biol Chem 279:13035–13043

    Article  PubMed  CAS  Google Scholar 

  13. Bode W, Mayr I, Baumann U, et al (1989) The refined 1.9 A crystal structure of human alpha-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment. EMBO J 8:3467–3475

    PubMed  CAS  Google Scholar 

  14. Di Cera E, Guinto ER, Vindigni A, et al (1995) The Na+ binding site of thrombin. J Biol Chem 270:22089–22092

    Article  PubMed  Google Scholar 

  15. Bode W, Turk D, Karshikov A (1992) The refined 1.9-A X-ray crystal structure of D-Phe-Pro-Arg chloromethylketone-inhibited human alpha-thrombin: structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure-function relationships. Protein Sci 1:426–471

    PubMed  CAS  Google Scholar 

  16. Van de Locht A, Bode W, Huber R, et al (1997) The thrombin E192Q-BPTI complex reveals gross structural rearrangements: implications for the interaction with anti-thrombin and thrombomodulin. EMBO J 16:2977–2984

    Article  PubMed  Google Scholar 

  17. Schechter I, Berger A (1967) On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 27:157–162

    Article  PubMed  CAS  Google Scholar 

  18. Harris JL, Backes BJ, Leonetti F, et al (2000) Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc Natl Acad Sci U S A 97:7754–7759

    Article  PubMed  CAS  Google Scholar 

  19. Petrassi HM, Williams JA, Li J, et al (2005) A strategy to profile prime and non-prime proteolytic substrate specificity. Bioorg Med Chem Lett 15:3162–3166

    Article  PubMed  CAS  Google Scholar 

  20. Ohkubo S, Miyadera K, Sugimoto Y, et al (2001) Substrate phage as a tool to identify novel substrate sequences of proteases. Comb Chem High Throughput Screen 4:573–583

    PubMed  CAS  Google Scholar 

  21. Zhang E, Tulinsky A (1997) The molecular environment of the Na+ binding site of thrombin. Biophys Chem 63:185–200

    Article  PubMed  CAS  Google Scholar 

  22. Page MJ, Di Cera E (2006) Is Na+ a coagulation factor? Thromb Hemost 95:920–921

    CAS  Google Scholar 

  23. Di Cera E, Page MJ, Bah A, et al (2007) Thrombin allostery. Phys Chem Chem Phys 9:1291–1306

    Article  PubMed  Google Scholar 

  24. Tsiang M, Paborsky LR, Li WX, et al (1996) Protein engineering thrombin for optimal specificity and potency of anticoagulant activity in vivo. Biochemistry 35:16449–16457

    Article  PubMed  CAS  Google Scholar 

  25. Cantwell AM, Di Cera E (2000) Rational design of a potent anticoagulant thrombin. J Biol Chem 275:39827–39830

    Article  PubMed  CAS  Google Scholar 

  26. Gruber A, Marzec UM, Bush L, et al (2007) Relative antithrombotic and antihemostatic effects of protein C activator versus low-molecular-weight heparin in primates. Blood 109:3733–3740

    Article  PubMed  CAS  Google Scholar 

  27. Johnson DJ, Adams TE, Li W, et al (2005) Crystal structure of wild-type human thrombin in the Na+-free state. Biochem J 392:21–28

    Article  PubMed  CAS  Google Scholar 

  28. Pineda AO, Chen ZW, Bah A, et al (2006) Crystal structure of thrombin in a self-inhibited conformation. J Biol Chem 281:32922–32928

    Article  PubMed  CAS  Google Scholar 

  29. Pineda AO, Carrell CJ, Bush LA, et al (2004) Molecular dissection of Na+ binding to thrombin. J Biol Chem 279:31842–31853

    Article  PubMed  CAS  Google Scholar 

  30. Pineda AO, Sawides S, Waksman G, et al (2002) Crystal structure of the anticoagulant slow form of thrombin. J Biol Chem 277:40177–40180

    Article  PubMed  CAS  Google Scholar 

  31. Wells CM, Di Cera E (1992) Thrombin is a Na(+)-activated enzyme. Biochemistry 31:11721–11730

    Article  PubMed  CAS  Google Scholar 

  32. Karshikov A, Bode W, Tulinsky A, et al (1992) Electrostatic interactions in the association of proteins: an analysis of the thrombin-hirudin complex. Protein Sci 1:727–735

    Article  PubMed  CAS  Google Scholar 

  33. Anderson PJ, Nesset A, Dharmawardana KR, et al (2000) Characterization of proexosite I on prothrombin. J Biol Chem 275:16428–16434

    Article  PubMed  CAS  Google Scholar 

  34. Arni RK, Padmanabhan K, Padmanabhan KP, et al (1994) Structure of the non-covalent complex of prothrombin kringle 2 with PPACK-thrombin. Chem Phys Lipids 67–68:59–66

    Article  PubMed  Google Scholar 

  35. Fuentes-Prior P, Iwanaga Y, Huber R, et al (2000) Structural basis for the anticoagulant activity of the thrombin-thrombomodulin complex. Nature 404:518–525

    Article  PubMed  CAS  Google Scholar 

  36. Baglin TP, Carrell RW, Church FC, et al (2002) Crystal structures of native and thrombin-complexed heparin cofactor II reveal a multistep allosteric mechanism. Proc Natl Acad Sci U S A 99:11079–11084

    Article  PubMed  CAS  Google Scholar 

  37. Pechik I, Madrazo J, Mosesson MW, et al (2004) Crystal structure of the complex between thrombin and the central “E” region of fibrin. Proc Natl Acad Sci U S A 101:2718–2723

    Article  PubMed  CAS  Google Scholar 

  38. Dumas JJ, Kumar R, Seehra J, et al (2003) Crystal structure of the GpIbalpha-thrombin complex essential for platelet aggregation. Science 301:222–226

    Article  PubMed  CAS  Google Scholar 

  39. Carter WJ, Cama E, Huntington JA (2004) Crystal structure of thrombin bound to heparin. J Biol Chem 280:2745–2749

    Article  PubMed  CAS  Google Scholar 

  40. Huntington JA (2005) Molecular recognition mechanisms of thrombin. J Thromb Haemost 3:1861–1872

    Article  PubMed  CAS  Google Scholar 

  41. Yun TH, Baglia FA, Myles T, et al (2003) Thrombin activation of factor XI on activated platelets requires the interaction of factor XI and platelet glycoprotein Ib alpha with thrombin anion-binding exosites I and II, respectively. J Biol Chem 278: 48112–48119

    Article  PubMed  CAS  Google Scholar 

  42. Adams TE, Huntington JA (2006) Thrombin-cofactor interactions: structural insights into regulatory mechanisms. Arterioscler Thromb Vasc Biol 26:1738–1745

    Article  PubMed  CAS  Google Scholar 

  43. Pechik I, Yakovlev S, Mosesson MW, et al (2006) Structural basis for sequential cleavage of fibrinopeptides upon fibrin assembly. Biochemistry 45:3588–3597

    Article  PubMed  CAS  Google Scholar 

  44. Li CQ, Vindigni A, Sadler JE, et al (2001) Platelet glycoprotein Ib alpha binds to thrombin anion-binding exosite II inducing allosteric changes in the activity of thrombin. J Biol Chem 276:6161–6168

    Article  PubMed  CAS  Google Scholar 

  45. De Candia E, Hall SW, Rutella S, et al (2001) Binding of thrombin to glycoprotein Ib accelerates the hydrolysis of Par-1 on intact platelets. J Biol Chem 276:4692–4698

    Article  PubMed  Google Scholar 

  46. Celikel R, McClintock RA, Roberts JR, et al (2003) Modulation of alpha-thrombin function by distinct interactions with platelet glycoprotein Ibalpha. Science 301:218–221

    Article  PubMed  CAS  Google Scholar 

  47. Vu TK, Wheaton VI, Hung DT, et al (1991) Domains specifying thrombin-receptor interaction. Nature 353:674–677

    Article  PubMed  CAS  Google Scholar 

  48. Mathews II, Padmanabhan KP, Ganesh V, et al (1994) Crystallographic structures of thrombin complexed with thrombin receptor peptides: existence of expected and novel binding modes. Biochemistry 33:3266–3279

    Article  PubMed  CAS  Google Scholar 

  49. Myles T, Yun TH, Leung LL (2002) Structural requirements for the activation of human factor VIII by thrombin. Blood 100:2820–2826

    Article  PubMed  CAS  Google Scholar 

  50. Naski MC, Fenton JW, Maraganore JM, et al (1990) The COOH-terminal domain of hirudin: an exosite-directed competitive inhibitor of the action of alpha-thrombin on fibrinogen. J Biol Chem 265:13484–13489

    PubMed  CAS  Google Scholar 

  51. Bukys MA, Orban T, Kim PY, et al (2006) The structural integrity of anion binding exosite I of thrombin is required and sufficient for timely cleavage and activation of factor V and factor VIII. J Biol Chem 281:18569–18580

    Article  PubMed  CAS  Google Scholar 

  52. Esmon CT, Lollar P (1996) Involvement of thrombin anion-binding exosites 1 and 2 in the activation of factor V and factor VIII. J Biol Chem 271:13882–13887

    Article  PubMed  CAS  Google Scholar 

  53. Myles T, Yun TH, Hall SW, et al (2001) An extensive interaction interface between thrombin and factor V is required for factor V activation. J Biol Chem 276:25143–25149

    Article  PubMed  CAS  Google Scholar 

  54. Dharmawardana KR, Olson ST, Bock PE (1999) Role of regulatory exosite I in binding of thrombin to human factor V, factor Va, factor Va subunits, and activation fragments. J Biol Chem 274:18635–18643

    Article  PubMed  CAS  Google Scholar 

  55. Arocas V, Lemaire C, Bouton MC, et al (1998) Inhibition of thrombin-catalyzed factor V activation by bothrojaracin. Thromb Haemost 79:1157–1161

    PubMed  CAS  Google Scholar 

  56. Nogami K, Shima M, Hosokawa K, et al (2000) Factor VIII C2 domain contains the thrombin-binding site responsible for thrombin-catalyzed cleavage at Argl689. J Biol Chem 275:25774–25780

    Article  PubMed  CAS  Google Scholar 

  57. Suzuki H, Shima M, Nogami K, et al (2006) Factor V C2 domain contains a major thrombin-binding site responsible for thrombin-catalyzed factor V activation. J Thromb Haemost 4:1354–1360

    Article  PubMed  CAS  Google Scholar 

  58. Edwards C, Armstrong P, Goode G, et al (1907) Cross-talking between calcium and histamine in the expression of MAPKs in hypertensive vascular smooth muscle cells. Cell Mol Biol (Noisy-le-grand) 53:61–66

    Google Scholar 

  59. Chung DW, Davie EW (1984) gamma and gamma’ chains of human fibrinogen are produced by alternative mRNA processing. Biochemistry 23:4232–4236

    Article  PubMed  CAS  Google Scholar 

  60. Pineda AO, Chen ZW, Marino F, et al (2007) Crystal structure of thrombin in complex with fibrinogen gamma’ peptide. Biophys Chem 125:556–559

    Article  PubMed  CAS  Google Scholar 

  61. Meh DA, Siebenlist KR, Brennan SO, et al (2001) The amino acid sequence in fibrin responsible for high affinity thrombin binding. Thromb Haemost 85:470–474

    PubMed  CAS  Google Scholar 

  62. Lorand L (1907) Factor XIII: structure, activation, and interactions with fibrinogen and fibrin. Ann N Y Acad Sci 936:291–311

    Article  Google Scholar 

  63. Philippou H, Rance J, Myles T, et al (2003) Roles of low specificity and cofactor interaction sites on thrombin during factor XIII activation: competition for cofactor sites on thrombin determines its fate. J Biol Chem 278:32020–32026

    Article  PubMed  CAS  Google Scholar 

  64. Bouma BN, Meijers JC (2003) Thrombin-activatable fibrinolysis inhibitor (TAFI, plasma procarboxypeptidase B, procarboxypeptidase R, procarboxypeptidase U). J Thromb Haemost 1:1566–1574

    Article  PubMed  CAS  Google Scholar 

  65. Bajzar L, Morser J, Nesheim M (1996) TAFI, or plasma procarboxypeptidase B, couples the coagulation and fibrinolytic cascades through the thrombin-thrombomodulin complex. J Biol Chem 271:16603–16608

    Article  PubMed  CAS  Google Scholar 

  66. Kokame K, Zheng X, Sadler JE (1998) Activation of thrombin-activable fibrinolysis inhibitor requires epidermal growth factor-like domain 3 of thrombomodulin and is inhibited competitively by protein C. J Biol Chem 273:12135–12139

    Article  PubMed  CAS  Google Scholar 

  67. Kahn ML, Zheng YW, Huang W, et al (1998) A dual thrombin receptor system for platelet activation. Nature 394:690–694

    Article  PubMed  CAS  Google Scholar 

  68. Jacques SL, Kuliopulos A (2003) Protease-activated receptor-4 uses dual prolines and an anionic retention motif for thrombin recognition and cleavage. Biochem J 376:733–740

    Article  PubMed  CAS  Google Scholar 

  69. Wu CC, Teng CM (2006) Comparison of the effects of PAR1 antagonists, PAR4 antagonists, and their combinations on thrombin-induced human platelet activation. Eur J Pharmacol 546:142–147

    Article  PubMed  CAS  Google Scholar 

  70. Butenas S, Dee JD, Mann KG (2003) The function of factor XI in tissue factor-initiated thrombin generation. J Thromb Haemost 1:2103–2111

    Article  PubMed  CAS  Google Scholar 

  71. Baglia FA, Badellino KO, Li CQ, et al (2002) Factor XI binding to the platelet glycoprotein Ib-IX-V complex promotes factor XI activation by thrombin. J Biol Chem 277:1662–1668

    Article  PubMed  CAS  Google Scholar 

  72. Baglia FA, Walsh PN (1996) A binding site for thrombin in the apple 1 domain of factor XI. J Biol Chem 271:3652–3658

    Article  PubMed  CAS  Google Scholar 

  73. Papagrigoriou E, McEwan PA, Walsh PN, et al (2006) Crystal structure of the factor XI zymogen reveals a pathway for transactivation. Nat Struct Mol Biol 13:557–558

    Article  PubMed  CAS  Google Scholar 

  74. Jin L, Pandey P, Babine, RE, et al (2005) Crystal structures of the FXIa catalytic domain in complex with ecotin mutants reveal substrate-like interactions. J Biol Chem 280:4704–4712

    Article  PubMed  CAS  Google Scholar 

  75. Esmon CT (2003) The protein C pathway. Chest 124:26S–32S

    Article  PubMed  CAS  Google Scholar 

  76. Dahlback B, Villoutreix BO (2003) Molecular recognition in the protein C anticoagulant pathway. J Thromb Haemost 1:1525–1534

    Article  PubMed  CAS  Google Scholar 

  77. Weiler H, Isermann BH (2003) Thrombomodulin. J Thromb Haemost 1:1515–1524

    Article  PubMed  CAS  Google Scholar 

  78. Vindigni A, White CE, Komives EA, et al (1997) Energetics of thrombin-thrombomodulin interaction. Biochemistry 36:6674–6681

    Article  PubMed  CAS  Google Scholar 

  79. Lin JH, McLean K, Morser J, et al (1994) Modulation of glycosaminoglycan addition in naturally expressed and recombinant human thrombomodulin. J Biol Chem 269:25021–25030

    PubMed  CAS  Google Scholar 

  80. Ye J, Rezaie AR, Esmon CT (1994) Glycosaminoglycan contributions to both protein C activation and thrombin inhibition involve a common arginine-rich site in thrombin that includes residues arginine 93, 97, and 101. J Biol Chem 269:17965–17970

    PubMed  CAS  Google Scholar 

  81. Oganesyan V, Oganesyan N, Terzyan S, et al (2002) The crystal structure of the endothelial protein C receptor and a bound phospholipid. J Biol Chem 277:24851–24854

    Article  PubMed  CAS  Google Scholar 

  82. Esmon CT (2000) The endothelial cell protein C receptor. Thromb Haemost 83:639–643

    PubMed  CAS  Google Scholar 

  83. Stearns-Kurosawa DJ, Kurosawa S, Mollica JS, et al (1996) The endothelial cell protein C receptor augments protein C activation by the thrombin-thrombomodulin complex. Proc Natl Acad Sci U S A 93:10212–10216

    Article  PubMed  CAS  Google Scholar 

  84. Yang L, Rezaie AR (2003) The fourth epidermal growth factor-like domain of thrombomodulin interacts with the basic exosite of protein C. J Biol Chem 278:10484–10490

    Article  PubMed  CAS  Google Scholar 

  85. Hall SW, Nagashima M, Zhao L, et al (1999) Thrombin interacts with thrombomodulin, protein C, and thrombin-activatable fibrinolysis inhibitor via specific and distinct domains. J Biol Chem 274:25510–25516

    Article  PubMed  CAS  Google Scholar 

  86. Sasisekharan R, Raman R, Prabhakar V (1907) Glycomics approach to structure-function relationships of glycosaminoglycans. Annu Rev Biomed Eng 8:181–231

    Article  CAS  Google Scholar 

  87. Huntington JA (2005) Heparin activation of serpins. In: Garg HG, Linhardt RJ, Hales CA (eds) Chemistry and biology of heparin and heparan sulfate. Elsevier, Oxford, 367–398

    Chapter  Google Scholar 

  88. Li W, Johnson DJ, Esmon CT, et al (2004) Structure of the antithrombin-thrombin-heparin ternary complex reveals the antithrombotic mechanism of heparin. Nat Struct Mol Biol 11:857–862

    Article  PubMed  CAS  Google Scholar 

  89. Geiger M (2007) Protein C inhibitor, a serpin with functions in-and outside vascular biology. Thromb Haemost 97:343–347

    PubMed  CAS  Google Scholar 

  90. Rezaie AR, Cooper ST, Church FC, et al (1995) Protein C inhibitor is a potent inhibitor of the thrombin-thrombomodulin complex. J Biol Chem 270:25336–25339

    Article  PubMed  CAS  Google Scholar 

  91. Meddahi S, Bara L, Fessi H, et al (1907) Standard measurement of clot-bound thrombin by using a chromogenic substrate for thrombin. Thromb Res 114:51–56

    Google Scholar 

  92. Huntington JA (2006) Shape-shifting serpins: advantages of a mobile mechanism. Trends Biochem Sci 31:450–455

    Article  CAS  Google Scholar 

  93. Silverman GA, Bird PI, Carrell RW, et al (2001) The serpins are an expanding super-family of structurally similar but functionally diverse proteins: evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem 276:33293–33296

    Article  PubMed  CAS  Google Scholar 

  94. Law RH, Zhang Q, McGowan S, et al (1907) An overview of the serpin superfamily. Genome Biol 7:216

    Article  CAS  Google Scholar 

  95. Huntington JA, Read RJ, Carrell RW (2000) Structure of a serpin-protease complex shows inhibition by deformation. Nature 407:923–926

    Article  PubMed  CAS  Google Scholar 

  96. Gettins PG (2002) Serpin structure, mechanism, and function. Chem Rev 102:4751–4804

    Article  PubMed  CAS  Google Scholar 

  97. Olson ST, Swanson R, Day D, et al (2001) Resolution of Michaelis complex, acylation, and conformational change steps in the reactions of the serpin, plasminogen activator inhibitor-1, with tissue plasminogen activator and trypsin. Biochemistry 40: 11742–11756

    Article  PubMed  CAS  Google Scholar 

  98. Bock PE, Olson ST, Bjork I (1997) Inactivation of thrombin by antithrombin is accompanied by inactivation of regulatory exosite I. J Biol Chem 272:19837–19845

    Article  PubMed  CAS  Google Scholar 

  99. Fredenburgh JC, Stafford AR, Weitz JI (2001) Conformational changes in thrombin when complexed by serpins. J Biol Chem 276:44828–44834

    Article  PubMed  CAS  Google Scholar 

  100. Long GL, Kjellberg M, Villoutreix BO, et al (2003) Probing plasma clearance of the thrombin-antithrombin complex with a monoclonal antibody against the putative serpin-enzyme complex receptor-binding site. Eur J Biochem 270:4059–4069

    Article  PubMed  CAS  Google Scholar 

  101. Kounnas MZ, Church FC, Argraves WS, et al (1996) Cellular internalization and degradation of antithrombin III-thrombin, heparin cofactor II-thrombin, and alpha 1-antitrypsin-trypsin complexes is mediated by the low density lipoprotein receptor-related protein. J Biol Chem 271:6523–6529

    Article  PubMed  CAS  Google Scholar 

  102. Corral J, Rivera J, Guerrero JA, et al (2007) Latent and polymeric antithrombin: clearance and potential thrombotic risk. Exp Biol Med (Maywood) 232:219–226

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Huntington, J.A. (2008). Structural Insights into the Life History of Thrombin. In: Tanaka, K., Davie, E.W., Ikeda, Y., Iwanaga, S., Saito, H., Sueishi, K. (eds) Recent Advances in Thrombosis and Hemostasis 2008. Springer, Tokyo. https://doi.org/10.1007/978-4-431-78847-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-78847-8_5

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-78846-1

  • Online ISBN: 978-4-431-78847-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics