Skip to main content

Biomechanics of Adolescent Idiopathic Scoliosis

  • Chapter
  • First Online:
Pathogenesis of Idiopathic Scoliosis

Abstract

Adolescent idiopathic scoliosis (AIS) is the result of complex multifactorial phenomena, including biomechanical issues. The spine, as a central part of a musculoskeletal construct from the head to the pelvis, has both to withstand loads to maintain a stable erect posture and to allow multidirectional mobility and stability with controlled intervertebral motion. Growing spine in adolescent idiopathic scoliosis (AIS) is characterized by three-dimensional global and local changes. A biomechanical cascade, the mechanism of which is not yet fully understood, impacts both tissue geometry and their biomechanical characteristics. This chapter on clinical biomechanics of AIS provides recent advances on 3D geometric and mechanical modeling of the spine and their clinical implications.

3D reconstruction from low-dose biplanar X-rays is a recent technique that is now routinely used in many hospitals. It provides visualization of the scoliotic spine and trunk, particularly from the top, and a large set of quantitative clinical 3D parameters that come in complement to the Cobb angle. The use of mathematical data analysis techniques allowed early detection of progressive spines. Quantitative shape assessment also allowed objective analysis of brace or surgical treatment effects on each individual patient. Such novel 3D quantitative analysis should drastically enhance our understanding of the mechanisms underlying AIS development and correction.

Moving from geometric to biomechanical models requires deep understanding and realistic modeling of mechanical characteristics of soft tissues, particularly the intervertebral discs. In vitro analysis gives an insight in the changes that occur in the structure of the scoliotic disc, and recent techniques based on MRI or ultrasound elastography appear promising for in vivo assessment.

Based on 3D reconstruction from biplanar X-rays, subject-specific biomechanical models are now proposed for the investigation of AIS spine and trunk, with a tremendous potential both for a better understanding of the basic biomechanical behavior and for computer-assisted planning of a personalized treatment. However it has to be kept in mind that models do simplify a highly complex structure, and therefore a thorough validation process has to be conducted before considering such models as predictive for a clinical use. Particularly, evaluation has to be performed on the whole set of clinical parameters of clinical interest. First validation frameworks progressively appear, and first in vivo validated models, although still mainly in research, open wide perspectives and should become mature in a near future, bringing an invaluable tool to the clinician for diagnosis and assessment of optimal treatment strategy.

Such advances in clinical biomechanics of the AIS rely on efficient dialogue between clinicians and engineers, which is the key for future translation toward AIS management based on biomechanical principles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Vital JM, Senegas J. Anatomical bases of the study of the constraints to which the cervical spine is subject in the sagittal plane A study of the center of gravity of the head. Surg Radiol Anat. 1986;8:169–73.

    Article  CAS  PubMed  Google Scholar 

  2. Dubousset J. Three-dimensional analysis of the scoliotic deformity, in: the pediatric spine: principles and practice. New York, NY: Raven Press; 1994.

    Google Scholar 

  3. Perdriolle R, Vidal J. Morphology of scoliosis: three-dimensional evolution. Orthopedics. 1987;10:909–15.

    CAS  PubMed  Google Scholar 

  4. Meir AR, Fairbank JCT, Jones DA, McNally DS, Urban JPG. High pressures and asymmetrical stresses in the scoliotic disc in the absence of muscle loading. Scoliosis. 2007;2:4.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brenner DJ, Hall EJ. Computed tomography. an increasing source of radiation exposure. N Engl J Med. 2007;357:2277–84.

    Article  CAS  PubMed  Google Scholar 

  6. Skalli W, Lavaste F, Descrimes JL. Quantification of three-dimensional vertebral rotations in scoliosis: what are the true values? Spine. 1995;20(5):546–53.

    Article  CAS  PubMed  Google Scholar 

  7. Aubert B, Vergari C, Ilharreborde B, Courvoisier A, Skalli W. 3D reconstruction of rib cage geometry from biplanar radiographs using a statistical parametric model approach. Comput Methods Biomech Biomed Eng Imag Vis. 2016;4:281–95.

    Google Scholar 

  8. Chaibi Y, Cresson T, Aubert B, Hausselle J, Neyret P, Hauger O, de Guise JA, Skalli W. Fast 3D reconstruction of the lower limb using a parametric model and statistical inferences and clinical measurements calculation from biplanar X-rays. Comput Methods Biomech Biomed Engin. 2012;15:457–66.

    Article  CAS  PubMed  Google Scholar 

  9. Dubousset J, Charpak G, Dorion I, Skalli W, Lavaste F, Deguise J, Kalifa G, Ferey S. A new 2D and 3D imaging approach to musculoskeletal physiology and pathology with low-dose radiation and the standing position: the EOS system. Bull Acad Natl Med. 2005;189:287–300.

    PubMed  Google Scholar 

  10. Humbert L, De Guise JA, Aubert B, Godbout B, Skalli W. 3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences. Med Eng Phys. 2009;31:681–7.

    Article  CAS  PubMed  Google Scholar 

  11. Carreau JH, Bastrom T, Petcharaporn M, Schulte C, Marks M, Illés T, Somoskeöy S, Newton PO. Computer-generated, three-dimensional spine model from biplanar radiographs: a validity study in idiopathic scoliosis curves greater than 50 degrees. Spine Deform. 2014;2:81–8.

    Article  PubMed  Google Scholar 

  12. Ferrero E, Lafage R, Vira S, Rohan P-Y, Oren J, Delsole E, Guigui P, Schwab F, Lafage V, Skalli W. Three-dimensional reconstruction using stereoradiography for evaluating adult spinal deformity: a reproducibility study. Eur Spine J. 2016;26:2112–20.

    Article  PubMed  Google Scholar 

  13. Gille O, Champain N, Benchikh-El-Fegoun A, Vital J-M, Skalli W. Reliability of 3D reconstruction of the spine of mild scoliotic patients. Spine. 2007;32(5):568–73.

    Article  PubMed  Google Scholar 

  14. Glaser DA, Doan J, Newton PO. Comparison of 3-dimensional spinal reconstruction accuracy: biplanar radiographs with EOS versus computed tomography. Spine. 2012;37(16):1391–7.

    Article  PubMed  Google Scholar 

  15. Ilharreborde B, Steffen JS, Nectoux E, Vital JM, Mazda K, Skalli W, Obeid I. Angle measurement reproducibility using EOS three-dimensional reconstructions in adolescent idiopathic scoliosis treated by posterior instrumentation. Spine. 2011;36:E1306–13.

    Article  PubMed  Google Scholar 

  16. Illés T, Tunyogi-Csapó M, Somoskeöy S. Breakthrough in three-dimensional scoliosis diagnosis: significance of horizontal plane view and vertebra vectors. Eur Spine J. 2011;20:135–43. https://doi.org/10.1007/s00586-010-1566-8.

    Article  PubMed  Google Scholar 

  17. Steib JP, Dumas R, Mitton D, Skalli W. Surgical correction of scoliosis by in situ contouring: a detorsion analysis. Spine. 2004;29:193–9.

    Article  PubMed  Google Scholar 

  18. Courvoisier A, Drevelle X, Dubousset J, Skalli W. Transverse plane 3D analysis of mild scoliosis. Eur Spine J. 2013;22:2427–32.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Skalli W, Vergari C, Ebermeyer E, Courtois I, Drevelle X, Abelin-Genevois K, Kohler R, Dubousset J. Early detection of progressive adolescent idiopathic scoliosis: a severity index. Spine (Phila Pa 1976). 2017;42(11):823–30.

    Article  Google Scholar 

  20. Courvoisier A, Drevelle X, Vialle R, Dubousset J, Skalli W. 3D analysis of brace treatment in idiopathic scoliosis. Eur Spine J. 2013;22:PMC3886497.

    Google Scholar 

  21. Vergari C, Mansfield J, Meakin JR, Winlove PC. Lamellar and fibre bundle mechanics of the annulus fibrosus in bovine intervertebral disc. Acta Biomater. 2016;37:14–20.

    Article  PubMed  Google Scholar 

  22. Donzelli S, Zaina F, Lusini M, Minnella S, Respizzi S, Balzarini L, Poma S, Negrini S. The three dimensional analysis of the Sforzesco brace correction. Scoliosis Spinal Disord. 2016;11:34. https://doi.org/10.1186/s13013-016-0092-9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ilharreborde B, Sebag G, Skalli W, Mazda K. Adolescent idiopathic scoliosis treated with posteromedial translation: radiologic evaluation with a 3D low-dose system. Eur Spine J. 2013;22:2382–91. https://doi.org/10.1007/s00586-013-2776-7.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dubousset J, Wicart P, Pomero V, Barois A, Estournet B. Spinal penetration index: new three-dimensional quantified reference for lordoscoliosis and other spinal deformities. J Orthop Sci. 2003;8:41–9. https://doi.org/10.1007/s007760300007.

    Article  PubMed  Google Scholar 

  25. Pietton R, Bouloussa H, Vergari C, Skalli W, Vialle R. Rib cage measurement reproducibility using biplanar stereoradiographic 3D reconstructions in adolescent idiopathic scoliosis. J Pediatr Orthop. 2017. https://doi.org/10.1097/BPO.0000000000001095. Epub available.

  26. Amabile C, Pillet H, Lafage V, Barrey C, Vital J-M, Skalli W. A new quasi-invariant parameter characterizing the postural alignment of young asymptomatic adults. Eur Spine J. 2016;25:3666–74. https://doi.org/10.1007/s00586-016-4552-y.

    Article  PubMed  Google Scholar 

  27. Steffen J-S, Obeid I, Aurouer N, Hauger O, Vital J-M, Dubousset J, Skalli W. 3D postural balance with regard to gravity line: an evaluation in the transversal plane on 93 patients and 23 asymptomatic volunteers. Eur Spine J. 2010;19:760–7. https://doi.org/10.1007/s00586-009-1249-5.

    Article  PubMed  Google Scholar 

  28. Sandoz B, Laporte S, Skalli W, Mitton D. Subject-specific body segment parameters’ estimation using biplanar X-rays: a feasibility study. Comput Methods Biomech Biomed Engin. 2010;13:649–54. https://doi.org/10.1080/10255841003717608.

    Article  PubMed  Google Scholar 

  29. Nérot A, Choisne J, Amabile C, Travert C, Pillet H, Wang X, Skalli W. A 3D reconstruction method of the body envelope from biplanar X-rays: evaluation of its accuracy and reliability. J Biomech. 2015;48:4322–6. https://doi.org/10.1016/j.jbiomech.2015.10.044.

    Article  PubMed  Google Scholar 

  30. Amabile C, Choisne J, Nérot A, Pillet H, Skalli W. Determination of a new uniform thorax density representative of the living population from 3D external body shape modeling. J Biomech. 2016;49:1162–9.

    Article  PubMed  Google Scholar 

  31. Faro FD, Marks MC, Pawelek J, Newton PO. Evaluation of a functional position for lateral radiograph acquisition in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2004;29:2284–9. http://www.ncbi.nlm.nih.gov/pubmed/15480143.

    Article  Google Scholar 

  32. Guo X, Chau WW, Chan YL, Cheng JC, Burwell RG, Dangerfield PH. Relative anterior spinal overgrowth in adolescent idiopathic scoliosis—result of disproportionate endochondral-membranous bone growth? Eur Spine J. 2005;14(9):862–73.

    Article  CAS  PubMed  Google Scholar 

  33. Schlösser TPC, van Stralen M, Chu WCW, Lam T-P, Ng BKW, Vincken KL, Cheng JCY, Castelein RM. Anterior overgrowth in primary curves, compensatory curves and junctional segments in adolescent idiopathic scoliosis. PLoS One. 2016;11:1–11. https://doi.org/10.1371/journal.pone.0160267.

    Article  Google Scholar 

  34. Perdriolle R, Becchetti S, Vidal J, Lopez P. Mechanical process and growth cartilages; Essential factors in the progression of scoliosis. Spine (Phila. Pa. 1976). 1993;18:343–9. http://journals.lww.com/spinejournal/Fulltext/1993/03000/Mechanical_Process_and_Growth_Cartilages_.7.aspx.

    Article  CAS  Google Scholar 

  35. Parent S, Labelle H, Skalli W, de Guise J. Vertebral wedging characteristic changes in scoliotic spines. Spine. 2004;29(20):e455–62.

    Article  PubMed  Google Scholar 

  36. Schlösser TPC, van Stralen M, Brink RC, Chu WCW, Lam T-P, Vincken KL, Castelein RM, Cheng JCY. Three-dimensional characterization of torsion and asymmetry of the intervertebral discs versus vertebral bodies in adolescent idiopathic scoliosis. Spine (Phila. Pa. 1976). 2014;39:E1159–66. http://journals.lww.com/spinejournal/Fulltext/2014/09010/Three_Dimensional_Characterization_of_Torsion_and.16.aspx.

    Article  Google Scholar 

  37. Parent S, Labelle H, Skalli W, Latimer B, de Guise J. Morphometric analysis of anatomic scoliotic specimens. Spine (Phila. Pa. 1976). 2002;27:2305–11. http://journals.lww.com/spinejournal/Fulltext/2002/11010/Morphometric_Analysis_of_Anatomic_Scoliotic.2.aspx.

    Article  Google Scholar 

  38. Courtois I, Collet P, Mouilleseaux B, Alexandre C. Bone mineral density at the femur and lumbar spine in a population of young women treated for scoliosis in adolescence. Rev Rhum Engl Ed. 1999;66(12):705–10.

    CAS  PubMed  Google Scholar 

  39. Cheng JC, Qin L, Cheung CS, Sher AH, Lee KM, Ng SW, Guo X. Generalized low areal and volumetric bone mineral density in adolescent idiopathic scoliosis. J Bone Miner Res. 2000;15(18):1587–95.

    Article  CAS  PubMed  Google Scholar 

  40. Kopperdahl DL, Morgan EF, Keaveny TM. Quantitative computed tomography estimates of the mechanical properties of human vertebral trabecular bone. J Orthop Res. 2002;20:801–5. https://doi.org/10.1016/S0736-0266(01)00185-1.

    Article  PubMed  Google Scholar 

  41. Crock HV. An atlas of vascular anatomy of the skeleton & spinal cord. London: Martin Dunitz Ltd; 1996.

    Google Scholar 

  42. Cannella M, Arthur A, Allen S, Keane M, Joshi A, Vresilovic E, Marcolongo M. The role of the nucleus pulposus in neutral zone human lumbar intervertebral disc mechanics. J Biomech. 2008;41:2104–11.

    Article  PubMed  Google Scholar 

  43. Shea M, Takeuchi TY, Wittenberg RH, White AA III, Hayes WC. A comparison of the effects of automated percutaneous diskectomy and conventional diskectomy on intradiscal pressure, disk geometry, and stiffness. J Spinal Disord. 1994;7:317–25.

    Article  CAS  PubMed  Google Scholar 

  44. Adam C, Rouch P, Skalli W. Inter-lamellar shear resistance confers compressive stiffness in the intervertebral disc: an image-based modelling study on the bovine caudal disc. J Biomech. 2015;48:4303–8.

    Article  PubMed  Google Scholar 

  45. Marchand F, Ahmed AM. Investigation of the laminate structure of lumbar disc anulus fibrosus. Spine. 1990;15:402–10.

    Article  CAS  PubMed  Google Scholar 

  46. Gruber HE, Hanley EN. Observations on morphologic changes in the aging and degenerating human disc: secondary collagen alterations. BMC Musculoskelet Disord. 2002;3:9.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yu J, Schollum ML, Wade KR, Broom ND, Urban J. ISSLS Prize Winner: a detailed examination of the elastic network leads to a new understanding of annulus fibrosus organization. Spine. 2012;37:1490–6.

    Article  Google Scholar 

  48. Pezowicz CA, Robertson PA, Broom ND. The structural basis of interlamellar cohesion in the intervertebral disc wall. J Anat. 2006;208:317–30.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Melrose J, Smith SM, Appleyard RC, Little CB. Aggrecan, versican and type VI collagen are components of annular translamellar crossbridges in the intervertebral disc. Eur Spine J. 2008;17:314–24.

    Article  PubMed  Google Scholar 

  50. Schollum ML, Robertson PA, Broom ND. ISSLS Prize Winner: microstructure and mechanical disruption of the lumbar disc annulus: part I: a microscopic investigation of the translamellar bridging network. Spine. 2008;33:2702–10.

    Article  PubMed  Google Scholar 

  51. Michalek AJ, Buckley MR, Bonassar LJ, Cohen I, Iatridis JC. Measurement of local strains in intervertebral disc anulus fibrosus tissue under dynamic shear: contributions of matrix fiber orientation and elastin content. J Biomech. 2009;42:2279–85.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bruehlmann SB, Matyas JR, Duncan NA. ISSLS prize winner: collagen fibril sliding governs cell mechanics in the anulus fibrosus: an in situ confocal microscopy study of bovine discs. Spine. 2004;29:2612–20.

    Article  PubMed  Google Scholar 

  53. Vergari C, Dubois G, Vialle R, Gennisson J-L, Tanter M, Dubousset J, Rouch P, Skalli W. Lumbar annulus fibrosus biomechanical characterization in healthy children by ultrasound shear wave elastography. Eur Radiol. 2016;26:1213–7.

    Article  PubMed  Google Scholar 

  54. Bushell GR, Ghosh P, Taylor TKF, Sutherland JM. The collagen of the intervertebral disc in adolescent idiopathic scoliosis. J Bone Joint Surg. 1979;61-B:501–8.

    Article  CAS  Google Scholar 

  55. Antoniou J, Arlet V, Goswami T, Aebi M, Alini M. Elevated synthetic activity in the convex side of scoliotic intervertebral discs and endplates compared with normal tissues. Spine. 2001;26(10):E198–206.

    Article  CAS  PubMed  Google Scholar 

  56. Roberts S, Menage J, Eisenstein SM. The cartilage end-plate and intervertebral disc in scoliosis: calcification and other sequelae. J Orthop Res. 1993;11:747–57.

    Article  CAS  PubMed  Google Scholar 

  57. Yu J, Fairbank JC, Roberts S, Urban JP. The elastic fiber network of the anulus fibrosus of the normal and scoliotic human intervertebral disc. Spine. 2005;30:1815–20.

    Article  PubMed  Google Scholar 

  58. Chen B, Fellenberg J, Wang H, Carstens C, Richter W. Occurrence and regional distribution of apoptosis in scoliotic discs. Spine. 2005;30(5):519–24.

    Article  PubMed  Google Scholar 

  59. Urban MR, Fairbank JCT, Etherington PJ, Loh Lawrence F, Winlove CP, Urban JPG. Electrochemical measurement of transport into scoliotic intervertebral discs invivo using nitrous oxide as a tracer. Spine. 2001;26:984–90.

    Article  CAS  PubMed  Google Scholar 

  60. Stokes IA, Spence H, Aronsson DD, Kilmer N. Mechanical modulation of vertebral body growth. Implications for scoliosis progression. Spine. 1996;21:1162–7.

    Article  CAS  PubMed  Google Scholar 

  61. Benneker L, Heini P, Anderson S, Alini M, Ito K. Correlation of radiographic and MRI parameters to morphological and biochemical assessment of intervertebral disc degeneration. Eur Spine J. 2005;14:27–35.

    Article  PubMed  Google Scholar 

  62. Ludescher B, Effelsberg J, Martirosian P, Steidle G, Markert B, Claussen C, Schick F. T2- and diffusion-maps reveal diurnal changes of intervertebral disc composition: An in vivo MRI study at 1.5 Tesla. J Magn Reson Imaging. 2008;28:252–7.

    Article  PubMed  Google Scholar 

  63. Osti OL, Fraser RD. MRI and discography of annular tears and intervertebral disc degeneration. A prospective clinical comparison. J Bone Joint Surg Br. 1992;74-B:431 LP–435.

    Article  Google Scholar 

  64. Violas P, Estivalezes E, Briot J, Sales de Gauzy J, Swider P. Objective quantification of intervertebral disc volume properties using MRI in idiopathic scoliosis surgery. Magn Reson Imaging. 2007;25:386–91.

    Article  PubMed  Google Scholar 

  65. Gervais J, Périé D, Parent S, Labelle H, Aubin C-E. MRI signal distribution within the intervertebral disc as a biomarker of adolescent idiopathic scoliosis and spondylolisthesis. BMC Musculoskelet Disord. 2012;13:1–10.

    Article  Google Scholar 

  66. Hirsch C, Ilharreborde B, Mazda K. EOS suspension test for the assessment of spinal flexibility in adolescent idiopathic scoliosis. Eur Spine J. 2015;24:1408–14.

    Article  PubMed  Google Scholar 

  67. Klepps SJ, Lenke LG, Bridwell KH, Bassett GS, Whorton J. Prospective comparison of flexibility radiographs in adolescent idiopathic scoliosis. Spine. 2001;26:E74–9.

    Article  CAS  PubMed  Google Scholar 

  68. Little JP, Adam CJ. The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending. Spine. 2009;34:E76–82.

    Article  PubMed  Google Scholar 

  69. Kakitsubata Y, Theodorou SJ, Theodorou DJ, Nabeshima K, Kakitsubata S, Tamura S. Sonographic characterization of the lumbar intervertebral disk with anatomic correlation and histopathologic findings. J Ultrasound Med. 2005;24:489–99.

    Article  PubMed  Google Scholar 

  70. Naish C, Mitchell R, Innes J, Halliwell M, McNally D. Ultrasound imaging of the intervertebral disc. Spine. 2003;28:107–13.

    Article  PubMed  Google Scholar 

  71. Vergari C, Courtois I, Ebermeyer E, Bouloussa H, Vialle R, Skalli W. Experimental validation of a patient-specific model of orthotic action in adolescent idiopathic scoliosis. Eur Spine J. 2016;25:3049–55.

    Article  PubMed  Google Scholar 

  72. Prot M, Saletti D, Pattofatto S, Bousson V, Laporte S. Links between mechanical behavior of cancellous bone and its microstructural properties under dynamic loading. J Biomech. 2015;48:498–503. https://doi.org/10.1016/j.jbiomech.2014.12.002.

    Article  CAS  PubMed  Google Scholar 

  73. Charles YP, Lima LV, Persohn S, Rouch P, Steib JP, Skalli W. Influence of an auxiliary facet system on intervertebral discs and adjacent facet joints. Spine J. 2013;13(10):1293–300.

    Article  PubMed  Google Scholar 

  74. Le Huec JC, Lafage V, Bonnet X, Lavaste F, Josse L, Liu M, Skalli W. Validated finite element analysis of the maverick total disc prosthesis. J Spinal Disord Tech. 2010;23(4):249–57.

    Article  PubMed  Google Scholar 

  75. Villemure I, Aubin CE, Dansereau J, Labelle H. Biomechanical simulations of the spine deformation process in adolescent idiopathic scoliosis from different pathogenesis hypotheses. Eur Spine J. 2004;13:83–90. https://doi.org/10.1007/s00586-003-0565-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Drevelle X, Lafon Y, Ebermeyer E, Courtois I, Dubousset J, Skalli W. Analysis of idiopathic scoliosis progression by using numerical simulation. Spine (Phila Pa 1976). 2010;35:E407–12. http://journals.lww.com/spinejournal/Fulltext/2010/05010/Analysis_of_Idiopathic_Scoliosis_Progression_by.21.aspx.

    Article  CAS  Google Scholar 

  77. Shi L, Wang D, Driscoll M, Villemure I, Chu WC, Cheng JC, Aubin C-E. Biomechanical analysis and modeling of different vertebral growth patterns in adolescent idiopathic scoliosis and healthy subjects. Scoliosis. 2011;6:11. https://doi.org/10.1186/1748-7161-6-11.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Nie W-Z, Ye M, Liu Z-D, Wang C-T. The patient-specific brace design and biomechanical analysis of adolescent idiopathic scoliosis. J Biomech Eng. 2009;131:41007. https://doi.org/10.1115/1.3049843.

    Article  Google Scholar 

  79. Desbiens-Blais F, Clin J, Parent S, Labelle H, Aubin C-E. New brace design combining CAD/CAM and biomechanical simulation for the treatment of adolescent idiopathic scoliosis. Clin Biomech. 2012;27:999–1005. https://doi.org/10.1016/j.clinbiomech.2012.08.006.

    Article  Google Scholar 

  80. Rizza R, Liu X, Thometz J, Tassone C. Comparison of biomechanical behavior between a cast material torso jacket and a polyethylene based jacket. Scoliosis. 2015;10:S15. https://doi.org/10.1186/1748-7161-10-S2-S15.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Cobetto N, Aubin CE, Parent S, Clin J, Barchi S, Turgeon I, Labelle H. Effectiveness of braces designed using computer-aided design and manufacturing (CAD/CAM) and finite element simulation compared to CAD/CAM only for the conservative treatment of adolescent idiopathic scoliosis: a prospective randomized controlled trial. Eur Spine J. 2016;25(10):3056–64. https://doi.org/10.1007/s00586-016-4434-3.

    Article  CAS  PubMed  Google Scholar 

  82. Vergari C, Ribes G, Aubert B, Adam C, Miladi L, Ilharreborde B, Abelin-Genevois K, Rouch P, Skalli W. Evaluation of a patient-specific finite element model to simulate conservative treatment in adolescent idiopathic scoliosis. Spine Deform. 2015;3:4–11.

    Article  PubMed  Google Scholar 

  83. Little JP, Adam CJ. Geometric sensitivity of patient-specific finite element models of the spine to variability in user-selected anatomical landmarks. Comput Methods Biomech Biomed Engin. 2015;18(6):676–88.

    Article  CAS  PubMed  Google Scholar 

  84. Driscoll M, Aubin C-E, Moreau A, Parent S. Biomechanical comparison of fusionless growth modulation corrective techniques in pediatric scoliosis. Med Biol Eng Comput. 2011;49:1437–45. https://doi.org/10.1007/s11517-011-0801-8.

    Article  PubMed  Google Scholar 

  85. Lafon Y, Steib J-P, Skalli W. Intraoperative three dimensional correction during in situ contouring surgery by using a numerical model. Spine (Phila. Pa. 1976). 2010;35:453–9. https://doi.org/10.1097/BRS.0b013e3181b8eaca.

    Article  Google Scholar 

  86. Berger S, Marcello O, Schuman S, Schneider J, Studer D, Hasler C, Zheng G, Büchler P. Patient-specific spinal stiffness in AIS: a preoperative and noninvasive method. Eur Spine J. 2015;24:249–55. https://doi.org/10.1007/s00586-014-3623-1.

    Article  PubMed  Google Scholar 

  87. Lafon Y, Lafage V, Dubousset J, Skalli W. Intraoperative three-dimensional correction during rod rotation technique. Spine (Phila Pa 1976). 2009;34:512–9. https://doi.org/10.1097/BRS.0b013e31819413ec.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank all the spine team of the Institut de Biomécanique Humaine Georges Charpak and the clinical partners who participated to research on scoliosis.

Recent research was supported by the ParisTech Foundation within the BiomecAM chair program on subject-specific musculoskeletal modeling, with the participation of Cotrel Foundation, Proteor Company, Société Générale, and Covea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wafa Skalli Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK

About this chapter

Cite this chapter

Skalli, W., Vergari, C. (2018). Biomechanics of Adolescent Idiopathic Scoliosis. In: Machida, M., Weinstein, S., Dubousset, J. (eds) Pathogenesis of Idiopathic Scoliosis. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56541-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56541-3_4

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56539-0

  • Online ISBN: 978-4-431-56541-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics