Skip to main content

Adaptive Leader-Follower Formation in Cluttered Environment Using Dynamic Target Reconfiguration

  • Conference paper
  • First Online:
Distributed Autonomous Robotic Systems

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 112 ))

Abstract

This paper presents a control architecture for safe and smooth navigation of a group of Unmanned Ground Vehicles (UGV) while keeping a specific formation. The formation control is based on Leader-follower and Behavioral approaches. The proposed control architecture is designed to allow the use of a single control law for different multi-vehicle contexts (navigation in formation, transition between different formation shapes, obstacle avoidance, etc.). The obstacle avoidance strategy is based on the limit-cycle approach while taking into account the dimension of the formation. A new Strategy for Formation Reconfiguration (SFR) of the group of UGVs based on suitable smooth switching of the set-points (according, for instance, to the encountered obstacles or the new task to achieve) is proposed. The inter-vehicles collisions are avoided during the SFR using a penalty function acting on the vehicle velocities. Different simulations on cluttered environments show the performance and the efficiency of the proposal, to obtain fully reactive and distributed control strategy for the navigation in formation of a group of UGVs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://maccs.univ-bpclermont.fr/uploads/Profiles/VilcaJM/FormationReconfiguration.mp4.

References

  1. Adouane, L., Benzerrouk, A., Martinet, P.: Mobile robot navigation in cluttered environment using reactive elliptic trajectories. In: 18th IFAC World Congress (2011)

    Google Scholar 

  2. Benzerrouk, A., Adouane, L., Martinet, P.: Altruistic distributed target allocation for stable navigation in formation of multi-robot system. In: 10th International IFAC Symposium on Robot Control (SYROCO’12), Dubrovnik, Croatia (2012)

    Google Scholar 

  3. Chaimowicz, L., Kumar, R.V., Campos, M.F.M.: A mechanism for dynamic coordination of multiple robots. Auton. Robot. 17, 7–21 (2004)

    Article  Google Scholar 

  4. Chao, Z., Zhou, S.L., Ming, L., Zhang, W.G.: UAV formation flight based on nonlinear model predictive control. Math. Prob. Eng. 2012, 1–15 (2012)

    Article  MATH  Google Scholar 

  5. Chen, X., Li, Y.: Smooth formation navigation of multiple mobile robots for avoiding moving obstacles. Int. J. Control Autom. 4(4), 466–479 (2006)

    Google Scholar 

  6. Clark, J., Fierro, R.: Mobile robotic sensors for perimeter detection and tracking. ISA Trans. 46(1), 3–13 (2007)

    Article  Google Scholar 

  7. Consolini, L., Morbidi, F., Prattichizzo, D., Tosques, M.: Leader-follower formation control of nonholonomic mobile robots with input constraints. Automatica 44(5), 1343–1349 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Das, A., Fierro, R., Kumar, V., Ostrowski, J., Spletzer, J., Taylor, C.: A vision-based formation control framework. IEEE Trans. Robot. Autom. 18(5), 813–825 (2002)

    Article  Google Scholar 

  9. Dasgupta, P., Whipple, T., Cheng, K.: Effects of multi-robot team formations on distributed area coverage. Int. J. Swarm Intell. Res. 2(1), 44–69 (2011)

    Article  Google Scholar 

  10. Desai, J., Ostrowski, J., Kumar, V.: Modeling and control of formations of nonholonomic mobile robots. IEEE Trans. Robot. Autom. 17(6), 905–908 (2001)

    Article  Google Scholar 

  11. El-Zaher, M., Contet, J.M., Gechter, F., Koukam, A.: Echelon platoon organisation: a distributed approach based on 2-spring virtual links. In: 15th International Conference on Artificial Intelligence: methodology, Systems, Applications (AIMSA), Germany (2012)

    Google Scholar 

  12. Ghommam, J., Mehrjerdi, H., Saad, M., Mnif, F.: Formation path following control of unicycle-type mobile robots. Robot. Auton. Syst. 58(5), 727–736 (2010)

    Article  Google Scholar 

  13. The Institut Pascal Data Sets.: http://ipds.univ-bpclermont.fr (2013)

  14. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5, 90–99 (1986)

    Article  Google Scholar 

  15. Levinson, J., Thrun, S.: Robust vehicle localization in urban environments using probabilistic maps. In: IEEE International Conference on Robotics and Automation, Alaska, USA (2010)

    Google Scholar 

  16. Lozenguez, G., Adouane, L., Beynier, A., Mouaddib, A., Martinet, P.: Map partitioning to approximate an exploration strategy in mobile robotics. In: MAGS—Multiagent and Grid Systems (2012)

    Google Scholar 

  17. Luca, A.D., Oriolo, G., Samson, C.: Feedback control of a nonholonomic car-like robot. In: J.P. Laumond (ed.) Robot Motion Planning and Control, pp. 171–253. Springer-Verlag (1998)

    Google Scholar 

  18. Mesbahi, M., Hadaegh, F.: Formation flying control of multiple spacecraft via graphs, matrix inequalities, and switching. In: Proceedings of the 1999 IEEE International Conference on Control Applications, vol. 2, pp. 1211–1216 (1999)

    Google Scholar 

  19. Miner, D.: Swarm Robotics Algorithms: A Survey (2007)

    Google Scholar 

  20. Shames, I., Deghat, M., Anderson, B.: Safe formation control with obstacle avoidance. In: IFAC World Congress, Milan, Italy (2011)

    Google Scholar 

  21. Sinha, A., Ghose, D.: Generalization of linear cyclic pursuit with application to rendezvous of multiple autonomous agents. IEEE Trans. Autom. Control 51, 1819–1824 (2006)

    Article  MathSciNet  Google Scholar 

  22. Tang, H., Song, A., Zhang, X.: Hybrid behavior coordination mechanism for navigation of reconnaissance robot. In: International Conference on Intelligent Robots and Systems (2006)

    Google Scholar 

  23. Vilca, J., Adouane, L., Mezouar, Y., Lébraly, P.: An overall control strategy based on target reaching for the navigation of an urban electric vehicle. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’13), Tokyo, Japan (2013)

    Google Scholar 

  24. Zapata, R., Cacitti, A., Lepinay, P.: Dvz-based collision avoidance control of non-holonomic mobile manipulators. JESA, Eur. J. Autom. Syst. 38(5), 559–588 (2004)

    Google Scholar 

  25. Ze-su, C., Jie, Z., Jian, C.: Formation control and obstacle avoidance for multiple robots subject to wheel-slip. Int. J. Adv. Rob. Syst. 9, 1–15 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the French National Research Agency through the Safeplatoon project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Vilca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this paper

Cite this paper

Vilca, J., Adouane, L., Mezouar, Y. (2016). Adaptive Leader-Follower Formation in Cluttered Environment Using Dynamic Target Reconfiguration. In: Chong, NY., Cho, YJ. (eds) Distributed Autonomous Robotic Systems. Springer Tracts in Advanced Robotics, vol 112 . Springer, Tokyo. https://doi.org/10.1007/978-4-431-55879-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55879-8_17

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55877-4

  • Online ISBN: 978-4-431-55879-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics