Skip to main content

Regulation of pRB and p53 Pathways by the Long Noncoding RNAs ANRIL, lincRNA-p21, lincRNA-RoR, and PANDA

  • Chapter
Long Noncoding RNAs
  • 1277 Accesses

Abstract

Retinoblastoma protein (pRB) and p53 pathways play a key role in controlling the cell cycle and apoptosis in response to oncogenic insults and DNA damage. Disruption of these pathways deregulates the control of cell proliferation and represents a common event in the development of most types of human cancer. Recent studies have revealed that several long noncoding RNAs (lncRNAs) are involved in the regulation of pRB and p53 pathways, through transcriptional and translational control of target genes. In this chapter, we focus on four lncRNAs: ANRIL, lincRNA-p21, lincRNA-RoR, and PANDA. These lncRNAs are involved in the pRB and p53 pathways. ANRIL associates with and recruits polycomb proteins to repress the transcription of cyclin-dependent kinase (CDK) inhibitor p15 and p16 genes, resulting in the repression of pRB function. lincRNA-p21, lincRNA-RoR, and PANDA are induced by p53 in response to DNA damage and regulate apoptosis. We discuss the involvement of ANRIL, lincRNA-p21, lincRNA-RoR, and PANDA in cellular functions through the pRB and p53 pathways, and the molecular mechanisms by which these lncRNAs regulate the expression of target genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bishop DT, Demenais F, Iles MM, Harland M, Taylor JC, Corda E, Randerson-Moor J, Aitken JF, Avril MF, Azizi E, Bakker B, Bianchi-Scarra G, Bressac-de Paillerets B, Calista D, Cannon-Albright LA, Chin AWT, Debniak T, Galore-Haskel G, Ghiorzo P, Gut I, Hansson J, Hocevar M, Hoiom V, Hopper JL, Ingvar C, Kanetsky PA, Kefford RF, Landi MT, Lang J, Lubinski J, Mackie R, Malvehy J, Mann GJ, Martin NG, Montgomery GW, van Nieuwpoort FA, Novakovic S, Olsson H, Puig S, Weiss M, van Workum W, Zelenika D, Brown KM, Goldstein AM, Gillanders EM, Boland A, Galan P, Elder DE, Gruis NA, Hayward NK, Lathrop GM, Barrett JH, Bishop JA (2009) Genome-wide association study identifies three loci associated with melanoma risk. Nat Genet 41(8):920–925, ng.411 [pii] 10.1038/ng.411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C, Theilgaard-Monch K, Minucci S, Porse BT, Marine JC, Hansen KH, Helin K (2007) The polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev 21(5):525–530, 21/5/525 [pii] 10.1101/gad.415507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Broadbent HM, Peden JF, Lorkowski S, Goel A, Ongen H, Green F, Clarke R, Collins R, Franzosi MG, Tognoni G, Seedorf U, Rust S, Eriksson P, Hamsten A, Farrall M, Watkins H (2008) Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. Hum Mol Genet 17(6):806–814, ddm352 [pii] 10.1093/hmg/ddm352

    Article  CAS  PubMed  Google Scholar 

  • Brookes S, Rowe J, Ruas M, Llanos S, Clark PA, Lomax M, James MC, Vatcheva R, Bates S, Vousden KH, Parry D, Gruis N, Smit N, Bergman W, Peters G (2002) INK4a-deficient human diploid fibroblasts are resistant to RAS-induced senescence. EMBO J 21(12):2936–2945. doi:10.1093/emboj/cdf289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE (2010) Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 6(12):e1001233. doi:10.1371/journal.pgen.1001233

    Article  PubMed Central  PubMed  Google Scholar 

  • Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120(4):513–522, S0092-8674(05)00111-X [pii] 10.1016/j.cell.2005.02.003

    Article  CAS  PubMed  Google Scholar 

  • Cao R, Tsukada Y, Zhang Y (2005) Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell 20(6):845–854, S1097-2765(05)01817-4 [pii] 10.1016/j.molcel.2005.12.002

    Article  CAS  PubMed  Google Scholar 

  • Congrains A, Kamide K, Katsuya T, Yasuda O, Oguro R, Yamamoto K, Ohishi M, Rakugi H (2012) CVD-associated non-coding RNA, ANRIL, modulates expression of atherogenic pathways in VSMC. Biochem Biophys Res Commun 419(4):612–616, S0006-291X(12)00283-5 [pii] 10.1016/j.bbrc.2012.02.050

    Article  CAS  PubMed  Google Scholar 

  • Cunnington MS, Santibanez Koref M, Mayosi BM, Burn J, Keavney B (2010) Chromosome 9p21 SNPs associated with multiple disease phenotypes correlate with ANRIL expression. PLoS Genet 6(4):e1000899. doi:10.1371/journal.pgen.1000899

    Article  PubMed Central  PubMed  Google Scholar 

  • Folkersen L, Kyriakou T, Goel A, Peden J, Malarstig A, Paulsson-Berne G, Hamsten A, Hugh W, Franco-Cereceda A, Gabrielsen A, Eriksson P (2009) Relationship between CAD risk genotype in the chromosome 9p21 locus and gene expression. Identification of eight new ANRIL splice variants. PLoS One 4(11):e7677. doi:10.1371/journal.pone.0007677

    Article  PubMed Central  PubMed  Google Scholar 

  • Gschwendtner A, Bevan S, Cole JW, Plourde A, Matarin M, Ross-Adams H, Meitinger T, Wichmann E, Mitchell BD, Furie K, Slowik A, Rich SS, Syme PD, MacLeod MJ, Meschia JF, Rosand J, Kittner SJ, Markus HS, Muller-Myhsok B, Dichgans M (2009) Sequence variants on chromosome 9p21.3 confer risk for atherosclerotic stroke. Ann Neurol 65(5):531–539. doi:10.1002/ana.21590

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076, nature08975 [pii] 10.1038/nature08975

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Helgadottir A, Thorleifsson G, Manolescu A, Gretarsdottir S, Blondal T, Jonasdottir A, Sigurdsson A, Baker A, Palsson A, Masson G, Gudbjartsson DF, Magnusson KP, Andersen K, Levey AI, Backman VM, Matthiasdottir S, Jonsdottir T, Palsson S, Einarsdottir H, Gunnarsdottir S, Gylfason A, Vaccarino V, Hooper WC, Reilly MP, Granger CB, Austin H, Rader DJ, Shah SH, Quyyumi AA, Gulcher JR, Thorgeirsson G, Thorsteinsdottir U, Kong A, Stefansson K (2007) A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316(5830):1491–1493, 1142842 [pii] 10.1126/science.1142842

    Article  CAS  PubMed  Google Scholar 

  • Holdt LM, Beutner F, Scholz M, Gielen S, Gabel G, Bergert H, Schuler G, Thiery J, Teupser D (2010) ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler Thromb Vasc Biol 30(3):620–627, ATVBAHA.109.196832 [pii] 10.1161/ATVBAHA.109.196832

    Article  CAS  PubMed  Google Scholar 

  • Holdt LM, Hoffmann S, Sass K, Langenberger D, Scholz M, Krohn K, Finstermeier K, Stahringer A, Wilfert W, Beutner F, Gielen S, Schuler G, Gabel G, Bergert H, Bechmann I, Stadler PF, Thiery J, Teupser D (2013) Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet 9(7):e1003588, PGENETICS-D-13-00414 [pii] 10.1371/journal.pgen.1003588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253(5015):49–53

    Article  CAS  PubMed  Google Scholar 

  • Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M, Attardi LD, Regev A, Lander ES, Jacks T, Rinn JL (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142(3):409–419, S0092-8674(10)00730-0 [pii] 10.1016/j.cell.2010.06.040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD, Horlings HM, Shah N, Umbricht C, Wang P, Kong B, Langerod A, Borresen-Dale AL, Kim SK, van de Vijver M, Sukumar S, Whitfield ML, Kellis M, Xiong Y, Wong DJ, Chang HY (2011) Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 43(7):621–629, ng.848 [pii] 10.1038/ng.848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hwang HC, Clurman BE (2005) Cyclin E in normal and neoplastic cell cycles. Oncogene 24(17):2776–2786, 1208613 [pii] 10.1038/sj.onc.1208613

    Article  CAS  PubMed  Google Scholar 

  • Iacobucci I, Sazzini M, Garagnani P, Ferrari A, Boattini A, Lonetti A, Papayannidis C, Mantovani V, Marasco E, Ottaviani E, Soverini S, Girelli D, Luiselli D, Vignetti M, Baccarani M, Martinelli G (2011) A polymorphism in the chromosome 9p21 ANRIL locus is associated to Philadelphia positive acute lymphoblastic leukemia. Leuk Res 35(8):1052–1059, S0145-2126(11)00111-1 [pii] 10.1016/j.leukres.2011.02.020

    Article  CAS  PubMed  Google Scholar 

  • Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA, Grosveld G, Sherr CJ (1997) Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91(5):649–659, S0092-8674(00)80452-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Choi J, Heo K, Kim H, Levens D, Kohno K, Johnson EM, Brock HW, An W (2008) Isolation and characterization of a novel H1.2 complex that acts as a repressor of p53-mediated transcription. J Biol Chem 283(14):9113–9126, M708205200 [pii] 10.1074/jbc.M708205200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kitagawa M, Higashi H, Jung HK, Suzuki-Takahashi I, Ikeda M, Tamai K, Kato J, Segawa K, Yoshida E, Nishimura S, Taya Y (1996) The consensus motif for phosphorylation by cyclin D1–CDK4 is different from that for phosphorylation by cyclin A/E–CDK2. EMBO J 15(24):7060–7069

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kitagawa M, Kitagawa K, Kotake Y, Niida H, Ohhata T (2013) Cell cycle regulation by long non-coding RNAs. Cell Mol Life Sci 70(24):4785–4794. doi:10.1007/s00018-013-1423-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kotake Y, Cao R, Viatour P, Sage J, Zhang Y, Xiong Y (2007) pRB family proteins are required for H3K27 trimethylation and polycomb repression complexes binding to and silencing p16INK4alpha tumor suppressor gene. Genes Dev 21(1):49–54, 21/1/49 [pii] 10.1101/gad.1499407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M, Xiong Y (2011) Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 30(16):1956–1962, onc2010568 [pii] 10.1038/onc.2010.568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krimpenfort P, Quon KC, Mooi WJ, Loonstra A, Berns A (2001) Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature 413(6851):83–86, 35092584 [pii] 10.1038/35092584

    Article  CAS  PubMed  Google Scholar 

  • Krimpenfort P, Ijpenberg A, Song JY, van der Valk M, Nawijn M, Zevenhoven J, Berns A (2007) p15Ink4b is a critical tumour suppressor in the absence of p16Ink4a. Nature 448(7156):943–946, nature06084 [pii] 10.1038/nature06084

    Article  CAS  PubMed  Google Scholar 

  • Laptenko O, Prives C (2006) Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ 13(6):951–961, 4401916 [pii] 10.1038/sj.cdd.4401916

    Article  CAS  PubMed  Google Scholar 

  • Levine AJ, Momand J, Finlay CA (1991) The p53 tumour suppressor gene. Nature 351(6326):453–456. doi:10.1038/351453a0

    Article  CAS  PubMed  Google Scholar 

  • Loewer S, Cabili MN, Guttman M, Loh YH, Thomas K, Park IH, Garber M, Curran M, Onder T, Agarwal S, Manos PD, Datta S, Lander ES, Schlaeger TM, Daley GQ, Rinn JL (2010) Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet 42(12):1113–1117, ng.710 [pii] 10.1038/ng.710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mantovani R (1999) The molecular biology of the CCAAT-binding factor NF-Y. Gene 239(1):15–27, S0378-1119(99)00368-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Matarin M, Brown WM, Singleton A, Hardy JA, Meschia JF (2008) Whole genome analyses suggest ischemic stroke and heart disease share an association with polymorphisms on chromosome 9p21. Stroke 39(5):1586–1589, STROKEAHA.107.502963 [pii] 10.1161/STROKEAHA.107.502963

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R, Cox DR, Hinds DA, Pennacchio LA, Tybjaerg-Hansen A, Folsom AR, Boerwinkle E, Hobbs HH, Cohen JC (2007) A common allele on chromosome 9 associated with coronary heart disease. Science 316(5830):1488–1491, 1142447 [pii] 10.1126/science.1142447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morachis JM, Murawsky CM, Emerson BM (2010) Regulation of the p53 transcriptional response by structurally diverse core promoters. Genes Dev 24(2):135–147, gad.1856710 [pii] 10.1101/gad.1856710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pasmant E, Laurendeau I, Heron D, Vidaud M, Vidaud D, Bieche I (2007) Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Res 67(8):3963–3969, 67/8/3963 [pii] 10.1158/0008-5472.CAN-06-2004

    Article  CAS  PubMed  Google Scholar 

  • Pasmant E, Sabbagh A, Masliah-Planchon J, Ortonne N, Laurendeau I, Melin L, Ferkal S, Hernandez L, Leroy K, Valeyrie-Allanore L, Parfait B, Vidaud D, Bieche I, Lantieri L, Wolkenstein P, Vidaud M (2011) Role of noncoding RNA ANRIL in genesis of plexiform neurofibromas in neurofibromatosis type 1. J Natl Cancer Inst 103(22):1713–1722, djr416 [pii] 10.1093/jnci/djr416

    Article  CAS  PubMed  Google Scholar 

  • Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee HW, Cordon-Cardo C, DePinho RA (1998) The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2′s inhibition of p53. Cell 92(6):713–723, S0092-8674(00)81400-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323, S0092-8674(07)00659-9 [pii] 10.1016/j.cell.2007.05.022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ruas M, Peters G (1998) The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta 1378(2):F115–F177, S0304-419X(98)00017-1 [pii]

    CAS  PubMed  Google Scholar 

  • Sato K, Nakagawa H, Tajima A, Yoshida K, Inoue I (2010) ANRIL is implicated in the regulation of nucleus and potential transcriptional target of E2F1. Oncol Rep 24(3):701–707

    CAS  PubMed  Google Scholar 

  • Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H, Roix JJ, Kathiresan S, Hirschhorn JN, Daly MJ, Hughes TE, Groop L, Altshuler D, Almgren P, Florez JC, Meyer J, Ardlie K, Bengtsson Bostrom K, Isomaa B, Lettre G, Lindblad U, Lyon HN, Melander O, Newton-Cheh C, Nilsson P, Orho-Melander M, Rastam L, Speliotes EK, Taskinen MR, Tuomi T, Guiducci C, Berglund A, Carlson J, Gianniny L, Hackett R, Hall L, Holmkvist J, Laurila E, Sjogren M, Sterner M, Surti A, Svensson M, Tewhey R, Blumenstiel B, Parkin M, Defelice M, Barry R, Brodeur W, Camarata J, Chia N, Fava M, Gibbons J, Handsaker B, Healy C, Nguyen K, Gates C, Sougnez C, Gage D, Nizzari M, Gabriel SB, Chirn GW, Ma Q, Parikh H, Richardson D, Ricke D, Purcell S (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316(5829):1331–1336, 1142358 [pii] 10.1126/science.1142358

    Article  CAS  PubMed  Google Scholar 

  • Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, Erdos MR, Stringham HM, Chines PS, Jackson AU, Prokunina-Olsson L, Ding CJ, Swift AJ, Narisu N, Hu T, Pruim R, Xiao R, Li XY, Conneely KN, Riebow NL, Sprau AG, Tong M, White PP, Hetrick KN, Barnhart MW, Bark CW, Goldstein JL, Watkins L, Xiang F, Saramies J, Buchanan TA, Watanabe RM, Valle TT, Kinnunen L, Abecasis GR, Pugh EW, Doheny KF, Bergman RN, Tuomilehto J, Collins FS, Boehnke M (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316(5829):1341–1345, 1142382 [pii] 10.1126/science.1142382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Serrano M, Lee H, Chin L, Cordon-Cardo C, Beach D, DePinho RA (1996) Role of the INK4a locus in tumor suppression and cell mortality. Cell 85(1):27–37, S0092-8674(00)81079-X [pii]

    Article  CAS  PubMed  Google Scholar 

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88(5):593–602, S0092-8674(00)81902-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Sharpless NE (2005) INK4a/ARF: a multifunctional tumor suppressor locus. Mutat Res 576(1-2):22–38, S0027-5107(05)00151-X [pii] 10.1016/j.mrfmmm.2004.08.021

    Article  CAS  PubMed  Google Scholar 

  • Sharpless NE, Bardeesy N, Lee KH, Carrasco D, Castrillon DH, Aguirre AJ, Wu EA, Horner JW, DePinho RA (2001) Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413(6851):86–91, 35092592 [pii] 10.1038/35092592

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ (1996) Cancer cell cycles. Science 274(5293):1672–1677

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ, McCormick F (2002) The RB and p53 pathways in cancer. Cancer Cell 2(2):103–112, S1535610802001022 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13(12):1501–1512

    Article  CAS  PubMed  Google Scholar 

  • Shete S, Hosking FJ, Robertson LB, Dobbins SE, Sanson M, Malmer B, Simon M, Marie Y, Boisselier B, Delattre JY, Hoang-Xuan K, El Hallani S, Idbaih A, Zelenika D, Andersson U, Henriksson R, Bergenheim AT, Feychting M, Lonn S, Ahlbom A, Schramm J, Linnebank M, Hemminki K, Kumar R, Hepworth SJ, Price A, Armstrong G, Liu Y, Gu X, Yu R, Lau C, Schoemaker M, Muir K, Swerdlow A, Lathrop M, Bondy M, Houlston RS (2009) Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet 41(8):899–904, ng.407 [pii] 10.1038/ng.407

    Article  CAS  PubMed  Google Scholar 

  • Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, Palmero I, Ryan K, Hara E, Vousden KH, Peters G (1998) The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J 17(17):5001–5014. doi:10.1093/emboj/17.17.5001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Subramanian M, Jones MF, Lal A (2013) Long non-coding RNAs embedded in the Rb and p53 pathways. Cancer (Basel) 5(4):1655–1675, cancers5041655 [pii] 10.3390/cancers5041655

    Article  Google Scholar 

  • Takagi M, Absalon MJ, McLure KG, Kastan MB (2005) Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell 123(1):49–63, S0092-8674(05)00814-7 [pii] 10.1016/j.cell.2005.07.034

    Article  CAS  PubMed  Google Scholar 

  • Toledo F, Wahl GM (2006) Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6(12):909–923, nrc2012 [pii] 10.1038/nrc2012

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408(6810):307–310. doi:10.1038/35042675

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2(8):594–604, nrc864 [pii] 10.1038/nrc864

    Article  CAS  PubMed  Google Scholar 

  • Wan G, Mathur R, Hu X, Liu Y, Zhang X, Peng G, Lu X (2013) Long non-coding RNA ANRIL (CDKN2B-AS) is induced by the ATM-E2F1 signaling pathway. Cell Signal 25(5):1086–1095, S0898-6568(13)00046-6 [pii] 10.1016/j.cellsig.2013.02.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang S, El-Deiry WS (2006) p73 or p53 directly regulates human p53 transcription to maintain cell cycle checkpoints. Cancer Res 66(14):6982–6989, 66/14/6982 [pii] 10.1158/0008-5472.CAN-06-0511

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, Zhang Y (2004a) Role of histone H2A ubiquitination in polycomb silencing. Nature 431(7010):873–878, nature02985 [pii] 10.1038/nature02985

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Brown JL, Cao R, Zhang Y, Kassis JA, Jones RS (2004b) Hierarchical recruitment of polycomb group silencing complexes. Mol Cell 14(5):637–646, S1097276504002928 [pii] 10.1016/j.molcel.2004.05.009

    Article  CAS  PubMed  Google Scholar 

  • Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81(3):323–330, 0092-8674(95)90385-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Wrensch M, Jenkins RB, Chang JS, Yeh RF, Xiao Y, Decker PA, Ballman KV, Berger M, Buckner JC, Chang S, Giannini C, Halder C, Kollmeyer TM, Kosel ML, LaChance DH, McCoy L, O’Neill BP, Patoka J, Pico AR, Prados M, Quesenberry C, Rice T, Rynearson AL, Smirnov I, Tihan T, Wiemels J, Yang P, Wiencke JK (2009) Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nat Genet 41(8):905–908, ng.408 [pii] 10.1038/ng.408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yap KL, Li S, Munoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, Gil J, Walsh MJ, Zhou MM (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 38(5):662–674, S1097-2765(10)00335-7 [pii] 10.1016/j.molcel.2010.03.021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoon JH, Abdelmohsen K, Srikantan S, Yang X, Martindale JL, De S, Huarte M, Zhan M, Becker KG, Gorospe M (2012) LincRNA-p21 suppresses target mRNA translation. Mol Cell 47(4):648–655, S1097-2765(12)00552-7 [pii] 10.1016/j.molcel.2012.06.027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu W, Gius D, Onyango P, Muldoon-Jacobs K, Karp J, Feinberg AP, Cui H (2008) Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451(7175):202–206, nature06468 [pii] 10.1038/nature06468

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zeng Y, Kotake Y, Pei XH, Smith MD, Xiong Y (2011) p53 binds to and is required for the repression of Arf tumor suppressor by HDAC and polycomb. Cancer Res 71(7):2781–2792, 0008-5472.CAN-10-3483 [pii] 10.1158/0008-5472.CAN-10-3483

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Xiong Y, Yarbrough WG (1998) ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92(6):725–734, S0092-8674(00)81401-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Zhang A, Zhou N, Huang J, Liu Q, Fukuda K, Ma D, Lu Z, Bai C, Watabe K, Mo YY (2013) The human long non-coding RNA-RoR is a p53 repressor in response to DNA damage. Cell Res 23(3):340–350, cr2012164 [pii] 10.1038/cr.2012.164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yojiro Kotake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kotake, Y., Kitagawa, M. (2015). Regulation of pRB and p53 Pathways by the Long Noncoding RNAs ANRIL, lincRNA-p21, lincRNA-RoR, and PANDA . In: Kurokawa, R. (eds) Long Noncoding RNAs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55576-6_10

Download citation

Publish with us

Policies and ethics