Skip to main content

Genetic Variants of the Dopaminergic System in Humans and Model Organisms

  • Chapter
  • 1932 Accesses

Part of the book series: Primatology Monographs ((PrimMono))

Abstract

Human personality is shaped by both genetic and environmental factors. Molecular genetics has begun to identify specific genes for quantitative traits. The first candidate genes investigated were components of the monoamine neurotransmitter pathways, such as serotonin and dopamine. The serotonergic system is involved in mood, anxiety, and aggression. Temperamental predisposition and behavior are likely to be influenced by genetic variations of serotonergic genes – i.e., serotonin-metabolizing enzymes, tryptophan hydroxylase and monoamine oxidase (MAO), catechol-O-methyltransferase (COMT), 14 kinds of serotonin receptor (5-hydroxytryptamine, or 5HT) and serotonin transporter (SERT).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bannon MJ, Michelhaugh SK, Wang J, Sacchetti P (2001) The human dopamine transporter gene: gene organization, transcriptional regulation, and potential involvement in neuropsychiatric disorder. Eur Neuropsychopharmacol 11:449–455

    Article  PubMed  CAS  Google Scholar 

  • Belandia B, Powell SM, Garcia-Pedrero JM, Walker MM, Bevan CL, Parker MG (2005) Hey1, a mediator of notch signaling, is an androgen receptor corepressor. Mol Cell Biol 25:1425–1436

    Article  PubMed  CAS  Google Scholar 

  • Brookes KJ, Neale BM, Sugden K, Khan N, Asherson A, D’Souza UM (2007) Relationship between VNTR polymorphisms of the human dopamine transporter gene and expression in post-mortem midbrain tissue. Am J Med Genet B Neuropsychiatr Genet 144B:1070–1078

    Article  PubMed  CAS  Google Scholar 

  • Brunswick DJ, Amsterdam JD, Mozley PD, Newberg A (2003) Greater availability of brain dopamine transporters in major depression shown by [99m Tc] TRODAT-1 SPECT imaging. Am J Psychiatry 160:1836–1841

    Article  PubMed  Google Scholar 

  • Caine SB (1998) Cocaine abuse: hard knocks for the dopamine hypothesis? Nature Neurosci 1:90–92

    Article  PubMed  CAS  Google Scholar 

  • Cook EH Jr, Stein MA, Krasowski MD, Cox NJ, Olkon DM, Kieffer JE, Leventhal BL (1995) Association of attention-deficit disorder and dopamine transporter gene. Am J Hum Genet 56:993–998

    PubMed  CAS  Google Scholar 

  • D’Souza UM, Craig IW (2008) Functional genetic polymorphisms in serotonin and dopamine gene systems and their significance in behavioural disorders. Prog Brain Res 172:73–98

    Article  PubMed  Google Scholar 

  • Fauchey V, Jaber M, Caron MG, Bloch B, Moine CL (2000) Differential regulation of the dopamine D1, D2 and D3 receptor gene expression and changes in the phenotype of the striatal neurons in mice lacking the dopamine transporter. Eur J Neurosci 12:19–26

    Article  PubMed  CAS  Google Scholar 

  • Fuke S, Suo S, Takahashi N, Koike H, Sasagawa N, Ishiura S (2001) The VNTR polymorphism of the human dopamine transporter (DAT1) gene affects gene expression. Pharmacogenomics J 1:152–156

    Article  PubMed  CAS  Google Scholar 

  • Fuke S, Sasagawa N, Ishiura S (2005) Identification and characterization of the Hesr1/Hey1 as a candidate trans-acting factor on gene expression through the 3′ noncoding polymorphic region of the human dopamine transporter (DAT1) gene. J Biochem 137:205–216

    Article  PubMed  CAS  Google Scholar 

  • Fuke S, Minami N, Kokubo H, Yoshikawa A, Yasumatsu H, Sasagawa N, Saga Y, Tsukahara T, Ishiura S (2006) Hesr1 knockout mice exhibit behavioral alterations through the dopaminergic nervous system. J Neurosci Res 84:1555–1563

    Article  PubMed  CAS  Google Scholar 

  • Gainetdinov RR, Sotnikova TD, Caron MG (2002) Monoamine transporter pharmacology and mutant mice. Trends Pharmacol Sci 23:367–373

    Article  PubMed  CAS  Google Scholar 

  • Giros B, Caron MG (1993) Molecular characterization of the dopamine transporter. Trends Pharmacol Sci 14:43–49

    Article  PubMed  CAS  Google Scholar 

  • Giros B, el Mestikawy S, Bertrand L, Caron MG (1991) Cloning and functional characterization of a cocaine-sensitive dopamine transporter. FEBS Lett 295:149–154

    Article  PubMed  CAS  Google Scholar 

  • Giros B, el Mestikawy S, Godinot N, Zheng K, Han H, Yang-Feng T, Caron MG (1992) Cloning, pharmacological characterization, and chromosome assignment of the human dopamine transporter. Mol Pharmacol 42:383–390

    PubMed  CAS  Google Scholar 

  • Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379:606–612

    Article  PubMed  CAS  Google Scholar 

  • Greenwood TA, Kelsoe JR (2003) Promoter and intronic variants affect the transcriptional regulation of the human dopamine transporter gene. Genomics 82:511–519

    Article  PubMed  CAS  Google Scholar 

  • Heinz A, Goldman D, Jones DW, Palmour R, Hommer D, Gorey JG, Lee KS, Linnoila M, Weinberger DR (2000) Genotype influences in vivo dopamine transporter availability in human striatum. Neuropsychopharmacology 22:133–139

    Article  PubMed  CAS  Google Scholar 

  • Henderson AM, Wang SJ, Taylor AC, Aitkenhead M, Hughes CC (2001) The basic helix–loop–helix transcription factor HESR1 regulates endothyelial cell tube formation. J Biol Chem 276:6169–6176

    Article  PubMed  CAS  Google Scholar 

  • Inoue-Murayama M, Adachi S, Mishima N, Mitani H, Takenaka O, Terao K, Hayasaka I, Ito S, Murayama Y (2002) Variation of variable number of tandem repeat sequences in the 3′-untranslated region of primate dopamine transporter genes that affects reporter gene expression. Neurosci Lett 334:206–210

    Article  PubMed  CAS  Google Scholar 

  • Iso T, Sartorelli V, Poizat C, Iezzi S, Wu HY, Chung G, Kedes L, Hamamori Y (2001) HERP, a novel heterodimer partner of HES/E (spl) in notch signaling. Mol Cell Biol 21:6080–6089

    Article  PubMed  CAS  Google Scholar 

  • Iso T, Kedes L, Hamamori Y (2003) HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 194:237–255

    Article  PubMed  CAS  Google Scholar 

  • Jaber M, Dumartin B, Sagne C, Haycock JW, Roubert C, Giros B, Bloch B, Caron MG (1999) Differential regulation of tyrosine hydroxylase in the basal ganglia of mice lacking the dopamine transporter. Eur J Neurosci 11:3499–3511

    Article  PubMed  CAS  Google Scholar 

  • Jackson DM, Westlind-Danielson A (1994) Dopamine receptors: molecular biology, biochemistry and behavioral aspects. Pharmacol Ther 64:291–336

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen LK, Staley JK, Zoghbi SS, Seibyl JP, Kosten TR, Innis RB, Gelernter J (2000) Prediction of dopamine transporter binding availability by genotype: a preliminary report. Am J Psychiatry 157:1700–1703

    Article  PubMed  CAS  Google Scholar 

  • Kanno K, Ishiura S (2009) Function of transcription factor HESR family on dopamine transporter expression via variable number of tandem repeat. Abstract 618.26 from 2009 Society for Neuroscience Annual Meeting, Chicago, IL

    Google Scholar 

  • Kilty JE, Lorang D, Amara SG (1991) Cloning and expression of a cocaine-sensitive rat dopamine transporter. Science 254:578–579

    Article  PubMed  CAS  Google Scholar 

  • Klenova E, Scott AC, Roberts J, Shamsuddin S, Lovejoy EA, Bergmann S, Bubb VJ, Royer H-D, Quinn JP (2004) YB-1 and CTCF differentially regulate the 5-HTT polymorphic intron 2 enhancer which predisposes to a variety of neurological disorders. J Neurosci 24:5966–5973

    Article  PubMed  CAS  Google Scholar 

  • Kokubo H, Lun Y, Johnson RL (1999) Identification and expression of novel family of bHLH cDNAs related to Drosophila hairy and enhancer of split. Biochem Biophys Res Commun 260:459–465

    Article  PubMed  CAS  Google Scholar 

  • Kokubo H, Tomita-Miyagawa S, Hamada Y, Saga Y (2007) Hesr1 and Hesr2 regulate atrioventricular boundary formation in the developing heart through the repression of Tbx2. Development 134:747–755

    Article  PubMed  CAS  Google Scholar 

  • Krause KK, Dresel SH, Krause J, Fougere C, Ackenheil M (2003) The dopamine transporter and neuroimaging in attention deficit hyperactivity disorder. Neurosci Biobehav Rev 27:605–613

    Article  PubMed  CAS  Google Scholar 

  • Lammel S, Hetzel A, Häckel O, Jones I, Liss B, Roeper J (2008) Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron 57:760–773

    Article  PubMed  CAS  Google Scholar 

  • Leimeister C, Externbrink A, Klamt B, Gessler M (1999) Hey genes: a novel subfamily of hairy- and enhancer of split related genes specifically expressed during mouse embryogenesis. Mech Dev 85:173–177

    Article  PubMed  CAS  Google Scholar 

  • Madras BK, Gracz LM, Fahey MA, Elmaleh D, Meltzer PC, Liang AY, Stopa EG, Babich J, Fischman AJ (1998) Altropane, a SPECT or PET imaging probe for dopamine neurons. III. Human dopamine transporter in postmortem normal and Parkinson’s diseased brain. Synapse 29:116–127

    Article  PubMed  CAS  Google Scholar 

  • Martinez D, Gelernter J, Abi-Dargham A, van Dyck CH, Kegeles L, Innis RB, Laruelle M (2001) The variable number of tandem repeats polymorphism of the dopamine transporter gene is not associated with significant change in dopamine transporter phenotype in humans. Neuropsychopharmacology 24:553–560

    Article  PubMed  CAS  Google Scholar 

  • Michelhaugh SK, Fiskerstrand C, Lovejoy E, Bannon MJ, Quinn JP (2001) The dopamine transporter gene (SLC6A3) variable number of tandem repeats domain enhances transcription in dopamine neurons. J Neurochem 79:1033–1038

    Article  PubMed  CAS  Google Scholar 

  • Mill J, Asherson P, Browes C, D’Souza U, Craig I (2002) Expression of the dopamine transporter gene is regulated by the 3′ UTR VNTR: evidence from brain and lymphocytes using quantitative RT-PCR. Am J Med Genet B Neuropsychiatr Genet 114B:975–979

    Article  Google Scholar 

  • Mill J, Asherson P, Craig I, D’Souza UM (2005) Transient expression analysis of allelic variants of a VNTR in the dopamine transporter gene (DAT1). BMC Genet 6:3

    Article  PubMed  Google Scholar 

  • Miller GM, Madras BK (2002) Polymorphisms in the 3′-untranslated region of human and monkey dopamine transporter genes affect reporter gene expression. Mol Psychiatry 7:44–55

    Article  PubMed  CAS  Google Scholar 

  • Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    PubMed  CAS  Google Scholar 

  • Muller-Vahl KR, Berding G, Brucke T, Kolbe H, Meyer GJ, Hundeshagen H, Dengler R, Knapp WH, Emrich HM (2000) Dopamine transporter binding in Gilles de la Tourette syndrome. J Neurol 247:514–520

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa O, Nakagawa M, Richardson JA, Olson EN, Srivastava D (1999) HRT1, HRT2, and HRT3: a new subclass of bHLH transcription factors marking specific cardiac, somatic, and pharyngeal arch segments. Dev Biol 216:72–84

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa O, McFadden DG, Nakagawa M, Yanagisawa H, Hu T, Srivastava D, Olson EN (2000) Members of the HRT family of basic helix–loop–helix proteins act as transcriptional repressors downstream of Notch signaling. Proc Natl Acad Sci USA 97:13655–13660

    Article  PubMed  CAS  Google Scholar 

  • Ohadi M, Shirazi E, Tehranidoosti M, Moghimi N, Keikhaee MR, Ehssani S et al (2006) Attention-deficit/hyperactivity disorder (ADHD) association with the DAT1 core promoter-67 T allele. Brain Res 1101:1–4

    Article  PubMed  CAS  Google Scholar 

  • Ohadi M, Keikhaee MR, Javanbakht A, Sargolzaee MR, Robabeh M, Najmabadi H (2007) Gender dimorphism in the DAT1-67 T-allele homozygosity and predisposition to bipolar disorder. Brain Res 1144:142–145

    Article  PubMed  CAS  Google Scholar 

  • Roberts J, Scott AC, Howard MR, Breen G, Bubb VJ, Klenova E, Quinn JP (2007) Differential regulation of the serotonin transporter gene by lithium is mediated by transcription factors, CCCTC binding protein and Y-box binding protein 1, through the polymorphic intron 2 variable number tandem repeat. J Neurosci 27:2793–2801

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto M, Hirata H, Ohtsuka T, Bessho Y, Kageyama R (2003) The basic helix–loop–helix genes hesr1/hey1 and hesr2/hey2 regulate maintenance of neural precursor cells in the brain. J Biol Chem 278:44808–44815

    Article  PubMed  CAS  Google Scholar 

  • Shibuya N, Kamata M, Suzuki A, Matsumoto Y, Goto K, Otani K (2009) The −67 A/T promoter polymorphism in the dopamine transporter gene affects personality traits of Japanese healthy females. Behav Brain Res 203:23–26. doi:10.1016/j.bbr.2009.04.008

    Article  PubMed  CAS  Google Scholar 

  • Shimada S, Kitayama S, Lin CL, Patel A, Nanthakumar E, Gregor P, Kuhar M, Uhl GR (1991) Cloning and expression of a cocaine-sensitive dopamine transporter complementary DNA. Science 254:576–578

    Article  PubMed  CAS  Google Scholar 

  • Steidl C, Leimeister C, Klamt B, Maier M, Nanda L, Dixon M, Clarke R, Schmid M, Gessler M (2000) Characterization of the human and mouse HEY1, HEY2, and HEYL genes: cloning, mapping, and mutation screening of a new bHLH gene family. Genomics 66:195–203

    Article  PubMed  CAS  Google Scholar 

  • Ueno S (2003) Genetic polymorphisms of serotonin and dopamine transporters in mental disorders. J Med Invest 50:25–31

    PubMed  Google Scholar 

  • Uhl GR (2003) Dopamine transporter: basic science and human variation of a key molecule for dopaminergic function, locomotion, and Parkinsonism. Mov Disord 18:71–80

    Article  Google Scholar 

  • Vandenbergh DJ, Persico AM, Hawkins AL, Griffin CA, Li X, Jabs EW, Uhl GR (1992) Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics 14:1104–1106

    Article  PubMed  CAS  Google Scholar 

  • Vandenbergh DJ, Thompson MD, Cook EH, Bendahhou E, Nguyen T, Krasowski MD, Zarrabian D, Comings D, Sellers EM, Tyndale RF, George SR, O’Dowd BF, Uhl GR (2000) Human dopamine transporter gene: coding region conservation among normal, Tourette’s disorder, alcohol dependence and attention-deficit hyperactivity disorder populations. Mol Psychiatry 5:283–292

    Article  PubMed  CAS  Google Scholar 

  • VanNess SH, Owens MJ, Kilts CD (2005) The variable number of tandem repeats element in DAT1 regulates in vitro dopamine transporter density. BMC Genet 6:55

    Article  PubMed  Google Scholar 

  • Villaronga MA, Lavery DN, Bevan CL, Llanos S, Belandia B (2009) HEY1 Leu94Met gene polymorphism dramatically modifies its biological functions. Oncogene 29:411–420

    Article  PubMed  Google Scholar 

  • Wang W, Campos AH, Prince CZ, Mou Y, Pollman MJ (2002) Coordinate notch3-hairy-related transcription factor pathway regulation in response to arterial injury. J Biol Chem 277:23165–23171

    Article  PubMed  CAS  Google Scholar 

  • Yang B, Chan RCK, Jing J, Li T, Sham P, Chen RYL (2007) A meta-analysis of association studies between the 10-repeat allele of a VNTR polymorphism in the 3uUTR of dopamine transporter gene and attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 144B:541–550

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the grants from the Ministry of Health, Labor, and Welfare, Japan, and the Human Frontier Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoichi Ishiura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this chapter

Cite this chapter

Kanno, K., Ishiura, S. (2011). Genetic Variants of the Dopaminergic System in Humans and Model Organisms. In: Inoue-Murayama, M., Kawamura, S., Weiss, A. (eds) From Genes to Animal Behavior. Primatology Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53892-9_10

Download citation

Publish with us

Policies and ethics