Skip to main content

On Positive Solutions of p-Laplacian-type Equations

  • Conference paper
Analysis, Partial Differential Equations and Applications

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 193))

Abstract

Let Ω be a domain in ℝd, d ≥ 2, and 1 < p < ∞. Fix V loc (Ω). Consider the functional Q and its Gâteaux derivative Q′ given by

$$ Q(u): = \tfrac{1} {p}\int_\Omega {(|\nabla u|^p + V|u|^p )dx, Q'(u): = - \nabla \cdot (|\nabla u|^{p - 2} \nabla u) + V|u|^{p - 2} u.} $$

In this paper we discuss a few aspects of relations between functional-analytic properties of the functional Q and properties of positive solutions of the equation Q′ (u)=0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Agmon, Bounds on exponential decay of eigenfunctions of Schrödinger operators, in “Schrödinger Operators” (Como, 1984), pp. 1–38, Lecture Notes in Math. 1159, Springer, Berlin, 1985.

    Google Scholar 

  2. G. Alessandrini, and M. Sigalotti, Geometric properties of solutions to the anisotropic p-Laplace equation in dimension two, Ann. Acad. Sci. Fenn. Math. 26 (2001), 249–266.

    MATH  MathSciNet  Google Scholar 

  3. W. Allegretto, and Y.X. Huang, A Picone’s identity for the p-Laplacian and applications, Nonlinear Anal. 32 (1998), 819–830.

    Article  MATH  MathSciNet  Google Scholar 

  4. W. Allegretto, and Y.X. Huang, Principal eigenvalues and Sturm comparison via Picone’s identity, J. Differential Equations 156 (1999), 427–438.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Cuesta, and P. Takáč, A strong comparison principle for positive solutions of degenerate elliptic equations, Differential Integral Equations 13 (2000), 721–746.

    MATH  MathSciNet  Google Scholar 

  6. J.I. Diaz, and J.E. Saá, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris Ser. I Math. 305 (1987), 521–524.

    MATH  MathSciNet  Google Scholar 

  7. L. Damascelli, and B. Sciunzi, Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-Laplace equations, Calc. Var. Partial Differential Equations 25 (2006), 139–159.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. del Pino, M. Elgueta, and R. Manasevich, A homotopic deformation along p of a Leray-Schauder degree result and existence for (|u|p−2 u′)′+f(t, u)=0, u(0)=u(T)=0, p>1, J. Differential Equations 80 (1989), 1–13.

    Article  MATH  MathSciNet  Google Scholar 

  9. P. Drábek, A. Kufner, and F. Nicolosi, “Quasilinear Elliptic Equations with Degenerations and Singularities”, Gruyter Series in Nonlinear Analysis and Applications 5, Walter de Gruyter & Co., Berlin, 1997.

    Google Scholar 

  10. I. Ekeland, and R. Temam, “Convex Analysis and Variational Problems”, North Holland—American Elsevier, Amsterdam, 1976.

    MATH  Google Scholar 

  11. [11] S. Filippas, V. Maz’ya, and A. Tertikas, Critical Hardy-Sobolev inequalities. J. Math. Pures Appl. (9) 87 (2007), 37–56.

    Google Scholar 

  12. J. Fleckinger-Pellé, J. Hernández, P. Takáč, and F. de Thélin, Uniqueness and positivity for solutions of equations with the p-Laplacian, Proceedings of the Conference on Reaction-Diffusion Equations (Trieste, 1995), pp. 141–155, Lecture Notes in Pure and Applied Math. Vol. 194, Marcel Dekker, New York, 1998.

    Google Scholar 

  13. J. García-Melián, and J. Sabina de Lis, Maximum and comparison principles for operators involving the p-Laplacian, J. Math. Anal. Appl. 218 (1998), 49–65.

    Article  MATH  MathSciNet  Google Scholar 

  14. O.A. Ladyženskaja, and N.N. Ural’ceva, A variational problem for quasilinear elliptic equations with many independent variables, Soviet Math. Dokl. 1 (1960), 1390–1394.

    MathSciNet  Google Scholar 

  15. V. Liskevich, S. Lyakhova, and V. Moroz, Positive solutions to nonlinear p-Laplace equations with Hardy potential in exterior domains, J. Differential Equations 232 (2007), 212–252.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Lucia, and S. Prashanth, Strong comparison principle for solutions of quasilinear equations, Proc. Amer. Math. Soc. 132 (2004), 1005–1011.

    Article  MATH  MathSciNet  Google Scholar 

  17. J.J. Manfredi, Isolated singularities of p-harmonic functions in the plane, SIAM J. Math. Anal. 22 (1991), 424–439.

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Marcus, V.J. Mizel, and Y. Pinchover, On the best constant for Hardy’s inequality in ℝn, Trans. Amer. Math. Soc. 350 (1998), 3237–3255.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Marcus, and I. Shafrir, An eigenvalue problem related to Hardy’s L p inequality, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29 (2000), 581–604.

    Google Scholar 

  20. Mitidieri, and S.I. Pokhozhaev, Some generalizations of Bernstein’s theorem, Differ. Uravn. 38 (2002), 373–378; translation in Differ. Equ. 38 (2002), 392–397.

    MathSciNet  Google Scholar 

  21. M. Murata, Structure of positive solutions to (−Δ+V )u=0 in ℝn, Duke Math. J. 53 (1986), 869–943.

    Article  MATH  MathSciNet  Google Scholar 

  22. Y. Pinchover, On positive solutions of second-order elliptic equations, stability results, and classification, Duke Math. J. 57 (1988), 955–980.

    Article  MATH  MathSciNet  Google Scholar 

  23. Y. Pinchover, On criticality and ground states of second-order elliptic equations, II, J. Differential Equations 87 (1990), 353–364.

    Article  MATH  MathSciNet  Google Scholar 

  24. Y. Pinchover, A Liouville-type theorem for Schrödinger operators, Comm. Math. Phys. 272 (2007) 75–84.

    Article  MATH  MathSciNet  Google Scholar 

  25. Y. Pinchover, Topics in the theory of positive solutions of second-order elliptic and parabolic partial differential equations, in “ Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday”, Proceedings of Symposia in Pure Mathematics 76, American Mathematical Society, Providence, RI, 2007, 329–356.

    Google Scholar 

  26. Y. Pinchover, A. Tertikas, and K. Tintarev, A Liouville-type theorem for the p-Laplacian with potential term, Ann. Inst. H. Poincaré-Anal. Non Linéaire 25 (2008), 357–368.

    Article  MATH  MathSciNet  Google Scholar 

  27. Y. Pinchover, and K. Tintarev, Ground state alternative for singular Schrödinger operators, J. Functional Analysis, 230 (2006), 65–77.

    MATH  MathSciNet  Google Scholar 

  28. Y. Pinchover, and K. Tintarev, Ground state alternative for p-Laplacian with potential term, Calc. Var. Partial Differential Equations 28 (2007), 179–201.

    Article  MATH  MathSciNet  Google Scholar 

  29. Y. Pinchover, and K. Tintarev, On positive solutions of minimal growth for singular p-Laplacian with potential term, Adv. Nonlinear Stud. 8 (2008), 213–234.

    MATH  MathSciNet  Google Scholar 

  30. Y. Pinchover, and K. Tintarev, On the Hardy-Sobolev-Maz’ya inequality and its generalizations, in “Sobolev Spaces in Mathematics I: Sobolev Type Inequalities”, ed. V. Maz’ya, International Mathematical Series 8, Springer, 2009, 281–297.

    Google Scholar 

  31. A. Poliakovsky, and I. Shafrir, Uniqueness of positive solutions for singular problems involving the p-Laplacian, Proc. Amer. Math. Soc. 133 (2005), 2549–2557.

    Article  MATH  MathSciNet  Google Scholar 

  32. P. Pucci, and J. Serrin, “The Maximum Principle”, Progress in Nonlinear Differential Equations and their Applications, 73. Birkhäuser Verlag, Basel, 2007.

    MATH  Google Scholar 

  33. W. Rudin, “Functional Analysis”, 2nd ed., McGraw-Hill, Inc., New York, 1991.

    MATH  Google Scholar 

  34. J. Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), 247–302.

    Article  MATH  MathSciNet  Google Scholar 

  35. J. Serrin, Isolated singularities of solutions of quasi-linear equations, Acta Math. 113 (1965), 219–240.

    Article  MATH  MathSciNet  Google Scholar 

  36. P. Takáč, and K. Tintarev, Generalized minimizer solutions for equations with the p-Laplacian and a potential term, Proc. Roy. Soc. Edinburgh Sect. A 138 (2008), 201–221.

    MATH  MathSciNet  Google Scholar 

  37. P. Tolksdorf, On the Dirichlet problem for quasilinear equations in domains with conical boundary points, Comm. Partial Differential Equations 8 (1983), 773–817.

    Article  MATH  MathSciNet  Google Scholar 

  38. P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), 126–150.

    Article  MATH  MathSciNet  Google Scholar 

  39. M. Troyanov, Parabolicity of manifolds, Siberian Adv. Math. 9 (1999), 125–150.

    MATH  MathSciNet  Google Scholar 

  40. M. Troyanov, Solving the p-Laplacian on manifolds, Proc. Amer. Math. Soc. 128 (2000), 541–545.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Vladimir Maz’ya on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Pinchover, Y., Tintarev, K. (2009). On Positive Solutions of p-Laplacian-type Equations. In: Cialdea, A., Ricci, P.E., Lanzara, F. (eds) Analysis, Partial Differential Equations and Applications. Operator Theory: Advances and Applications, vol 193. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-9898-9_18

Download citation

Publish with us

Policies and ethics