Skip to main content

Modulation of visual perception and action by forebrain structures and their interactions in amphibians

  • Chapter
Neurotransmitter Interactions and Cognitive Function

Part of the book series: Experientia Supplementum ((EXS,volume 98))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eibl-Eibesfeldt I (1951) Nahrungserwerb und Beuteschema der Erdkröte (Bufo bufo L). Behaviour 4: 1–35

    Google Scholar 

  2. Wiersma CAG, Ikeda K (1964) Interneurons commanding swimmeret movements in the crayfish, Procambarus clarkii (Girard). Comp Biochem Physiol 12: 509–525

    Article  PubMed  CAS  Google Scholar 

  3. Hinsche G (1935) Ein Schnappreflex nach “Nichts” bei Anuren. Zool Anz 111: 113–122

    Google Scholar 

  4. Tinbergen N (1951) The study of instinct. Clarendon Press, Oxford

    Google Scholar 

  5. Lorenz K (1954) Das angeborene Erkennen. Natur und Volk 84: 285–295

    Google Scholar 

  6. Barlow HB (1953) Summation and inhibition in the frog’s retina. J Physiol (Lond) 173: 377–407

    Google Scholar 

  7. Lettvin JY, Maturana HR, McCulloch WS, Pitts WH (1959) What the frog’s eye tells the frog’s brain. Proc Inst Radio Engin 47: 1940–1951

    Google Scholar 

  8. Kupfermann I, Weiss KR (1978) The command neuron concept. Behav Brain Sci 1: 3–39

    Google Scholar 

  9. Eaton RC (1983) Is the Mauthner cell a vertebrate command neuron? A neuroethological perspective on an evolving concept. In: Ewert J-P, Capranica RR, Ingle DJ (eds): Advances in vertebrate neuroethology. Plenum, New York, 629–636

    Google Scholar 

  10. Eaton RC (2001) The Mauthner cell and other identified neurons of the brainstem escape network of fish. Prog Neurobiol 63: 467–485

    Article  PubMed  CAS  Google Scholar 

  11. Ewert J-P (1980) Neuroethology: an introduction to the neurophysiological fundamentals of behavior. Springer, Berlin

    Google Scholar 

  12. Ewert J-P (1997) Neural correlates of key stimulus and releasing mechanism: a case study and two concepts. Trends Neurosci 20: 332–339

    Article  PubMed  CAS  Google Scholar 

  13. Ewert J-P (2004) Motion perception shapes the visual world of amphibians. In: Prete FR (ed): Complex worlds from simpler nervous systems. MIT Press, Cambridge MA, 117–160

    Google Scholar 

  14. Hailman JP (1969) How an instinct is learnt. Sci Amer 221: 98–106

    Google Scholar 

  15. Bolhuis JE, Giraldeau L-A (2005) The behavior of animals. Mechanisms, function, and evolution. Blackwell, Malden MA

    Google Scholar 

  16. Ewert J-P (1985) The Niko Tinbergen Lecture: concepts in vertebrate neuroethology. Animal Behav 33: 1–29

    Article  Google Scholar 

  17. Ewert J-P (2005) Stimulus perception. Chapter 2. In: Bolhuis JJ, Giraldeau L-A (eds): The behavior of animals. Blackwell, Malden MA, 13–40

    Google Scholar 

  18. Schrader MEG (1887) Zur Physiologie des Froschgehirns. Pflügers Arch 51: 11–21

    Google Scholar 

  19. Johannes T (1930) Zur Funktion des sensiblen Thalamus. Pflüg Arch 224

    Google Scholar 

  20. Goltz P (1869) Beiträge zur Lehre von den Funktionen der Nervenzentren des Frosches. In: Buddenbrock W v (1937) (ed): Grundriß der vergleichenden Physiologie Bd 1, Berlin

    Google Scholar 

  21. Blankenagel S (1931) Untersuchungen über die Großhirnfunktionen von Rana temporaria L. Zool Jb Abteilung allgem Zool 49: 272–322

    Google Scholar 

  22. Diebschlag E (1935) Zur Kenntnis der Großhirnfunktion einiger Urodelen und Anuren. Z vergl Physiol 21: 343–394

    Google Scholar 

  23. Ewert J-P (1967) Untersuchungen über die Anteile zentralnervöser Aktionen an der taxisspezifischen Ermüdung der Erdkröte (Bufo bufo L). Z Vergl Physiol 57: 263–298

    Article  Google Scholar 

  24. Northcutt RG, Kicliter E (1980) Organization of the amphibian telencephalon. In: Ebbesson SOE (ed): Comparative neurology of the telencenphalon. Plenum Press, New York London, 203–255

    Google Scholar 

  25. Wilczynski W, Northcutt RG (1983) Connections of the bullfrog striatum: afferent organization. J Comp Neurol 214: 321–332

    Article  PubMed  CAS  Google Scholar 

  26. Wilczynski W, Northcutt RG (1983) Connections of the bullfrog striatum: efferent projections. J Comp Neurol 214: 333–343

    Article  PubMed  CAS  Google Scholar 

  27. Northcutt RG, Kaas H (1995) The emergence and evolution of mammalian neocortex. Trends Neurosci 18: 373–379

    Article  PubMed  CAS  Google Scholar 

  28. Marín O, González A, Smeets WJAJ (1997) Anatomical substrate of amphibian basal ganglia involvement in visuomotor behaviour. Eur J Neurosci 9: 2100–2109

    Article  PubMed  Google Scholar 

  29. Marín O, González A, Smeets WJAJ (1997) Basal ganglia organization in amphibians: afferent connections to the striatum and the nucleus accumbens. J Comp Neurol 378: 16–49

    Article  PubMed  Google Scholar 

  30. Marín O, González A, Smeets WJAJ (1997) Basal ganglia organization in amphibians: efferent connections of the striatum and the nucleus accumbens. J Comp Neurol 380: 23–50

    Article  PubMed  Google Scholar 

  31. Marín O, Smeets WJAJ, González A (1997) Basal ganglia organization in amphibians: catecholaminergic innervation of the striatum and the nucleus accumbens. J Comp Neurol 378: 50–69

    Article  PubMed  Google Scholar 

  32. Marín O, Smeets WJAJ, González A (1997) Basal ganglia organization in amphibians: development of striatal and nucleus accumbens connections with emphasis on the catecholaminergic inputs. J Comp Neurol 383: 349–369

    Article  PubMed  Google Scholar 

  33. Marín O, González A, Smeets WJAJ (1998) Basal ganglia organization in amphibians: chemoarchitecture. J Comp Neurol 392: 285–312

    Article  PubMed  Google Scholar 

  34. Marín O, Smeets WJAJ, González A (1998) Evolution of the basal ganglia in tetrapods: a new perspective based on recent studies in amphibians. Trends Neurosci 21: 487–494

    Article  PubMed  Google Scholar 

  35. González A, Smeets WJ, Marín O (1999) Evidences for shared features in the organization of the basal ganglia in tetrapods: studies in amphibians. Eur J Morphol 37(2–3): 151–154

    Article  PubMed  Google Scholar 

  36. Reiner A, Brecha NC, Karten HJ (1982) Basal ganglia pathways to the tectum: the afferent and efferent connections of the lateral spiriform nucleus of pigeon. J Comp Neurol 208: 16–36

    Article  PubMed  CAS  Google Scholar 

  37. Reiner A, Brauth SE, Karten HJ (1984) Evolution of the amniote basal ganglia. Trends Neurosci 7: 320–325

    Article  Google Scholar 

  38. Reiner A, Medina L, Veenman CL (1998) Structural and functional evolution of the basal ganglia in vertebrates. Brain Res Rev 28: 235–285

    Article  PubMed  CAS  Google Scholar 

  39. Herrick CJ (1933) The amphibian forebrain. VIII: Cerebral hemispheres and pallial primordia. J Comp Neurol 58: 737–759

    Article  Google Scholar 

  40. Roth G, Westhoff G (1999) Cytoarchitecture and connectivity of the amphibian medial pallium. Eur J Morphol 37: 166–171

    Article  PubMed  CAS  Google Scholar 

  41. Marín O, Smeets WJ, Munoz M, Sanchez-Camacho C, Pena JJ, Lopez JM, González A (1999) Cholinergic and catecholaminergic neurons relay striatal information to the optic tectum in amphibians. Eur J Morphol 37: 155–159

    Article  PubMed  Google Scholar 

  42. Marín O, González A (1999) Origin of tectal cholinergic projections in amphibians: a combined study of choline acetyltransferase immunohistochemistry and retrograde transport of dextran amines. Vis Neurosci 16: 271–283

    Article  PubMed  Google Scholar 

  43. Schneider D (1954) Beitrag zu einer Analyse des Beute-und Fluchtverhaltens einheimischer Anuren. Biol Zbl 73: 225–282

    Google Scholar 

  44. Ewert J-P (1974) The neural basis of visually guided behavior. Sci Amer 230: 34–42

    PubMed  CAS  Google Scholar 

  45. Ewert J-P (1984) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Vanegas H (ed): Comparative neurology of the optic tectum. Plenum, New York, 247–416

    Google Scholar 

  46. Ewert J-P, Arend B, Becker V, Borchers H-W (1979) Invariants in configurational prey selection by Bufo bufo (L.). Brain Behav Evol 16: 38–51

    PubMed  CAS  Google Scholar 

  47. Ewert J-P, Burghagen H (1979) Configurational prey selection by Bufo, Alytes, Bombina, and Hyla. Brain Behav Evol 16(3): 157–175

    PubMed  CAS  Google Scholar 

  48. Grüsser O-J, Grüsser-Cornehls U, Finkelstein D, Henn V, Patutschnik M, Butenandt E (1967) Aquantitative analysis of movement detecting neurons in the frog retina. Pflügers Arch 293: 100–106

    Article  Google Scholar 

  49. Ewert J-P (1987) Neuroethology of releasing mechanisms: prey-catching in toads. Behav Brain Sci 10: 337–405

    Google Scholar 

  50. Satou M, Ewert J-P (1985) The antidromic activation of tectal neurons by electrical stimuli applied to the caudal medulla oblongata in the toad Bufo bufo (L.). J Comp Physiol 157: 739–748

    Article  CAS  Google Scholar 

  51. Ewert J-P, Framing EM, Schürg-Pfeiffer E, Weerasuriya A (1990) Responses of medullary neurons to moving visual stimuli in the common toad: I) Characterization of medial reticular neurons by extracellular recording. J Comp Physiol A 167: 495–508

    Google Scholar 

  52. Ewert J-P, Hock FJ, Wietersheim A v (1974) Thalamus/Praetectum/Tectum: retinale Topographie und physiologische Interaktionen bei der Kröte (Bufo bufo L). J Comp Physiol 92: 343–356

    Article  Google Scholar 

  53. Schürg-Pfeiffer E, Spreckelsen C, Ewert J-P (1993) Temporal discharge patterns of tectal and medullary neurons chronically recorded during snapping toward prey in toads Bufo bufo spinosus. J Comp Physiol A 173: 363–376

    Article  Google Scholar 

  54. Ewert J-P, Schürg-Pfeiffer E, Schwippert WW (1996) Influence of pretectal lesions on tectal responses to visual stimulation in anurans: field potential, single neuron and behavior analyses. Acta Biologica Acad Sci Hungaria 47(2–4): 223–245

    Google Scholar 

  55. Ewert J-P, Wietersheim A v (1974) Der Einfluß von Thalamus/Praetectum-Defekten auf dieAntwort von Tectum-Neuronen gegenüber bewegten visuellen Mustern bei der Kröte (Bufo bufo L). J Comp Physiol 92: 149–160

    Article  Google Scholar 

  56. Ewert J-P (1971) Single unit response of the toad (Bufo americanus) caudal thalamus to visual objects. Vergl Physiol 74: 81–102

    Article  Google Scholar 

  57. Lázár G (1989) Cellular architecture and connectivity of the frog’s optic tectum and pretectum. In: Ewert J-P, Arbib MA (eds): Visuomotor coordination. Plenum, New York, 175–199

    Google Scholar 

  58. Matsumoto N (1989) Morphological and physiological studies of tectal and pretectal neurons in the frog. In: Ewert J-P, Arbib MA (eds): Visuomotor coordination. Plenum, New York, 201–222

    Google Scholar 

  59. Buxbaum-Conradi H, Ewert J-P (1995) Pretecto-tectal influences I. What the toad’s pretectum tells its tectum: an antidromic stimulation/recording study. J Comp Physiol A 176: 169–180

    Google Scholar 

  60. Ingle DJ (1977) Detection of stationary objects by frogs (Rana pipiens) after ablation of optic tectum. J Comp Physiol Psychol 91: 1359–1364

    Article  PubMed  CAS  Google Scholar 

  61. Ingle DJ (1980) Some effects of pretectum lesions on the frog’s detection of stationary objects. Behav Brain Res 1: 139–163.

    Article  PubMed  CAS  Google Scholar 

  62. Lázár G, Maderdrut JL, Trasti SL, Liposits Z, Tóth P, Kozicz T, Merchenthaler I (1993) Distribution of proneuropeptide Y-derived peptides in the brain of Rana esculenta and Xenopus laevis. J Comp Neurol 327: 551–571

    Article  PubMed  Google Scholar 

  63. Danger JM, Guy J, Benyamina M, Jegou S, Leboulenger F, Cote J, Tonon MC, Pelletier G, Vaudry H (1985) Localization and identification of neuropeptide Y (NPY)-like immunoreactivity in the frog brain. Peptides 6: 1225–1236

    Article  PubMed  CAS  Google Scholar 

  64. Chapman AM, Debski EA (1995) Neuropeptide Y immunoreactivity of a projection from the lateral thalamic nucleus to the optic tectum of the leopard frog. Vis Neurosci 12: 1–9

    Article  PubMed  CAS  Google Scholar 

  65. Lázár G (2001) Peptides in frog brain areas processing visual information. Microsc Res Tech 54(4): 201–219

    Article  PubMed  Google Scholar 

  66. Kozicz T, Lázár G (1994) The origin of tectal NPY immunopositive fibers in the frog. Brain Res 635: 345–348

    Article  PubMed  CAS  Google Scholar 

  67. Tuinhof R, Gonzalez A, Smeets WJAJ, Roubos EW (1994) Neuropeptide Y in the developing and adult brain of the South African clawed toad, Xenopus laevis. J Chem Neuroanatom 7: 271–283

    Article  CAS  Google Scholar 

  68. Schwippert WW, Ewert J-P (1995) Effect of neuropeptide-Y on tectal field potentials in the toad. Brain Res 669: 150–152

    Article  PubMed  CAS  Google Scholar 

  69. Schwippert WW, Röttgen A, Ewert J-P (1998) Neuropeptide Y (NPY) or fragment NPY13–36, but not NPY18–36, inhibit retinotectal transfer in cane toads Bufo marinus. Neurosci Lett 253: 33–36

    Article  PubMed  CAS  Google Scholar 

  70. Carr JA, Brown CL, Mansouri R, Venkatesan S (2002) Neuropeptides and amphibian prey-catching behavior. Comp Biochem Physiol Part B 132: 151–162

    Article  Google Scholar 

  71. Funke S, Ewert J-P (2006) NeuropeptideY suppresses glucose utilization in the dorsal optic tectum towards visual stimulation in the toad Bombina orientalis: A [14C]2DG study. Neuroscience Lett 392: 43–46

    Article  CAS  Google Scholar 

  72. Clairambault P (1976) Development of the prosencephalon. In: Llinás R, Precht W (eds): Frog neurobiology. Springer, Berlin, 924–945

    Google Scholar 

  73. D’Aniello B, Imperatore C, Fiorentiono M, Vallarino M, Rastogi RK (1994) Immunocytochemical localization of POMC-derived peptides (adrenocorticotropic hormone, α-melanocyte-stimulating hormone and β-endorphin) in the pituitary, brain and olfactory epithelium of the frog, Rana esculenta, during development. Cell Tissue Res 278: 509–516

    PubMed  CAS  Google Scholar 

  74. Ebbesson SOE (1987) Prey-catching in toads: an exceptional neuroethological model. Behav Brain Sci 10: 375–376

    Google Scholar 

  75. Traud R (1983) Einfluß von visuellen Reizmustern auf die juvenile Erdkröte (Bufo bufo L). Dr.rer.nat. Dissertation. Abt. Neurobiologie. Fachbereich Biologie/Chemie, Univ Kassel

    Google Scholar 

  76. Kuhn P (2003) Quantitative Untersuchungen über die visuelle Steuerung des Beutefangs der Chinesischen Rotbauchunke Bombina orientaliswährend der Ontogenese. Dr.rer.nat. Dissertation, Abt. Neurobiologie, Fachbereich Biologie/Chemie, Univ Kassel

    Google Scholar 

  77. Ewert J-P, Burghagen H (1979) Ontogenetic aspects of visual size constancy phenomenon in the midwife toad Alytes obstetricans (Laur.). Brain Behav Evol 16(2): 99–112

    PubMed  CAS  Google Scholar 

  78. Ewert J-P, Burghagen H, Schürg-Pfeiffer E (1983) Neuroethological analysis of the innate releasing mechanism for prey-catching behavior in toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds): Advances in vertebrate neuroethology. Plenum, New York, 413–475

    Google Scholar 

  79. Székely G, Lázár G (1976) Cellular and synaptic architecture of the optic tectum. In: Llinás R, Precht W (eds): Frog neurobiology. Springer, Berlin, 407–434

    Google Scholar 

  80. Kozicz T, Lázár G (2001) Colocalization of GABA, enkephalin and neuropeptide Y in the tectum of the green frog Rana esculenta. Peptides 22: 1071–1077

    Article  PubMed  CAS  Google Scholar 

  81. González A, Smeets WJAJ (1991) Comparative analysis of dopamine and tyrosine hydroxylase immunoreactivities in the brain of two amphibians, the anuran Rana ridibunda and the urodele Pleurodeles waltlii. J Comp Neurol 303: 457–477

    Article  PubMed  Google Scholar 

  82. Lázár G (1971) The projection of the retinal quadrants on the optic centers in the frog: a terminal degeneration study. Acta Morph Acad Sci Hung 19: 325–334

    Google Scholar 

  83. Lázár G (1979) Organization of the frog visual system. In: Lissák K (ed): Recent developments of neurobiology in Hungary, Vol 8. Akadémiai Kiadò, Budapest, 9–50

    Google Scholar 

  84. Fite KV, Scalia F (1976) Central visual pathways in the frog. In: Fite KV (ed): The amphibian visual system: a multidisciplinary approach. Academic Press, New York, 87–118

    Google Scholar 

  85. Wilczynski W, Northcutt RG (1977) Afferents to the optic tectum of the leopard frog: an HRP study. J Comp Neurol 173: 219–229

    Article  Google Scholar 

  86. Neary TJ, Wilczynski W (1980) Descending inputs to the optic tectum in ranid frogs. Soc Neurosci Abstr 6: 629

    Google Scholar 

  87. Neary T, Northcutt RG (1983) Nuclear organization of the bullfrog diencephalon. JComp Neurol 213: 262–278

    Article  CAS  Google Scholar 

  88. Stevens RJ (1973) A cholinergic inhibitory system in the frog optic tectum: its role in visual electrical responses and feeding behavior. Brain Res 49: 309–321

    Article  PubMed  CAS  Google Scholar 

  89. Gruberg ER (1989) Nucleus isthmi and optic tectum in frogs. In: Ewert J-P, Arbib MA (eds): Visuomotor coordination. Plenum, New York, 341–356

    Google Scholar 

  90. Gruberg ER, Wallace M, Caine H, Mote M (1991) Behavioral and physiological consequences of unilateral ablation of the nucleus isthmi in the leopard frog. Brain Behav Evol 37: 92–103

    PubMed  CAS  Google Scholar 

  91. Gruberg ER, Hughes TE, Karten HJ (1994) Synaptic interregulationships between the optic tectum and the ipsilateral nucleus isthmi in Rana pipiens. J Com Neurol 339(3):353–364

    Article  CAS  Google Scholar 

  92. Xiao J, Wang Y, Wang SR (1999) Effects of glutamatergic, cholinergic and GABAergic antagonists on tectal cells in toads. Neuroscience 90(3): 1061–1067

    Article  PubMed  CAS  Google Scholar 

  93. Brzoska J, Schneider H (1978) Modification of prey-catching behavior by learning in the common toad (Bufo bufo L, Anura, Amphibia): changes in response to visual objects and effects of auditory stimuli. Behav Processes 3: 125–136

    Article  Google Scholar 

  94. Finkenstädt T (1989) Visual associative learning: searching for behaviorally relevant brain structures in toads. In: Ewert J-P, Arbib, MA (eds): Visuomotor coordination. Plenum, New York, 799–832

    Google Scholar 

  95. Finkenstädt T, Ewert J-P (1992) Localization of learning-related metabolical changes in brain structures of common toads: a 2-DG-study. In: Gonzalez-Lima F, Finkenstädt T, Scheich H (eds): Advances in metabolic mapping techniques for brain imaging of behavioral and learning functions. Kluwer Academic Publishers, Dordrecht, 409–445

    Google Scholar 

  96. Finkenstädt T, Adler NT, Allen TO, Ewert J-P (1986) Regional distribution of glucose utilization in the telencephalon of toads in response to configurational visual stimuli: a 14C-2DG study. J Comp Physiol A 158: 457–467

    Article  Google Scholar 

  97. Dinges AW, Ewert J-P (1994) Species-universal stimulus responses, modified through conditioning, re-appear after telencephalic lesions in toads. Naturwissenschaften 81:317–320

    PubMed  Google Scholar 

  98. Guha K, Jorgensen CB, Larsen LO (1980) Relationship between nutritional state and testes function, together with the observations on patterns of feeding, in the toad. J Zool (London) 192: 147–155

    Google Scholar 

  99. Laming PR, Cairns C (1998) Effects of food, glucose, and water ingestion on feeding activity in the toad (Bufo bufo). Behav Neurosci 112(5): 1266–1272

    Article  PubMed  CAS  Google Scholar 

  100. Laming PR (1989) Central representation of arousal. In: Ewert J-P, Arbib MA (eds): Visuomotor coordination. Plenum, New York, 693–727

    Google Scholar 

  101. Laming PR (1993) Slow potential shifts as indicants of glial activation and possible neuromodulation. In: McCallum WC, Curry SH (eds): Slow potential changes in the human brain. Plenum, New York, 35–46

    Google Scholar 

  102. Laming PR, Nicol AU, Roughan JV, Ocherashvili IV, Laming BA (1995) Sustained potential shifts in the toad tectum reflect prey-catching and avoidance behavior. Behav Neurosci 109(1): 150–160

    Article  PubMed  CAS  Google Scholar 

  103. Patton P, Grobstein P (1998). The effects of telencephalic lesions on the visually mediated prey orienting behavior in the leopard frog (Rana pipiens). I. The effects of complete removal of one telencephalic lobe, with a comparison to the effect of unilateral tectal lobe lesions. Brain Behav Evol 51: 123–143

    Article  PubMed  CAS  Google Scholar 

  104. Patton P, Grobstein P (1998). The effects of telencephalic lesions on the visually mediated prey orienting behavior in the leopard frog (Rana pipiens). II. The effects of limited lesions to the telencephalon. Brain Behav Evol 51: 144–161

    Article  PubMed  CAS  Google Scholar 

  105. Finkenstädt T, Adler NT, Allen TO, Ebbesson SOE, Ewert J-P (1985) Mapping of brain activity in mesencephalic and diencephalic structures of toads during presentation of visual key stimuli: a computer assisted analysis of 14C-2DG autoradiographs. J Comp Physiol A 156: 433–445

    Article  Google Scholar 

  106. Finkenstädt T, Ewert J-P (1985) Glucose utilization in the toad’s brain during anesthesia and stimulation of the ascending reticular arousal system: a 14C-2-deoxyglucose study. Naturwissenschaften 72: 161–162

    Article  Google Scholar 

  107. Lázár G, Kozicz, T (1990) Morphology of neurons and axon terminals associated with descending and ascending pathways of the lateral forebrain bundle in Rana exculenta. Cell Tissue Res 260: 535–548

    Article  PubMed  Google Scholar 

  108. Merchenthaler I, Lázár G, Maderdrut, JL (1989) Distribution of proenkephalin-derived peptides in the brain of Rana esculenta. J Comp Neurol 281: 23–39

    Article  PubMed  CAS  Google Scholar 

  109. Schwerdtfeger WK, Germroth P (1990) The forebrain in nonmammals. Springer, Berlin, 57–65

    Google Scholar 

  110. Matsumoto N, Schwippert WW, Beneke TW, Ewert J-P (1991) Forebrain-mediated control of visually guided prey-catching in toads: investigation of striato-pretectal connections with intracellular recording/labeling methods. Behav Processes 25: 27–40

    Article  Google Scholar 

  111. Buxbaum-Conradi H, Ewert J-P (1999) Responses of single neurons in the toad’s caudal ventral striatum to moving visual stimuli and test of their efferent projection by extracellular antidromic stimulation/recording techniques. Brain Behav Evol 54: 338–354

    Article  PubMed  CAS  Google Scholar 

  112. Gruberg ER, Ambros VR (1974) Aforebrain visual projection in the frog (Rana pipiens). Exp Brain Res 44: 187–197

    CAS  Google Scholar 

  113. Buddenbrock Wv (1937) Grundriß der vergleichenden Physiologie. Borntraeger, Berlin

    Google Scholar 

  114. Glagow M, Ewert J-P (1997) Dopaminergic modulation of visual responses in toads. I. Apomorphine-induced effects on visually directed appetitive and consummatory preycatching behavior. J Comp Physiol A 180: 1–9

    Article  PubMed  CAS  Google Scholar 

  115. Glagow M, Ewert J-P (1999) Apomorphine alters prey-catching patterns in the common toad: behavioural experiments and 14C-2-deoxyglucose brain mapping studies. Brain Behav Evol 54: 223–242

    Article  PubMed  CAS  Google Scholar 

  116. Ewert J-P, Beneke TW, Schürg-Pfeiffer E, Schwippert WW, Weerasuriya A (1994) Sensorimotor processes that underlie feeding behavior in tetrapods. In: Bels VL, Chardon M, Vandevalle P (eds): Advances in comparative and environmental physiology, Vol. 18: Biomechanics of feeding in vertebrates. Springer, Berlin, 119–161

    Google Scholar 

  117. Chu J, Wilcox RE, Wilczynski W (1994) Pharmacological characterization of D1 and D2 dopamine receptors in Rana pipiens. Soc Neurosci Abstr 20: 167

    Google Scholar 

  118. Djamgoz MBA, Wagner, H-J (1992) Localization and function of dopamine in the adult vertebrate retina. Neurochem Int 20: 139–191

    Article  PubMed  CAS  Google Scholar 

  119. Röttgen A(1999) Über den Einfluß von Neuropharmaka auf die visuelle Ansprechbarkeit in der retino-tectalen Projektion der Agakröte. Dr.rer.nat. Dissertation, Abt. Neurobiologie, Fachbereich Biologie/Chemie, Univ Kassel.

    Google Scholar 

  120. Glagow M, Ewert J-P (1997) Dopaminergic modulation of visual responses in toads. II. Influences of apomorphine on retinal ganglion cells and tectal cells. J Comp Physiol A 180: 11–18

    Article  PubMed  CAS  Google Scholar 

  121. Glagow M, Ewert J-P (1996) Apomorphine-induced suppression of prey oriented turning in toads is correlated with activity changes in pretectum and tectum: 14C-2DG studies and single cell recordings. Neurosci Lett 220: 215–218

    Article  PubMed  CAS  Google Scholar 

  122. Sanchez-Camacho C, MarÍn O, Lopez JM, Moreno N, Smeets WJ, Ten Donkelaar HJ, González A (2002) Origin and development of descending catecholaminergic pathways to the spinal cord in amphibians. Brain Res Bull 57(3–4): 325–330

    Article  PubMed  CAS  Google Scholar 

  123. Hoffmann A (1973) Stereotaxis atlas of the toad’s brain. Acta Anat 84: 416–451

    Article  PubMed  CAS  Google Scholar 

  124. Kicliter E, Northcutt G (1975) Ascending afferents to the telencephalon of ranid frogs: an anterograde degeneration study. J Comp Neur 161: 239–254

    Article  PubMed  CAS  Google Scholar 

  125. Northcutt RG, Royce GJ (1975) Olfactory bulb projections in the bullfrog Rana catesbeiana. J Morphol 145: 51–268

    Article  Google Scholar 

  126. Ploog D, Gottwald P (1974)Verhaltensforschung: Instinkt, Lernen, Hirnfunktion. Urban & Schwarzenberg, München

    Google Scholar 

  127. Nistri A, Sivilotti L, Welsh DM (1990) An electrophysiological study of the action of N-methyl-D-aspartate on excitatory synaptic transmission in the optic tectum of the frog in vitro. Neuropharmacol 29: 681–687

    Article  CAS  Google Scholar 

  128. Hickmott PW, Constantine-Paton M (1993) The contributions of NMDA, non-NMDA, and GABA receptors to postsynaptic responses in neurons of the optic tectum. J Neurosci 13(10): 4339–4353

    PubMed  CAS  Google Scholar 

  129. Gamlin PD, Reiner A, Keyser T, Brecha N, Karten HJ (1996) Projection of the nucleus pretectalis to a retinorecipient tectal layer in the pigeon (Columba livia). J Comp Neurol 368(3): 424–438

    Article  PubMed  CAS  Google Scholar 

  130. Cucchiaro JB, Bickford ME, Sherman SM (1991) A GABAergic projection from the pretectum to the dorsal lateral geniculate nucleus in the cat. Neurosci 41(1) 213–226

    Article  CAS  Google Scholar 

  131. Kenigfest NB, Belekhova MG, Karamyan OA, Minakova MN, Rio J-P, Reperant J (2002) Neurochemical organization of the turtle pretectum: an immunohistochemical study. Comparative analysis. J Evol Biochem Physiol 38(6): 673–688

    Article  CAS  Google Scholar 

  132. Borostyankoi-Baldauf Z, Herczeg L (2002) Parcellation of the human pretectal complex: a chemoarchitectonic reappraisal. Neurosci 110(3): 527–540

    Article  CAS  Google Scholar 

  133. Ebersole TJ, Coulon JM, Goetz FW, Boy SK (2001) Characterization and distribution of neuropeptide Y in the brain of a caecilian amphibian. Peptides 22: 325–334

    Article  PubMed  CAS  Google Scholar 

  134. Bertoz A, Vidal PP, Graf W (1992) The head-neck sensory motor system. Oxford Univ Press, New York

    Google Scholar 

  135. Foreman N, Stevens R (1987) Relationships between the superior colliculus and hippocampus: Neural and behavioural considerations. Behav Brain Sci 10: 101–152

    Article  Google Scholar 

  136. Gonzalez-Lima F (1989) Functional brain circuitry related to arousal and learning in rats. In: Ewert J-P, Arbib MA (eds): Visuomotor coordination. Plenum, New York, 729–765

    Google Scholar 

  137. Ewert J-P, Finkenstädt T (1987) Modulation of tectal functions by prosencephalic loops in amphibians. Behav Brain Sci 10(1): 122–123

    Google Scholar 

  138. Birkhofer M, Bleckmann H, Görner P (1994) Sensory activity in the telencephalon of the clawed toad, Xenopus laevis. Eur J Morphol 2–4: 262–266

    Google Scholar 

  139. Walkowiak W, Berlinger M, Schul J, Gerhardt HC (1999) Significance of forebrain structures in acoustically guided behavior in anurans. Eur J Morphol 37(2–3): 177–181

    Article  PubMed  CAS  Google Scholar 

  140. Endepols H, Walkowiak W (1999) Influence of descending forebrain projections on processing of acoustic signals and audiomotor integration in the anuran midbrain. Eur J Morphol 37(2–3): 182–184

    Article  PubMed  CAS  Google Scholar 

  141. Chevalier G, Vacher S, Deniau JM (1984) Inhibitory nigral influence on tectospinal neurons, a possible implication of basal ganglia in orienting behavior. Exp Brain Res 53: 320–326

    Article  PubMed  CAS  Google Scholar 

  142. Chevalier G, Deniau JM (1990) Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci 13: 277–280

    Article  PubMed  CAS  Google Scholar 

  143. Andersen H, Bræstrup C, Randrup A (1975) Apomorphine-induced stereotyped biting in the tortoise in relation to dopaminergic mechanisms. Brain Behav Evol 11: 365–373

    PubMed  CAS  Google Scholar 

  144. Dhawan B, Saxena PN, Gupta GP (1961) Apomorphin-induced pecking in pigeons. Brit J Pharmacol 15: 285–295

    Google Scholar 

  145. Burg B, Haase C, Lindenblatt U, Delius JD (1989) Sensitization to and conditioning with apomorphine in pigeons. Pharmacol Biochem Behav 34: 59–64

    Article  PubMed  CAS  Google Scholar 

  146. Fekete M, Kurti AM, Priubusz J (1970) On the dopaminergic nature of the gnawing compulsion induced by apomorphine in mice. J Pharmacol 22: 377–379

    CAS  Google Scholar 

  147. McCulloch J, Savaki HE, McCulloch MC, Jehle J, Sokoloff L (1982) The distribution of alterations in energy metabolism in the rat brain produced by apomorphine. Brain Res 243: 67–80

    Article  PubMed  CAS  Google Scholar 

  148. Blackburn JB, Pfaust JG, Phillips AG (1992) Dopamine functions in appetitive and defensive behaviours. Prog Neurobiol 39: 247–279

    Article  PubMed  CAS  Google Scholar 

  149. Szechman H, Cleghorn JM, Brown GM, Kaplan RD, Franco SW, Rosenthal K (1987) Sensitization and tolerance to apomorphine in men: yawning, growth hormone, nausea, and hypothermia. Psychiatr Res 23: 245–255

    Article  Google Scholar 

  150. Ugwoke MI, Sam E, Van den Mooter G, Verbeke N, Kinget R (1999) Assessment of apomorphine nasal spray in Parkinson treatment. Int J Pharmac 181: 125–193

    Article  CAS  Google Scholar 

  151. Godoy AM, Delius JD (1999) Sensitization to apomorphine in pigeons is due to conditioning, subject to generalization but resistant to extinction. Behav Pharmacol 10:367–378

    Article  PubMed  CAS  Google Scholar 

  152. Baxter BL, Gluckman MJ, Stein L, Scerni RA (1974) Self-injection of apomorphine in the rat: positive reinforcement by a dopamine receptor stimulant. Pharmacol Biochem Behav 2: 387–392

    Article  PubMed  CAS  Google Scholar 

  153. Cools AR, Broekkamp CLE, van Rossum JM (1977) Subcutanous injections of apomorphine, stimulus generalization and conditioning: serious pitfalls for the examiner using apomorphine as a tool. Pharmacol Biochem Behav 6: 705–708

    Article  PubMed  CAS  Google Scholar 

  154. Woolverton WL, Goldberg LI, Ginos JZ (1984) Intravenous self-administration of dopamine receptor agonists by rhesus monkeys. J Pharmacol Exp Ther 230: 678–683

    PubMed  CAS  Google Scholar 

  155. Möller, H-G, K. Nowak K, Kuschinsky K (1987) Studies on interactions between conditioned and unconditioned behavioural responses to apomorphine in rats. Naudyn-Schmiedeberg’s Arch Pharm 335: 673–679

    Article  Google Scholar 

  156. Lindenblatt U, Delius JD (1988) Nucleus basalis prosencephali, a substrate of apomorphine-induced pecking in pigeons. Brain Res 453: 1–8

    Article  PubMed  CAS  Google Scholar 

  157. Wynne B, Delius JD (1995) Sensitization to apomorphine in pigeons: unaffected by latent inhibition but still due to classical conditioning. Psychopharmacology 119: 414–420

    Article  PubMed  CAS  Google Scholar 

  158. Godoy AM, Delius JD, Siemann M (2000) Dose shift effects on an apomorphine-elicited response. Med Sci Res 28: 39–42

    Google Scholar 

  159. Ewert J-P, Matsumoto N, Schwippert WW (1985) Morphological identification of preyselective neurons in the grass frog’s optic tectum. Naturwissenschaften 72: 661–662

    Article  PubMed  CAS  Google Scholar 

  160. Ewert J-P, Buxbaum-Conradi H, Dreisvogt F, Glagow M, Merkel-Harff C, Röttgen A, Schürg-Pfeiffer E, Schiwppert WW (2001) Neural modulation of visuomotor functions underlying prey-catching behaviour in anurans: perception, attention, motor performance, Learning. Comp Biochem Physiol A 128: 417–461

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Ewert, JP., Schwippert, W.W. (2006). Modulation of visual perception and action by forebrain structures and their interactions in amphibians. In: Levin, E.D. (eds) Neurotransmitter Interactions and Cognitive Function. Experientia Supplementum, vol 98. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7772-4_6

Download citation

Publish with us

Policies and ethics