Skip to main content

The Role of Blood-Brain Barrier Transport of Tryptophan and Other Neutral Amino Acids in the Regulation of Substrate-Limited Pathways of Brain Amino Acid Metabolism

  • Conference paper
Book cover Transport Mechanisms of Tryptophan in Blood Cells, Nerve Cells, and at the Blood-Brain Barrier

Part of the book series: Journal of Neural Transmission ((NEURAL SUPPL,volume 15))

Summary

Many pathways of essential neutral amino acid metabolism in the CNS are influenced by precursor availability. Since the delivery of circulating amino acids to brain cells is primarily controlled by the rate of amino acid transport through the blood-brain barrier (BBB), pathways of brain amino acid metabolism are ultimately influenced by the activity (Km, Vmax) of the BBB neutral amino acid transport system. The Km of BBB transport is in the 0.1–0.6 mM range, which approximates the physiologic plasma levels and forms the basis of the unusual sensitivity of the brain to competition effects on neutral amino acid transport. Unlike the brain, the Km of amino acid transport into other organs is in the 1–10 mM range or greater, which frees these tissues from competition effects in the physiologic range of plasma amino acids. Tryptophan circulates 80–90% bound to albumin; however, the capacity/affinity ratio of the BBB neutral amino acid transport system exceeds the capacity/affinity ratio of albumin binding of tryptophan, which enables the carrier to strip tryptophan off albumin as it traverses the brain capillary. The activity of the BBB neutral amino acid transport system is probably not modulated by insulin, but is influenced by changes in thyroid hormone status; the transport system is also induced in states of hepatic encephalopathy and this induction process is the primary cause of the increased brain tryptophan and serotonin levels in cirrhosis.

Supported by the National Science Foundation (BNS 78-05500).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adibi, S. A., Mercer, D. W.: Protein digestion in human intestine as reflected in luminal, mucosal and plasma amino acid concentrations after meals. J. Clin. Invest. 52, 1586–1594 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Ames, A., III, Parks, J. M.: Functional homogeneity of leucine pool in retina cells. J. Neurochem. 27, 1017–1025 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Baños, G., Daniel, P. M., Moorhouse, S. R., Pratt, O. E.: The influx of amino acids into the brain of the rat in vivo: The essential compared with some non-essential amino acids. Proc. R. Soc. Lond. (Biol.) 183, 59–70 (1973).

    Article  Google Scholar 

  • Begin, N., Scholefield, P. G.: The uptake of amino acids by mouse pancreas in vitro. II. The specificity of the carrier systems. J. Biol. Chem. 240, 332–338 (1965).

    CAS  Google Scholar 

  • Betz, A. L., Gilboe, D. D.: Effect of pentobarbital on amino acid and urea flux in the isolated dog brain. Am. J. Physiol. 224, 580–587 (1973).

    PubMed  CAS  Google Scholar 

  • Birkmayer, W., Danielczyk, W., Neumayer, E., Riederer, P.: L-Dopa level in plasma, primary condition for the kinetic effect. J. Neural Transm. 34, 133–143 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Chan, Y. Z., Huang, K. C.: Microperfusion studies on renal tubular transport of tryptophan derivatives in rats. Am. J. Physiol. 221, 575–579 (1971).

    PubMed  CAS  Google Scholar 

  • Chaplin, E. R., Goldberg, A. L., Diamond, I.: Leucine oxidation in brain slices and nerve endings. J. Neurochem. 26, 701–707 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Chung-Hwang, E., Khurana, H., Fisher, H.: The effect of dietary histidine level on the carnosine concentration of rat olfactory bulbs. J. Neurochem. 26, 1087–1091 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Coyle, J. T.: Tyrosine hydroxylase in rat brain-cof actor requirements, regional and subcellular distribution. Biochem. Pharmacol. 21, 1935 to 1942 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Cummings, M. G., Soeters, P. B., James, J. H., Keane, J. M., Fischer, J. E.: Regional brain indoleamine metabolism following chronic portacaval anastomosis in the rat. J. Neurochem. 27, 501–509 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Curzon, G., Kantamaneni, B. D., Fernando, J. C, Woods, M. S., Cavanagh, J. B.: Effects of chronic porto-caval anastomosis on brain tryptophan, tyrosine and 5-hydroxytryptamine. J. Neurochem. 24, 1065–1070 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Daniel, P. M., Love, E. R., Pratt, O. E.: Hypothyroidism and amino acid entry into brain and muscle. Lancet 2, 872 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Daniel, P. M., Moorhouse, S. R., Pratt, O. E.: Do changes in blood levels of other aromatic amino acids influence levodopa therapy? The Lancet 1, 95 (1976).

    Article  CAS  Google Scholar 

  • De Montis, M. G., Olianas, M. C., Haber, B., Taglamonte, A.: Increase in large neutral amino acid transport into brain by insulin. J. Neurochem. 30, 121–124 (1978).

    Article  PubMed  Google Scholar 

  • Felig, P., Wahren, J., Ahlborg, G.: Uptake of individual amino acids by the human brain. Proc. Soc. Exp. Biol. Med. 142, 230–231 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Friedman, P. A., Kappelman, A. H., Kaufman, S.: Partial purification and characterization of tryptophan hydroxylase from rabbit hindbrain. J. Biol. Chem. 247, 4165–4173 (1972).

    PubMed  CAS  Google Scholar 

  • Guroff, G., Udenfriend, S.: Studies on aromatic amino acid uptake by rat brain in vivo. J. Biol. Chem. 237, 803–806 (1962).

    PubMed  CAS  Google Scholar 

  • Hertz, M. M., Bolwig, T. G.: Blood-brain barrier studies in the rat: An indicator dilution technique with tracer sodium as an internal standard for estimation of extracerebral contamination. Brain Res. 107, 333–343 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Jacoby, J. H., Mueller, G., Wurtman, R. J.: Thyroid state and brain monoamine metabolism. Endocrinology 97, 1332–1335 (1975).

    Article  PubMed  CAS  Google Scholar 

  • James, J. H., Escourrou, J., Fischer, J. E.: Blood brain neutral amino acid transport activity is increased after portacaval anastomosis. Science 200, 1395–1397 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Larsen, P. R., Ross, J. E., Tapley, D. F.: Transport of neutral, dibasic and N-methyl substituted amino acids by rat intestine. Biochim. Biophys. Acta 88, 570–577 (1964).

    PubMed  CAS  Google Scholar 

  • Le Cam, A., Freychet, P.: Neutral amino acid transport. Characterization of the A and L system in isolated rat hepatocytes. J. Biol. Chem. 252, 148–156 (1977).

    Google Scholar 

  • Lingard, J., Rumrich, G., Young, J. A.: Kinetics of L-histidine transport in the proximal convolution of rat nephron studied using the stationary microperfusion technique. Pfluegers Arch. 342, 13–28 (1973).

    Article  CAS  Google Scholar 

  • Madras, B. K., Cohen, E. L., Messing, R., Munro, H. N., Wurtman, R. J.: Revelance of free tryptophan in serum to tissue tryptophan concentrations. Metabolism 23, 1107–1116 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Matthyse, S., Baldessarini, R. J., Vogt, M.: Methionine adenosyltransferase: A double-isotope derivative, enzymatic assay. Anal. Biochem. 48, 410 to 421 (1972).

    Article  Google Scholar 

  • McMenamy, R. H., Lund, C. C, Van Marche, J., Oncley, J. L.: The binding of L-tryptophan in human plasma at 37 °C. Arch. Biochem. Biophys. 93, 135–139 (1961).

    Article  PubMed  CAS  Google Scholar 

  • Neff, N. H., Spano, P. F., Groppetti, A., Wang, C. T., Costa, E.: A simple procedure for calculating the synthesis rate of norepinephrine, dopamine, and serotonin in rat brain. J. Pharmacol. Exp. Ther. 176, 701–710 (1971).

    PubMed  CAS  Google Scholar 

  • Oldendorf, W. H.: Measurement of brain uptake of radiolabeled substances using a tritiated water internal standard. Brain. Res. 24, 372–376 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Pardridge, W. M., Oldendorf, W. H.: Kinetic analysis of blood-brain barrier transport of amino acids. Biochim. Biophys. Acta 401, 128–136 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Pardridge, W. M., Oldendorf, W. H.: Transport of metabolic substrates through the blood-brain barrier. J. Neurochem. 28, 5–12 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Pardridge, W. M.: Kinetics of competitive inhibition of neutral amino acid transport across the blood-brain barrier. J. Neurochem. 28, 103–108 (1977 a).

    Article  PubMed  CAS  Google Scholar 

  • Pardridge, W. M.: Regulation of amino acid availability to the brain. In: Nutrition and the Brain, Vol. 1 (Wurtman, R. J., Wurtman, J. J., eds.), pp. 141-204. New York. 1977 b.

    Google Scholar 

  • Pardridge, W. M.: Unidirectional influx of glutamine and other neutral amino acids in liver of fed and fasted rat in vivo. Am. J. Physiol. 232, E492–E496 (1977 c).

    PubMed  CAS  Google Scholar 

  • Riggs, T. R.: Hormones and transport across cell membranes. In: Biochemical Actions of Hormones, Vol. 1 (Litwack, G., ed.), pp. 157-208. New York. 1970.

    Google Scholar 

  • Riggs, T. R., McKirahan, K. J.: Action of insulin on transport of L-alanine in rat diaphragm in vitro. J. Biol. Chem. 248, 6450–6455 (1973).

    PubMed  CAS  Google Scholar 

  • Ruderman, N. B., Ross, P. S., Berger, M., Goodman, M. N.: Regulation of glucose and ketone-body metabolism in brain of anesthetized rats. Biochem. J. 138, 1–10 (1974).

    PubMed  CAS  Google Scholar 

  • Schwartz, J. C., Lampart, C, Rose, C.: Histamine formation in rat brain in vivo: Effects of histidine loads. J. Neurochem. 19, 801–810 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Wade, L. A., Katzman, R.: Synthetic amino acids in the nature of L-Dopa transport at the blood-brain barrier. J. Neurochem. 25, 837–842 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Winter, C.G., Christensen, H. N.: Migration of amino acids across the membrane of the human erythrocyte. J. Biol. Chem. 239, 872–878 (1964).

    PubMed  CAS  Google Scholar 

  • Yuwiler, A., Oldendorf, W. H., Geller, E., Braun, L.: Effect of albumin binding and amino acid competition on tryptophan uptake into brain. J. Neurochem. 28, 1015–1023 (1977).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag Wien

About this paper

Cite this paper

Pardridge, W.M. (1979). The Role of Blood-Brain Barrier Transport of Tryptophan and Other Neutral Amino Acids in the Regulation of Substrate-Limited Pathways of Brain Amino Acid Metabolism. In: Baumann, P. (eds) Transport Mechanisms of Tryptophan in Blood Cells, Nerve Cells, and at the Blood-Brain Barrier. Journal of Neural Transmission, vol 15. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2243-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2243-3_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-2245-7

  • Online ISBN: 978-3-7091-2243-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics