Skip to main content

Abstract

With probably around 200,000 extant species, Mollusca is the second-most speciose phylum after Hexapoda. However, what makes mollusks particularly interesting from an evolutionary perspective is not their richness in species as such, but rather the huge variety of body plan phenotypes exhibited by its representatives. These include cylindrical, shell-less, spicule-bearing, wormlike, crawling, and burrowing creatures (Neomeniomorpha or Solenogastres and Chaetodermomorpha or Caudofoveata), eight-shelled grazers (Polyplacophora or chitons), two-valved filter feeders (Bivalvia such as mussels and clams) as well as the single-shelled Monoplacophora (Tryblidia), Gastropoda (snails, slugs), Scaphopoda (tusk shells), and Cephalopoda (octopuses, squids, nautiluses) (Fig. 7.1; for a comprehensive recent account on various aspects on molluskan phylogeny and evolution, see Ponder and Lindberg 2008).

Chapter vignette artwork by Brigitte Baldrian. © Brigitte Baldrian and Andreas Wanninger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altnöder A, Haszprunar G (2008) Larval morphology of the brooding clam Lasaea adansonii (Gmelin, 1791) (Bivalvia, Heterodonta, Galeommatoidea). J Morphol 269:762–774

    PubMed  Google Scholar 

  • Anderson PD, Bokor G (2012) Conotoxins: potential weapons from the sea. J Bioterr Biodef 3:120

    Google Scholar 

  • Andouche A, Bassaglia Y, Baratte S, Bonnaud L (2013) Reflectin genes and development of iridophore patterns in Sepia officinalis embryos (Mollusca, Cephalopoda). Dev Dyn 242:560–571

    CAS  PubMed  Google Scholar 

  • Appellöf A (1898) Ãœber das Vorkommen innerer Schalen bei den achtarmigen Cephalopoden (Octopoda). Bergens Mus Arb 12:1–15

    Google Scholar 

  • Arnolds WJA, van den Biggelaar JAM, Verdonk NH (1983) Spatial aspects of cell interactions involved in the determination of dorsoventral polarity in equally cleaving gastropods and regulative abilities of their embryos, as studied by micromere deletions in Lymnaea and Patella. Roux’s Arch Dev Biol 192:75–85

    Google Scholar 

  • Asami T, Gittenberger E, Falkner G (2008) Whole-body enantiomorphy and maternal inheritance of chiral reversal in the pond snail Lymnaea stagnalis. J Hered 99:552–557

    PubMed  Google Scholar 

  • Ax P (1999) Multicellular animals. Springer, Berlin

    Google Scholar 

  • Bandel K (1975) Embryonalgehäuse karibischer Meso- und Neogastropoden (Mollusca). Abh Math Naturw Kgl Akad Wiss Mainz 1:1–133

    Google Scholar 

  • Bandel K, Boletzky SV (1979) A comparative study of the structure, development and morphological relationships of chambered cephalopod shells. The Veliger 21:313–354

    Google Scholar 

  • Baratte S, Bonnaud L (2009) Evidence of early nervous differentiation and early catecholaminergic sensory system during Sepia officinalis embryogenesis. J Comp Neurol 517:539–549

    CAS  PubMed  Google Scholar 

  • Bardou I, Maubert E, Leprince J, Chichery R, Dallérac G, Vaudry H, Agin V (2010) Ontogeny of oxytocin-like immunoreactivity in the cuttlefish, Sepia officinalis, central nervous system. Dev Neurosci 32:19–32

    CAS  PubMed  Google Scholar 

  • Barlow LA, Truman JW (1992) Patterns of serotonin and SCP immunoreactivity during metamorphosis of the nervous system of the red abalone, Haliotis rufescens. J Neurobiol 23:829–844

    CAS  PubMed  Google Scholar 

  • Bartolomaeus T (1993) Die Leibeshöhlenverhältnisse und Nephridialorgane der Bilateria – Ultrastruktur, Entwicklung und Evolution. University of Göttingen, Göttingen

    Google Scholar 

  • Blochmann F (1883) Beiträge zur Kenntnis der Entwicklung der Gastropoden. I. Zur Entwicklung von Aplysia limacina L. Z Wiss Zool 38:392–410

    Google Scholar 

  • Boletzky S (1989) Recent studies on spawning, embryonic development, and hatching in the Cephalopoda. Adv Mar Biol 25:85–115

    Google Scholar 

  • Boletzky S, Erlwein B, Hofmann DK (2006) The Sepia egg: a showcase of cephalopod embryology. Vie Et Milieu – Life Environ 56:191–201

    Google Scholar 

  • Bonar DB (1978) Ultrastructure of a cephalic sensory organ in larvae of the gastropod Phestilla sibogae (Aeolidacea Nudibranchia). Tissue Cell 10:153–165

    CAS  PubMed  Google Scholar 

  • Boring L (1989) Cell-cell interactions determine the dorsoventral axis in embryos of an equally cleaving opisthobranch mollusc. Dev Biol 136:239–253

    CAS  PubMed  Google Scholar 

  • Boycott AE, Diver C (1923) On the inheritance of sinistrality in Lymnaea peregra. Proc R Soc Lond B Biol Sci 95:207–213

    Google Scholar 

  • Boycott AE, Diver C, Garstang SL, Hardy MAC, Turner FM (1930) The inheritance of sinistrality in Lymnaea peregra. Philos Trans R Soc Lond B Biol Sci 219:51–130

    Google Scholar 

  • Brooke NM, Garcia-Fernandez J, Holland PWH (1998) The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster. Nature 392:920–922

    CAS  PubMed  Google Scholar 

  • Buckland-Nicks (2013) Acorena. Revista de Estudos Acoreanos. Suplemento 8. Book of abstracts. World Congress of Malacology

    Google Scholar 

  • Buresi A, Baratte S, Da Silva C, Bonnaud L (2012) Orthodenticle/otx ortholog expression in the anterior brain and eyes of Sepia officinalis (Mollusca, Cephalopoda). Gene Expr Patterns 12:109–116

    CAS  PubMed  Google Scholar 

  • Buresi A, Canali E, Bonnaud L, Baratte S (2013) Delayed and asynchronous ganglionic maturation during cephalopod neurogenesis as evidenced by Sof-elav1 expression in embryos of Sepia officinalis (Mollusca, Cephalopoda). J Comp Neurol 521:1482–1496

    CAS  PubMed  Google Scholar 

  • Bütschli O (1877) Entwicklungsgeschichtliche Beiträge. I. Zur Entwicklungsgeschichte von Paludina vivipara. Z Wiss Zool 29:216–231

    Google Scholar 

  • Casteel DB (1904) The cell-linage and early larval development of Fiona marina, a nudibranch mollusk. Proc Acad Nat Sci Phila 56:325–405

    Google Scholar 

  • Cather JN (1967) Cellular interactions in the development of the shell gland of the gastropod, Ilyanassa. J Exp Zool 166:205–223

    CAS  PubMed  Google Scholar 

  • Checa A (2000) A new model for periostracum and shell formation in Unionidae (Bivalvia, Mollusca). Tissue Cell 32:405–416

    CAS  PubMed  Google Scholar 

  • Clement AC (1986) The embryonic value of the micromeres in Ilyanassa obsoleta, as determined by deletion experiments. III. The third quartet cells and the mesentoblast cell. Int J Invertebr Reprod Dev 9:155–168

    Google Scholar 

  • Conklin EG (1897) The embryology of Crepidula, a contribution to the cell lineage and early development of some marine gastropods. J Morphol 13:1–226

    Google Scholar 

  • Cragg SM (1985) The adductor and retractor muscles of the veliger of Pecten maximus (L.) (Bivalvia). J Molluscan Stud 51:276–283

    Google Scholar 

  • Croll RP (2000) Insights into early molluscan neuronal development through studies of transmitter phenotypes in embryonic pond snails. Microsc Res Tech 49:570–578

    CAS  PubMed  Google Scholar 

  • Croll RP (2009) Developing nervous systems in molluscs: navigating the twists and turns of a complex life cycle. Brain Behav Evol 74:164–176

    PubMed  Google Scholar 

  • Croll RP, Dickinson AJG (2004) Form and function of the larval nervous system in molluscs. Invertebr Reprod Dev 46:2–3

    Google Scholar 

  • Croll RP, Voronezhskaya EE (1996) Early elements in gastropod neurogenesis. Dev Biol 173:344–347

    CAS  PubMed  Google Scholar 

  • Cumin R (1972) Normentafel zur Organogenese von Lymnaea stagnalis L. mit besonderer Berücksichtigung der Mitteldarmdrüse. Rev Suisse Zool 79:709–774

    Google Scholar 

  • D’Asaro CN (1966) The egg capsules, embryogenesis, and early organogenesis of a common oyster predator, Thais haemastoma floridana (Gastropoda: Prosobranchia). Bull Mar Sci 16:884–914

    Google Scholar 

  • Damen P, Dictus WJAG (1996) Organiser role of the stem cell of the mesoderm in prototroch patterning in Patella vulgata (Mollusca, Gastropoda). Mech Dev 56:41–60

    CAS  PubMed  Google Scholar 

  • Dautert E (1929) Die Bildung der Keimblätter bei Paludina vivipara. Zool Jb Anat 50:433–496

    Google Scholar 

  • Demian ES, Yousif F (1975) Embryonic development and organogenesis in the snail Marisa cornuarietis (Mesogastropoda: Ampullariidae). V. Development of the nervous system. Malacologia 15:29–42

    CAS  PubMed  Google Scholar 

  • Dickinson AJG, Croll RP (2003) Development of the larval nervous system of the gastropod Ilyanassa obsoleta. J Comp Neurol 466:197–218

    PubMed  Google Scholar 

  • Dickinson AJG, Nason J, Croll RP (1999) Histochemical localization of FMRFamide, serotonin and catecholamines in embryonic Crepidula fornicata (Gastropoda, Prosobranchia). Zoomorphology 119:49–62

    Google Scholar 

  • Dictus WJAG, Damen P (1997) Cell-lineage and clonal-contribution map of the trochophore larva of Patella vulgata (Mollusca). Mech Dev 62:213–226

    CAS  PubMed  Google Scholar 

  • Diefenbach TJ, Koss R, Goldberg JI (1998) Early development of an identified serotonergic neuron in Helisoma trivolvis embryos: serotonin expression, de-expression, and uptake. Dev Neurobiol 34:361–376

    CAS  Google Scholar 

  • Dunn EF, Moy VN, Angerer LM, Angerer RC, Morris RL, Peterson KJ (2007) Molecular paleoecology: using gene regulatory analysis to address the origins of complex life cycles in the late Precambrian. Evol Dev 9:10–24

    CAS  PubMed  Google Scholar 

  • Dyachuk V, Odintsova N (2009) Development of the larval muscle system in the mussel Mytilus trossulus (Mollusca, Bivalvia). Dev Growth Differ 51:69–79

    CAS  PubMed  Google Scholar 

  • Eernisse DJ, Reynolds PD (1994) Chapter 3: Polyplacophora. In: Harrison FW (ed) Microscopic anatomy of invertebrates. Wiley-Liss, New York, pp 56–110

    Google Scholar 

  • Ellis I, Kempf SC (2011) Characterization of the central nervous system and various peripheral innervations during larval development of the oyster Crassostrea virginica. Invertebr Biol 130:236–250

    Google Scholar 

  • Farfán C, Shigeno S, Nödl MT, de Couet HG (2009) Developmental expression of apterous/Lhx2/9 in the sepiolid squid Euprymna scolopes supports an ancestral role in neural development. Evol Dev 11:354–362

    PubMed  Google Scholar 

  • Faussek V (1901) Untersuchungen über die Entwicklung der Cephalopoden. Mitt Zool Stat Neapel 14:83–237

    Google Scholar 

  • Fernando W (1931) The origin of the mesoderm in the gastropod Viviparus (=Paludina). Proc R Soc Lond B Containing Pap Biol Character 107:381–390

    Google Scholar 

  • Filla A, Hiripi L, Elekes K (2009) Role of aminergic (serotonin and dopamine) systems in the embryogenesis and different embryonic behaviors of the pond snail, Lymnaea stagnalis. Comp Biochem Physiol C 149:73–82

    Google Scholar 

  • Fioroni VP (1979) Phylogenetische Abänderungen der Gastrula bei Mollusken. Z Zool Syst Evol Forsch 1:82–100

    Google Scholar 

  • Fol H (1875) Études sur le développement des mollusques. Sur le développement des ptéropodes. Archs Zool Exp Gén 4:1–214

    Google Scholar 

  • Freeman G, Lundelius JW (1992) Evolutionary implications of the mode of D quadrant specification in coelomates with spiral cleavage. J Evol Biol 5:205–247

    Google Scholar 

  • Friedrich S, Wanninger A, Brückner M, Haszprunar G (2002) Neurogenesis in the mossy chiton, Mopalia muscosa (Gould) (Polyplacophora): evidence against molluscan metamerism. J Morphol 253:109–117

    PubMed  Google Scholar 

  • Fritsch M, Wollesen T, Oliveira ALd, Wanninger A (2015) Unexpected co-linearity of Hox gene expression in an aculiferan mollusk. BMC Evol Biol. doi:10.1186/s12862-015-0414-1

  • Ganin M (1873) Zur Lehre von den Keimblättern bei den Weichtieren. Warschauer Ber 1:115–140

    Google Scholar 

  • Gegenbaur C (1852) Beiträge zur Entwicklungsgeschichte der Land-Pulmonaten. Z Wiss Zool 3:371–411

    Google Scholar 

  • Gifondorwa DJ, Leise EM (2006) Programmed cell death in the apical ganglion during larval metamorphosis of the marine mollusc Ilyanassa obsoleta. Biol Bull 210:109–120

    PubMed  Google Scholar 

  • Giusti AF, Hinman VF, Degnan SM, Degnan BM, Morse DE (2000) Expression of a Scr/Hox5 gene in the larval central nervous system of the gastropod Haliotis, a non-segmented spiralian lophotrochozoan. Evol Dev 2:294–302

    CAS  PubMed  Google Scholar 

  • Gonzales EE, van der Zee M, Dictus WJ, van den Biggelaar JAM (2007) Brefeldin A and monensin inhibit the D quadrant organizer in the polychaete annelids Arctonoe vittata and Serpula columbiana. Evol Dev 9:416–431

    CAS  PubMed  Google Scholar 

  • Goulding MQ (2009) Cell lineage of the Ilyanassa embryo: evolutionary acceleration of regional differentiation during early development. PloS One 4:e5506

    Google Scholar 

  • Grande C, Patel NH (2009) Lophotrochozoa get into the game: the nodal pathway and left/right asymmetry in Bilateria. Cold Spring Harb Symp Quant Biol 74:281–287

    CAS  PubMed  Google Scholar 

  • Grimaldi A, Tettamanti G, Rinaldi L, Brivio MF, Castellani D, de Eguileor M (2004) Muscle differentiation in tentacles of Sepia officinalis (Mollusca) is regulated by muscle regulatory factors (MRF) related proteins. Dev Growth Differ 46:83–95

    Google Scholar 

  • Grimaldi A, Tettamanti G, Acquati F, Bossi E, Guidali ML, Banfi S, Monti L, Valvassori R, de Eguileor M (2008) A hedgehog homolog is involved in muscle formation and organization of Sepia officinalis (Mollusca) mantle. Dev Dyn 237:659–671

    PubMed  Google Scholar 

  • Haas W (1981) Evolution of calcareous hardparts in primitive molluscs. Malacologia 21:403–418

    Google Scholar 

  • Hadfield MG, Meleshkevitch EA, Boudko DY (2000) The apical sensory organ of a gastropod veliger is a receptor for settlement cues. Biol Bull 198:67–76

    CAS  PubMed  Google Scholar 

  • Hartmann B, Lee PN, Kang YY, Tomarev S, de Couet HG, Callaerts P (2003) Pax6 in the sepiolid squid Euprymna scolopes: evidence for a role in eye, sensory organ and brain development. Mech Dev 120:177–183

    CAS  PubMed  Google Scholar 

  • Hashimoto N, Kurita Y, Wada H (2012) Developmental role of dpp in the gastropod shell plate and co-option of the dpp signaling pathway in the evolution of the operculum. Dev Biol 366:367–373

    CAS  PubMed  Google Scholar 

  • Haszprunar G (1996) The Mollusca: coelomate turbellarians or mesenchymate annelids? In: Taylor JD (ed) Origin and evolutionary radiation of the Mollusca. Oxford University Press, Oxford, pp 3–28

    Google Scholar 

  • Haszprunar G (2000) Is the Aplacophora monophyletic? A cladistic point of view. Amer Malac Bull 15:115–130

    Google Scholar 

  • Haszprunar G, Wanninger A (2000) Molluscan muscle systems in development and evolution. J Zool Syst Evol Res 38:157–163

    Google Scholar 

  • Haszprunar G, Wanninger A (2008) On the fine structure of the creeping larva of Loxosomella murmanica: additional evidence for a clade of Kamptozoa (Entoprocta) and Mollusca. Acta Zool (Stockholm) 89:137–148

    Google Scholar 

  • Haszprunar G, Wanninger A (2012) Molluscs. Curr Biol 22:R510–R514

    CAS  PubMed  Google Scholar 

  • Haszprunar G, Friedrich S, Wanninger A, Ruthensteiner B (2002) Fine structure and immunocytochemistry of a new chemosensory system in the chiton larva (Mollusca: Polyplacophora). J Morphol 251:210–218

    PubMed  Google Scholar 

  • Heath H (1898) The development of Ischnochiton. Zool Jb Anat Ontog Tiere 12:567–656

    Google Scholar 

  • Hejnol A (2010) A twist in time: the evolution of spiral cleavage in the light of animal phylogeny. Integr Comp Biol 50:695–706

    PubMed  Google Scholar 

  • Hejnol A, Martindale MQ, Henry JQ (2007) High-resolution fate map of the snail Crepidula fornicata: the origins of ciliary bands, nervous system, and muscular elements. Dev Biol 305:63–76

    CAS  PubMed  Google Scholar 

  • Henry JJ, Perry KJ (2008) MAPK activation and the specification of the D quadrant in the gastropod mollusc, Crepidula fornicata. Dev Biol 313:181–195

    CAS  PubMed  Google Scholar 

  • Henry JQ, Okusu A, Martindale MQ (2004) The cell lineage of the polyplacophoran, Chaetopleura apiculata: variation in the spiralian program and implications for molluscan evolution. Dev Biol 272:145–160

    CAS  PubMed  Google Scholar 

  • Herbers K (1913) Entwicklungsgeschichte von Anodonta cellensis Schröt. Z Wiss Zool 108:1–174

    Google Scholar 

  • Hinman VF, Degnan BM (2002) Mox homeobox expression in muscle lineage of the gastropod Haliotis asinina: evidence for a conserved role in bilaterian myogenesis. Dev Genes Evol 212:141–144

    CAS  PubMed  Google Scholar 

  • Hinman V, O’Brien EK, Richards GS, Degnan BM (2003) Expression of anterior Hox genes during larval development of the gastropod Haliotis asinina. Evol Dev 5:508–521

    CAS  PubMed  Google Scholar 

  • Holland PWH (2001) Beyond the Hox: how widespread is homeobox gene clustering? J Anat 199:13–23

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iijima M, Takeuchi T, Sarashina I, Endo K (2008) Expression patterns of engrailed and dpp in the gastropod Lymnaea stagnalis. Genes Evol 218:237–251

    CAS  Google Scholar 

  • Jackson DJ, Wörheide G, Degnan BM (2007) Dynamic expression of ancient and novel molluscan shell genes during ecological transitions. BMC Evol Biol 7:160

    PubMed Central  PubMed  Google Scholar 

  • Jackson DJ, McDougall C, Woodcroft B, Moase P, Rose RA, Kube M, Reinhardt R, Rokhsar DS, Montagnani C, Joubert C, Piquemal D, Degnan BM (2009) Parallel evolution of nacre building gene sets in molluscs. Mol Biol Evol 27:591–608

    Google Scholar 

  • Jackson DJ, Meyer MP, Seaver E, Pang K, McDougall C, Moy VN, Gordon K, Degnan BM, Martindale MQ, Burke RD, Peterson KJ (2010) Developmental expression of COE across the Metazoa supports a conserved role in neuronal cell-type specification and mesodermal development. Dev Genes Evol 220:221–234

    PubMed Central  PubMed  Google Scholar 

  • Jacob MH (1984) Neurogenesis in Aplysia californica resembles nervous system formation in vertebrates. J Neurosci 4:1225–1239

    CAS  PubMed  Google Scholar 

  • Jacobs DK, Wray CG, Wedeen CJ, Kostriken R, DeSalle R, Staton JL, Gates RD, Lindberg DR (2000) Molluscan engrailed expression, serial organization, and shell evolution. Evol Dev 2:340–347

    CAS  PubMed  Google Scholar 

  • Jarvis E, Bruce HS, Patel NH (2012) Evolving specialization of the arthropod nervous system. Proc Natl Acad Sci U S A 109:10634–10639

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kakoi S, Kin K, Miyazaki K, Wada H (2008) Early development of the Japanese spiny oyster (Saccostrea kegaki): characterization of some genetic markers. Zool Sci 25:455–464

    CAS  PubMed  Google Scholar 

  • Kanda A, Minakata H (2006) Isolation and characterization of a novel small cardioactive peptide-related peptide from the brain of Octopus vulgaris. Peptides 27:1755–1761

    CAS  PubMed  Google Scholar 

  • Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038

    CAS  PubMed  Google Scholar 

  • Kandel ER, Kriegstein A, Schacher S (1981) Development of the central nervous system of Aplysia in terms of the differentiation of its specific identifiable cells. Neuroscience 5:2033–2063

    Google Scholar 

  • Kempf SC, Chun GV, Hadfield MG (1992) An immunocytochemical search for potential neurotransmitters in larvae of Phestilla sibogae (Gastropoda, Ophisthobranchia). Comp Biochem Physiol 101C:299–305

    CAS  Google Scholar 

  • Kerkhoven RM, Croll RP, Ramkema MD, Van Minnen J, Bogerd J, Boer HH (1992) The VD1/RPD2 neuronal system in the central nervous system of the pond snail Lymnaea stagnalis studied by in situ hybridization and immunocytochemistry. Cell Tissue Res 267:551–559

    Google Scholar 

  • Kerkhoven RM, Ramkema MD, Van Minnen J, Croll RP, Pin T, Boer HH (1993) Neurons in a variety of molluscs react to antibodies raised against the VD1/RPD2 α-neuropeptide of the pond snail Lymnaea stagnalis. Cell Tissue Res 273:371–379

    CAS  PubMed  Google Scholar 

  • Kier WM (1988) The arrangement and function of molluscan muscle. In: Trueman ER, Clarke MR (eds) The Mollusca: form and function. Academic, New York, 11:211-252

    Google Scholar 

  • Kier WM (1991) Squid cross-striated muscle: the evolution of a specialized muscle fiber type. Bull Mar Sci 49:389–403

    Google Scholar 

  • Kier WM (1996) Muscle development in squid: ultrastructural differentiation of a specialized muscle fiber type. J Morphol 229:271–288

    Google Scholar 

  • Kier WM, Schachat FH (2008) Muscle specialization in the squid motor system. J Exp Biol 211:164–169

    PubMed  Google Scholar 

  • Kier WM, Stella MP (2007) The arrangement and function of Octopus arm musculature and connective tissue. J Morphol 268:831–843

    Google Scholar 

  • Kier WM, Thompson JT (2003) Muscle arrangement, function and specialization in recent coleoids. Berl Paläobiol Abhandl 3:141–162

    Google Scholar 

  • Kin K, Kakoi S, Wada H (2009) A novel role for dpp in the shaping of bivalve shells revealed in a conserved molluscan developmental program. Dev Biol 329:152–166

    CAS  PubMed  Google Scholar 

  • Kniprath E (1977) Zur Ontogenese des Schalenfeldes von Lymnaea stagnalis. Wilhelm Roux Arch Entw Mech 181:11–30

    Google Scholar 

  • Kniprath E (1981) Ontogeny of the molluscan shell field: a review. Zool Scr 10:61–79

    Google Scholar 

  • Kocot KM, Cannon JT, Todt C, Citarella MR, Kohn AB, Meyer A, Santos SR, Schander C, Moroz L, Lieb B, Halanych KM (2011) Phylogenomics reveals deep molluscan relationships. Nature 477:452–456

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kölliker A (1844) Entwickelungsgeschichte der Cephalopoden. Verlag von Meyer und Zeller, Zürich

    Google Scholar 

  • Koop D, Richards GS, Wanninger A, Gunter HM, Degnan BM (2007) The role of MAPK signaling in patterning and establishing axial symmetry in the gastropod Haliotis asinina. Dev Biol 311:200–212

    CAS  PubMed  Google Scholar 

  • Kowalevsky MA (1883a) Embryogénie du Chiton polii (Philippi) avec quelques remarques sur le développement des autres chitons. Ann Mus Hist Nat Marseille Zool 1:1–46

    Google Scholar 

  • Kowalevsky MA (1883b) Étude sur l’embryogénie du Dentale. Ann Mus Hist Nat Marseille Zool 1:1–54

    Google Scholar 

  • Kranz AM, Tollenaere A, Norris BJ, Degnan BM, Degnan SM (2010) Identifying the germline in an equally cleaving mollusc: Vasa and Nanos expression during embryonic and larval development of the vetigastropod Haliotis asinina. J Exp Zool B Mol Dev Evol 314:267–279

    PubMed  Google Scholar 

  • Kriegstein AR (1977) Development of the nervous system of Aplysia californica. Proc Natl Acad Sci U S A 74:375–378

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kristof A, Klussmann-Kolb A (2010) Neuromuscular development of Aeolidiella stephanieae Valdéz, 2005 (Mollusca, Gastropoda, Nudibranchia). Front Zool 7:5

    PubMed Central  PubMed  Google Scholar 

  • Kühtreiber WM, Vantil EH, Van Dongen CAM (1988) Monensin interferes with the determination of the mesodermal cell-line in embryos of Patella vulgata. Roux’s Arch Dev Biol 197:10–18

    Google Scholar 

  • Kurita Y, Deguchi R, Wada H (2009) Early development and cleavage pattern of the Japanese purple mussel, Septifer virgatus. Zool Sci 26:814–820

    PubMed  Google Scholar 

  • Kuroda R, Endo B, Masanri A, Shimuzu M (2009) Chiral blastomere arrangement dictates zygotic left-right asymmetry pathway in snails. Nature 462:790–794

    CAS  PubMed  Google Scholar 

  • Lacaze-Duthiers FJH (1858) Histoire de l’organisation, du développement, des mÅ“urs et des rapports zoologiques du Dentale. Librairie de Victor. Masson, Paris

    Google Scholar 

  • Lambert JD (2010) Developmental patterns in spiralian embryos. Curr Biol 20:R72–R77

    CAS  PubMed  Google Scholar 

  • Lambert JD, Nagy LM (2003) The MAPK cascade in equally cleaving spiralian embryos. Dev Biol 263:231–241

    CAS  PubMed  Google Scholar 

  • Lankester ER (1873) Summary of the zoological observations made in Naples in the winter of 1871–72. Ann Mag Nat Hist 11:81–97

    Google Scholar 

  • Lankester ER (1875) Observations on the development of the Cephalopoda. Q J Microsc Sci 15:37–47

    Google Scholar 

  • Lartillot N, Le Gouar M, Adoutte A (2002a) Expression patterns of fork head and goosecoid homologues in the mollusc Patella vulgata supports the ancestry of the anterior mesendoderm across Bilateria. Dev Genes Evol 212:551–561

    PubMed  Google Scholar 

  • Lartillot N, Lespinet O, Vervoort M, Adoutte A (2002b) Expression pattern of Brachyury in the mollusc Patella vulgata suggests a conserved role in the establishment of the AP axis in Bilateria. Development 129:1411–1421

    CAS  PubMed  Google Scholar 

  • Le Gouar M, Lartillot N, Adoutte A, Vervoort M (2003) The expression of a caudal homologue in a mollusc, Patella vulgata. Gene Expr Patterns 3:35–37

    PubMed  Google Scholar 

  • Le Gouar M, Guillou A, Vervoort M (2004) Expression of a SoxB and a Wnt2/13 gene during the development of the mollusc Patella vulgata. Dev Genes Evol 214:250–256

    PubMed  Google Scholar 

  • Lee PN, Callaerts P, de Couet HG, Martindale MQ (2003) Cephalopod Hox genes and the origin of morphological novelties. Nature 424:1061–1065

    CAS  PubMed  Google Scholar 

  • Lemche H, Wingstrand KG (1959) The anatomy of Neopilina galatheae Lemche, 1957. Galathea Rep 3:9–71

    Google Scholar 

  • Lespinet O, Nederbragt AJ, Cassan M, Dictus WJ, van Loon AE, Adoutte A (2002) Characterization of two snail genes in the gastropod mollusc Patella vulgata. Implications for understanding the ancestral function of the snail-related genes in Bilateria. Dev Genes Evol 212:186–195

    CAS  PubMed  Google Scholar 

  • Lillie FR (1895) The embryology of the Unionidae: a study in cell-linage. J Morphol 10:1–100

    Google Scholar 

  • Lin M-F, Leise EM (1996) Gangliogenesis in the prosobranch gastropod Ilyanassa obsoleta. J Comp Neurol 374:180–193

    CAS  PubMed  Google Scholar 

  • Liu MM, Davey JW, Banerjee R, Han J, Yang F, Aboobaker A, Blaxter ML, Davison A (2013) Fine mapping of the pond snail left-right asymmetry (chirality) locus using rad-seq and fibre-fish. PloS One 8:e71067

    Google Scholar 

  • Longo FJ (1983) Meiotic maturation and fertilization. In: Verdonk NH, Van den Biggelaar JAM, Tompa AS (eds) The Mollusca, vol III. Academic, New York, pp 49–89

    Google Scholar 

  • Lyons DC, Perry KJ, Lesoway MP, Henry JQ (2012) Cleavage pattern and fate map of the mesentoblast, 4d, in the gastropod Crepidula: a hallmark of spiralian development. EvoDevo 3:21

    Google Scholar 

  • Marois R, Carew TJ (1990) The gastropod nervous system in metamorphosis. J Neurobiol 21:1053–1071

    CAS  PubMed  Google Scholar 

  • Marois R, Carew TJ (1997a) Projection patterns and target tissues of the serotonergic cells in larval Aplysia californica. J Comp Neurol 386:491–506

    CAS  PubMed  Google Scholar 

  • Marois R, Carew TJ (1997b) Ontogeny of serotonergic neurons in Aplysia californica. J Comp Neurol 386:477–490

    CAS  PubMed  Google Scholar 

  • Marois R, Croll RP (1992) Development of serotonin-like immunoreactivity in the embryonic nervous system of the snail Lymnaea stagnalis. J Comp Neurol 322:255–265

    CAS  PubMed  Google Scholar 

  • Marquis VF (1989) Die Embryonalentwicklung des Nervensystems von Octopus vulgaris Lam. (Cephalopoda, Octopoda), eine histologische Analyse. Verh Naturforsch Ges Basel 99:23–76

    Google Scholar 

  • Martin R (1965) On the structure and embryonic development of the giant fiber system of the squid Loligo vulgaris. Z Zellforsch 67:77–85

    CAS  PubMed  Google Scholar 

  • Martindale MQ (1986) The organizing role of the D quadrant in an equal cleaving spiralian, Lymnaea stagnalis as studied by UV laser deletion of macromeres at intervals between 3rd and 4th quartet formation. Int J Invertebr Reprod Dev 9:229–242

    Google Scholar 

  • Martindale MQ, Doe CQ, Morrill JB (1985) The role of animal-vegetal interaction with respect to the determination of dorsoventral polarity in the equal-cleaving spiralian Lymnaea palustris. Roux’s Arch Dev Biol 194:281–295

    Google Scholar 

  • Mattiello T, Costantini M, Di Matteo B, Livigni S, Andouche A, Bonnaud L, Palumbo A (2012) The dynamic nitric oxide pattern in developing cuttlefish Sepia officinalis. Dev Dyn 241:390–402

    CAS  PubMed  Google Scholar 

  • Meisenheimer J (1896) Entwicklungsgeschichte von Limax maximus L. I. Teil: furchung und Keimblätterbildung. Z Wiss Zool 62:415–468

    Google Scholar 

  • Meisenheimer J (1898) Entwicklungsgeschichte von Limax maximus L. II. Teil: Die Larvenperiode. Z Wiss Zool 63:573–664

    Google Scholar 

  • Meisenheimer J (1901) Entwicklungsgeschichte von Dreissensia polymorpha Pall. Z Wiss Zool 69:1–137

    Google Scholar 

  • Meister G (1972) Organogenese von Loligo vulgaris LAM. Mollusca, Cephalopoda, Teuthoidea, Myopsida, Loliginidae. Zool Jb Anat 89:247–300

    Google Scholar 

  • Mescheryakov VN (1990) The common pond snail Lymnaea stagnalis L. In: Dettlaff DA, Vassetzky SG (eds) Animal species for developmental studies. Plenum Press, New York, pp 69–132

    Google Scholar 

  • Messenger JB (1996) Neurotransmitters of cephalopods. Invert Neurosci 2:95–114

    CAS  Google Scholar 

  • Müller AH (1994) Lehrbuch der Paläozoologie. Band II. Invertebraten. II Teil: Mollusca 2 – Arthropoda 1, 4. Auflage. Fischer Verlag, Jena

    Google Scholar 

  • Naef A (1928) Die Cephalopoden. Fauna Flora Golfo Napoli 35:149–863

    Google Scholar 

  • Namigai EKO, Kenny NJ, Shimeld SM (2014) Right across the tree of life: the evolution of left-right asymmetry in the Bilateria. Genesis 52:458–470

    Google Scholar 

  • Navet S, Bassaglia Y, Baratte S, Martin M, Bonnaud L (2008) Somatic muscle development in Sepia officinalis (Cephalopoda – Mollusca): a new role for NK4. Dev Dyn 237:1944–1951

    CAS  PubMed  Google Scholar 

  • Navet S, Andouche A, Baratte S, Bonnaud L (2009) Shh and Pax6 have unconventional expression patterns in embryonic morphogenesis in Sepia officinalis (Cephalopoda). Gene Expr Patterns 9:461–467

    CAS  PubMed  Google Scholar 

  • Nederbragt AJ, te Welscher P, van den Driesche S, van Loon AE, Dictus WJAG (2002a) Novel and conserved roles for orthodenticle/otx and orthopedia/otp orthologs in the gastropod mollusc Patella vulgata. Dev Genes Evol 212:330–337

    CAS  PubMed  Google Scholar 

  • Nederbragt AJ, van Loon AE, Dictus WJAG (2002b) Expression of Patella vulgata orthologs of engrailed and dpp-bmp2/4 in adjacent domains during molluscan shell development suggests a conserved compartment boundary mechanism. Dev Biol 246:341–355

    CAS  PubMed  Google Scholar 

  • Nederbragt AJ, van Loon AE, Dictus WJAG (2002c) Hedgehog crosses the snail’s midline. Nature 417:811–812

    CAS  PubMed  Google Scholar 

  • Nielsen C (2004) Trochophore larvae: cell-lineages, ciliary bands, and body regions. 1. Annelida and Mollusca. J Exp Zool B Mol Dev Evol 302:35–68

    PubMed  Google Scholar 

  • Nielsen C (2012) Animal evolution: interrelationships of the living phyla. Oxford University Press, Oxford

    Google Scholar 

  • Nielsen C, Haszprunar G, Ruthensteiner B, Wanninger A (2007) Early development of the aplacophoran mollusc Chaetoderma. Acta Zool (Stockholm) 88:231–247

    Google Scholar 

  • Nixon M, Young JZ (2003) The brains and lives of cephalopods. Oxford University Press, New York

    Google Scholar 

  • O’Brien EK, Degnan BM (2000) Pax, POU and Sox genes are expressed in the ganglia of the tropical abalone Haliotis asinina. Mar Biotech 2:545–557

    Google Scholar 

  • O’Brien EK, Degnan BM (2002a) Pleiotropic developmental expression of HasPOU-III, a class III POU gene, in the gastropod Haliotis asinina. Mech Dev 114:129–132

    PubMed  Google Scholar 

  • O’Brien EK, Degnan BM (2002b) Developmental expression of a class IV POU gene in the gastropod Haliotis asinina supports a conserved role in sensory cell development in bilaterians. Dev Genes Evol 212:394–398

    PubMed  Google Scholar 

  • O’Brien EK, Degnan BM (2003) Expression of Pax258 in the gastropod statocyst: insights into the antiquity of metazoan geosensory organs. Evol Dev 5:572–578

    PubMed  Google Scholar 

  • Ogura A, Yoshida MA, Moritaki T, Okuda Y, Sese J, Shimizu KK, Sousounis K, Tsonis PA (2013) Loss of the six3/6 controlling pathways might have resulted in pinhole-eye evolution in Nautilus. Sci Rep 3:1432

    Google Scholar 

  • Okada K (1939) The development of the primary mesoderm in Sphaerium japonicum biwaense Mori. Sci Rep Tohoku Univ Biol 14:25–48

    Google Scholar 

  • Okusu A (2002) Embryogenesis and development of Epimenia babai (Mollusca Neomeniomorpha). Biol Bull 203:87–103

    PubMed  Google Scholar 

  • Page LR (1992a) New interpretation of a nudibranch central nervous system based on ultrastructural analysis of neurodevelopment in Melibe leonina. I. Cerebral and visceral loop ganglia. Biol Bull 182:348–365

    Google Scholar 

  • Page LR (1992b) New interpretation of a nudibranch central nervous system based on ultrastructural analysis of neurodevelopment in Melibe leonina. II. Pedal, pleural, and labial ganglia. Biol Bull 182:366–381

    Google Scholar 

  • Page LR (2002) Apical sensory organ in larvae of the patellogastropod Tectura scutum. Biol Bull 202:6–22

    PubMed  Google Scholar 

  • Page LR (2006) Early differentiating neuron in larval abalone (Haliotis kamtschatkana) reveals the relationship between ontogenetic torsion and crossing of the pleurovisceral nerve cords. Evol Dev 8:458–467

    PubMed  Google Scholar 

  • Page LR, Parries SC (2001) Comparative study of the apical ganglion in planktotrophic caenogastropod larvae: ultrastructure and immunoreactivity to serotonin. J Comp Neurol 418:383–401

    Google Scholar 

  • Parkhaev PY (2008) The early Cambrian radiation of Mollusca. In: Ponder WF, Lindberg DR (eds) Phylogeny and evolution of the Mollusca. University of California Press, Berkely

    Google Scholar 

  • Patel NH (2009) Developmental biology: asymmetry with a twist. Nature 462:727–728

    CAS  PubMed  Google Scholar 

  • Patten W (1886) The embryology of Patella. Arb Zool Inst Univ Wien 6:149–174

    Google Scholar 

  • Ponder WF, Lindberg DR (eds) (2008) Phylogeny and evolution of the Mollusca. University of California Press, Berkeley

    Google Scholar 

  • Rabinowitz JS, Chan XJ, Kingsley EP, Duan Y, Lambert JD (2008) Nanos is required in somatic blast cell lineages in the posterior of a mollusk embryo. Curr Biol 18:331–336

    CAS  PubMed  Google Scholar 

  • Raven CP (1966) Morphogenesis: the analysis of molluscan development. Pergamon Press, Oxford

    Google Scholar 

  • Reichert H (2005) A tripartite organization of the urbilaterian brain: developmental genetic evidence from Drosophila. Brain Res Bull 66:491–494

    PubMed  Google Scholar 

  • Render J (1991) Fate maps of the first quartet micromeres in the gastropod Ilyanassa obsoleta. Development 113:495–501

    CAS  PubMed  Google Scholar 

  • Render J (1997) Cell fate maps in the Ilyanassa obsoleta embryo beyond the third division. Dev Biol 189:301–310

    CAS  PubMed  Google Scholar 

  • Richter S, Loesel R, Purschke G, Schmidt-Rhaesa A, Scholtz G, Stach T, Vogt L, Wanninger A, Brenneis G, Döring C, Faller S, Fritsch M, Grobe P, Heuer CM, Kaul S, Møller OS, Müller CHG, Rieger V, Rothe BH, Stegner MEJ, Harzsch S (2010) Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Front Zool 7:29

    Google Scholar 

  • Robert A (1902) Recherches sur le développement des troques. Arch Zool Exp Gén 10:269–538

    Google Scholar 

  • Samadi L, Steiner G (2009) Involvement of Hox genes in shell morphogenesis in the encapsulated development of a top shell gastropod (Gibbula varia L.). Dev Genes Evol 219:523–530

    PubMed  Google Scholar 

  • Samadi L, Steiner G (2010a) Expression of Hox genes during the larval development of the snail, Gibbula varia (L.)—further evidence of non-colinearity in molluscs. Dev Genes Evol 220:161–172

    CAS  PubMed  Google Scholar 

  • Samadi L, Steiner G (2010b) Conservation of ParaHox genes’ function in patterning of the digestive tract of the marine gastropod Gibbula varia. BMC Dev Biol 10:74

    Google Scholar 

  • Scherholz M, Redl E, Wollesen W, Todt C, Wanninger A (2013) Aplacophoran mollusks evolved from ancestors with polyplacophoran-like features. Curr Biol 23:2130–2134

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt F (1895) Beiträge zur Kenntnis der Entwicklungsgeschichte der Stylommatophoren. Zool Jb Anat 8:318–341

    Google Scholar 

  • Shibazaki Y, Shimizu M, Kuroda R (2004) Body handedness is directed by genetically determined cytoskeletal dynamics in the early embryo. Curr Biol 14:1462–1467

    CAS  PubMed  Google Scholar 

  • Shigeno S, Tsuchiya K, Segawa S (2001) Embryonic and paralarval development of the central nervous system of the loliginid squid Sepioteuthis lessoniana. J Comp Neurol 437:449–475

    CAS  PubMed  Google Scholar 

  • Shigeno S, Sasaki T, Moritaki T, Kasugai T, Vecchione M, Agata K (2008) Evolution of the cephalopod head complex by assembly of multiple molluscan body parts: evidence from Nautilus embryonic development. J Morphol 269:1–17

    PubMed  Google Scholar 

  • Smith SA, Wilson NG, Goetz FE, Feehery C, Andrade SCS, Rouse GW, Giribet G, Dunn CW (2011) Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature 480:364–367

    CAS  PubMed  Google Scholar 

  • Spiess PE (1972) Organogenese des Schalendrüsenkomplexes bei einigen coleoiden Cephalopoden des Mittelmeeres. Rev Suisse Zool 79:167–226

    Google Scholar 

  • Stewart H, Westlake HE, Page LR (2014) Rhogocytes in gastropod larvae: developmental transformation from protonephridial terminal cells. Invertebr Biol 133:47–63

    Google Scholar 

  • Sturtevant AH (1923) Inheritance of direction of coiling in Lymnaea. Science 58:269–270

    CAS  PubMed  Google Scholar 

  • Sutton MD, Briggs DEG, Siveter DJ, Siveter DJ, Sigwart JD (2012) A silurian armoured aplacophoran and implications for molluscan phylogeny. Nature 490:94–97

    CAS  PubMed  Google Scholar 

  • Todt C, Wanninger A (2010) Of tests, trochs, shells, and spicules: development of the basal mollusk Wirenia argentea (Solenogastres) and its bearing on the evolution of trochozoan larval key features. Front Zool 7:6

    Google Scholar 

  • Treacy MN, Rosenfeld MG (1992) Expression of a family of POU-domain protein regulatory genes during development of the central nervous system. Annu Rev Neurosci 15:139–165

    CAS  PubMed  Google Scholar 

  • Ussow M (1874) Zoologisch-embryologische Untersuchungen. Die Kopffüßler. Arch Naturgesch 40:329–372

    Google Scholar 

  • Van Dam WI (1986) Embryonic development of Bithynia tentaculata L. (Prosobranchia, Gastropoda). I. Cleavage. J Morphol 188:289–302

    Google Scholar 

  • Van den Biggelaar JAM (1977) Development of dorsoventral polarity and mesentoblast determination in Patella vulgata. J Morphol 154:157–186

    PubMed  Google Scholar 

  • Van den Biggelaar JAM (1996) Cleavage pattern and mesentoblast formation in Acanthochiton crinitus (Polyplacophora, Mollusca). Dev Biol 174:423–430

    PubMed  Google Scholar 

  • Van den Biggelaar JAM, Guerrier P (1979) Dorsoventral polarity and mesentoblast determination as concomitant results of cellular interactions in the mollusk Patella vulgata. Dev Biol 68:462–471

    PubMed  Google Scholar 

  • Van Dongen CAM, Geilenkirchen WLM (1974) The development of Dentalium with special reference to the significance of the polar lobe. I, II, III. Division chronology and development of the cell pattern in Dentalium dentale (Scaphopoda). Proc Kongl Ned Akad Wet C 77:57–100

    Google Scholar 

  • Van Dongen CAM, Geilenkirchen WLM (1975) The development of Dentalium with special reference to the significance of the polar lobe. IV. Division chronology and development of the cell pattern in Dentalium dentale after removal of the polar lobe at first cleavage. Proc Kongl Ned Akad Wet C 78:358–375

    Google Scholar 

  • Van Dongen CAM, Geilenkirchen WLM (1976) The development of Dentalium with special reference to the significance of the polar lobe. V and VI. Differentiation of the cell pattern in lobeless embryos of Dentalium vulgare (da Costa) during late larval development. Proc Kongl Ned Akad Wet C 79:245–266

    Google Scholar 

  • Villanueva R, Norman MD (2008) Biology of the planktonic stages of benthic octopuses. Oceanogr Mar Biol 46:105–202

    Google Scholar 

  • Vinther J, Jell P, Kampouris G, Carney R, Racicot RA, Briggs DEG (2012) The origin of multiplacophorans – convergent evolution in aculiferan molluscs. Palaeontology 55:1007–1019

    Google Scholar 

  • Voronezhskaya EE, Elekes K (1993) Distribution of serotonin-like immunoreactive neurons in the embryonic nervous system of lymnaeid and planorbid snails. Neurobiology 1:371–383

    CAS  PubMed  Google Scholar 

  • Voronezhskaya EE, Elekes K (2003) Expression of peptides encoded by the FMRFamide gene in the developing nervous system of Lymnaea stagnalis. Cell Tissue Res 314:297–313

    CAS  PubMed  Google Scholar 

  • Voronezhskaya EE, Tyurin SA, Nezlin LP (2002) Neuronal development in larval chiton Ischnochiton hakodadensis (Mollusca: Polyplacophora). J Comp Neurol 444:25–38

    PubMed  Google Scholar 

  • Voronezhskaya EE, Nezlin LP, Odintsova NA, Plummer JT, Croll RP (2008) Neuronal development in larval mussel Mytilus trossulus (Mollusca: Bivalvia). Zoomorphology 127:97–110

    Google Scholar 

  • Waller TR (1998) Origin of the molluscan class Bivalvia and a phylogeny of major groups. In: Johnston PA, Haggart JW (eds) Bivalves: an eon of evolution. University of Calgary Press, Calgary, pp 1–45

    Google Scholar 

  • Wanninger A (2009) Shaping the things to come: ontogeny of lophotrochozoan neuromuscular systems and the Tetraneuralia concept. Biol Bull 216:293–306

    PubMed  Google Scholar 

  • Wanninger A, Haszprunar G (2001) The expression of an engrailed protein during embryonic shell formation of the tusk-shell, Antalis entalis (Mollusca, Scaphopoda). Evol Dev 3:312–321

    CAS  PubMed  Google Scholar 

  • Wanninger A, Haszprunar G (2002a) Chiton myogenesis: perspectives for the development and evolution of larval and adult muscle systems in molluscs. J Morphol 251:103–113

    PubMed  Google Scholar 

  • Wanninger A, Haszprunar G (2002b) Muscle development in Antalis entalis (Mollusca, Scaphopoda) and its significance for scaphopod relationships. J Morphol 254:53–64

    PubMed  Google Scholar 

  • Wanninger A, Haszprunar G (2003) The development of the serotonergic and FMRF-amidergic nervous system in Antalis entalis (Mollusca, Scaphopoda). Zoomorphology 122:77–85

    Google Scholar 

  • Wanninger A, Ruthensteiner B, Dictus WJAG, Haszprunar G (1999a) The development of the musculature in the limpet Patella with implications on its role in the process of ontogenetic torsion. Invertebr Reprod Dev 36:211–215

    Google Scholar 

  • Wanninger A, Ruthensteiner B, Lobenwein S, Salvenmoser W, Dictus WJAG, Haszprunar G (1999b) Development of the musculature in the limpet Patella (Mollusca, Patellogastropoda). Dev Genes Evol 209:226–238

    CAS  PubMed  Google Scholar 

  • Wanninger A, Ruthensteiner B, Haszprunar G (2000) Torsion in Patella caerulea (Mollusca, Patellogastropoda): ontogenetic process, timing, and mechanisms. Invertebr Biol 119:177–187

    Google Scholar 

  • Wanninger A, Fuchs J, Haszprunar G (2007) The anatomy of the serotonergic nervous system of an entoproct creeping-type larva and its phylogenetic implications. Invertebr Biol 126:268–278

    Google Scholar 

  • Wanninger A, Koop D, Moshel-Lynch S, Degnan BM (2008) Molluscan evolutionary development. In: Ponder WF, Lindberg DR (eds) Phylogeny and evolution of the Mollusca. University of California Press, Berkeley, pp 425–443

    Google Scholar 

  • Wierzejski A (1905) Embryologie von Physa fontinalis L. Z Wiss Zool 83:502–706

    Google Scholar 

  • Williams EA, Degnan SM (2009) Carry-over effect of larval settlement cue on postlarval gene expression in the marine gastropod Haliotis asinina. Mol Ecol 18:4434–4449

    CAS  PubMed  Google Scholar 

  • Wilson EB (1898) Considerations of cell-lineage and ancestral reminiscence. Ann N Y Acad Sci 11:1–27

    Google Scholar 

  • Wollesen T, Wanninger A, Klussmann-Kolb A (2007) Neurogenesis of the cephalic sensory organs of Aplysia californica. Cell Tissue Res 330:361–379

    PubMed  Google Scholar 

  • Wollesen T, Wanninger A, Klussmann-Kolb A (2008) Myogenesis in Aplysia californica (Cooper, 1863) (Mollusca, Gastropoda, Opisthobranchia) with special focus on muscular remodeling during metamorphosis. J Morphol 269:776–789

    PubMed  Google Scholar 

  • Wollesen T, Loesel R, Wanninger A (2009) Pygmy squids and giant brains: mapping the complex cephalopod CNS by phalloidin staining of vibratome sections and whole-mount preparations. J Neurosci Methods 179:63–67

    CAS  PubMed  Google Scholar 

  • Wollesen T, Cummins SF, Degnan BM, Wanninger A (2010) FMRFamide gene and peptide expression during CNS development of the cephalopod mollusk, Idiosepius notoides. Evol Dev 12:113–130

    CAS  PubMed  Google Scholar 

  • Wollesen T, Sukhsangchan C, Seixas P, Nabhitabhata J, Wanninger A (2012) Analysis of neurotransmitter distribution in brain development of benthic and pelagic octopod cephalopods. J Morphol 273:776–790

    CAS  PubMed  Google Scholar 

  • Wollesen T, McDougall C, Degnan BM, Wanninger A (2014) POU genes are expressed during the formation of individual ganglia of the cephalopod central nervous system. EvoDevo 5:41

    Google Scholar 

  • Woods FH (1931) History of the germ cells in Sphaerium striatinum (Lam.). J Morphol 51:545–595

    Google Scholar 

  • Woods FH (1932) Keimbahn determinants and continuity of the germ cells in Sphaerium striatinum (Lam). J Morphol 53:345–365

    Google Scholar 

  • Wurzinger-Mayer A, Shipway JR, Kristof A, Schwaha T, Cragg SM, Wanninger A (2014) Developmental dynamics of myogenesis in the shipworm Lyrodus pedicellatus (Mollusca: Bivalvia). Front Zool 11:90

    PubMed Central  PubMed  Google Scholar 

  • Young JZ (1971) The anatomy of the nervous system of Octopus vulgaris. Clarendon Press, Oxford

    Google Scholar 

  • Zardus JD, Morse PD (1998) Embryogenesis, morphology and ultrastructure of the pericalymma larva of Acila castrensis (Bivalvia: Protobranchia: Nuculoida). Invertebr Biol 117:221–244

    Google Scholar 

  • Ziegler HE (1885) Die Entwicklung von Cyclas cornea Lam. (Sphaerium corneum L.). Z Wiss Zool 41:525–569

    Google Scholar 

Download references

Acknowledgments

AW expresses his sincere thanks to the numerous colleagues that have offered their time to discuss various issues on molluscan and metazoan morphology, development, and evolution over the past many years, often at most peculiar times and in most inspiring locations, in particular Gerhard Haszprunar (Munich), Bernie Degnan (Brisbane), Jens Hoeg (Copenhagen), Claus Nielsen (Copenhagen), Pedro Martinez (Barcelona), Christiane Todt (Bergen), his coauthor of this paper and longtime colleague Tim Wollesen (Vienna), and many others, including the present and past students and postdocs in his labs in Copenhagen and Vienna. AW is also grateful for the generous support of the Faculty of Life Sciences, University of Vienna, during the past four years as well as the Danish Science Foundation (FNU) and the Carlsberg Foundation for previous support during his Copenhagen years. He also warmly acknowledges funding of our Early Stage Research Training Network MOLMORPH during the years 2005–2009 by the European Commission. The Austrian Science Fund (FWF) is thanked for current support of a project on aplacophoran EvoDevo (grant number P24276-B22). TW thanks Sonia Victoria Rodríguez Monje (Vienna) and all members of the Wanninger lab for help and discussions as well as the crews of the Néomysis (Roscoff) and the RV Hans Brattström (Bergen) for assistance with the collection of animals. TW kindly thanks Andreas Wanninger, coauthor of this book chapter, and Bernie Degnan (Brisbane) for their great support during the last years. The authors thank Jonathan Henry (Urbana), Reuben Shipway (Nahant), Hiroshi Wada (Tsukuba), Michael Schrödl (Munich), Emanuel Redl, Maik Scherholz, Alen Kristof, Marlene Karelly, and Marion Hüffel (all Vienna) for providing images used in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Wanninger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Wanninger, A., Wollesen, T. (2015). Mollusca. In: Wanninger, A. (eds) Evolutionary Developmental Biology of Invertebrates 2. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1871-9_7

Download citation

Publish with us

Policies and ethics