Skip to main content

Network-Based Methods for Computational Diagnostics by Means of R

  • Chapter
  • First Online:
Computational Medicine

Abstract

Networks representing biomedical data have become a powerful approach in different research disciplines dealing with complex diseases. Also, R and Bioconductor have emerged as a standard research environment to investigate and analyze high-throughput data. Therefore, we present and discuss existing packages, available in R or Bioconductor, that provide methods for computational diagnostics by means of networks. In particular, we summarize packages to reconstruct and analyze networks from high-throughput data. Moreover, we discuss packages that provide comprehensive methods to visualize large-scale gene networks in order to support the field of computational diagnostics of complex diseases. The aim of this chapter is to support an interdisciplinary research community dealing with computational diagnostics to investigate novel hypothesis in a medical and clinical context to gain a better understanding of complex diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn YY, Bagrow JP, Lehmann S (2010) Link communities reveal multiscale complexity in networks. Nature 466(7307):761–764

    Article  PubMed  CAS  Google Scholar 

  • Altay G, Emmert-Streib F (2010) Inferring the conservative causal core of gene regulatory networks. BMC Syst Biol 4(1):132

    Article  PubMed  Google Scholar 

  • Altay G, Emmert-Streib F (2011) Structural influence of gene networks on their inference: analysis of c3net. Biol Direct 6:31

    Article  PubMed  Google Scholar 

  • Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 206:509–512

    Google Scholar 

  • Beisser D, Klau GW, Dandekar T, Müller T, Dittrich MT (2010) BioNet: an R-package for the functional analysis of biological networks. Bioinformatics 26(8):1129

    Article  PubMed  CAS  Google Scholar 

  • Bender C, Heyde S, Henjes F, Wiemann S, Korf U, Beißbarth T (2011) Inferring signalling networks from longitudinal data using sampling-based approaches in the R-package ddepn. BMC Bioinformatics 12(1):291

    Article  PubMed  Google Scholar 

  • Berg J, Lässig M (2006) Cross-species analysis of biological networks by Bayesian alignment. Proc Natl Acad Sci 103(29):10967

    Article  PubMed  CAS  Google Scholar 

  • Birmelé, E. (2012) Detecting local network motifs, Electronic Journal of Statistics 6:908–933

    Google Scholar 

  • Bonchev D (1983) Information theoretic indices for characterization of chemical structures. Research Studies Press, Chichester

    Google Scholar 

  • Bonchev D, Mekenyan O, Trinajsiteć N (1981) Isomer discrimination by topological information approach. J Comput Chem 2(2):127–148

    Article  CAS  Google Scholar 

  • Bornholdt S, Schuster HG (eds) (2003) Handbook of graphs and networks. From the genome to the internet. Wiley-VCH, Weinheim

    Google Scholar 

  • Carey V, Long L, Gentleman R (2011) RBGL: an interface to the BOOST graph library. http://CRAN.R-project.org/package=RBGL, R package version 1.28.0

  • Chiquet J, Smith A, Grasseau G, Matias C, Ambroise C (2009) Simone: statistical inference for modular networks. Bioinformatics 25(3):417

    Article  PubMed  CAS  Google Scholar 

  • Costa LF, Rodrigues FA, Travieso G, Boas PRV (2007) Characterization of complex networks: a survey of measurements. Adv Phys 56:167–242

    Article  Google Scholar 

  • Csardi G, Nepusz T (2006) The igraph software package for complex network research. InterJournal Complex Syst 1695–1704

    Google Scholar 

  • Dehmer M, Mowshowitz A (2011) A history of graph entropy measures. Inform Sci 181(1):57–78

    Article  Google Scholar 

  • Dehmer M, Borgert S, Emmert-Streib F (2008) Entropy bounds for hierarchical molecular networks. PLoS One 3(8):e3079

    Article  PubMed  Google Scholar 

  • Dehmer M, Barbarini N, Varmuza K, Graber A (2009) A large scale analysis of information-theoretic network complexity measures using chemical structures. PLoS One 4(12):e8057

    Google Scholar 

  • Dehmer M, Varmuza K, Borgert S, Emmert-Streib F (2009b) On entropy-based molecular descriptors: statistical analysis of real and synthetic chemical structures. J Chem Inf Model 49:1655–1663

    Article  PubMed  CAS  Google Scholar 

  • Dehmer M, Sivakumar L, Varmuza K (2012) Uniquely discriminating molecular structures using novel eigenvalue based descriptors. MATCH Commun Math 67(1):147–172

    CAS  Google Scholar 

  • Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I, Wu G, D’Eustachio P, Schaefer C, Luciano J et al (2010) The BioPAX community standard for pathway data sharing. Nat Biotechnol 28(9):935–942

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN: 3-900051-07-0

    Google Scholar 

  • Ellson J, Gansner E, Koutsofios L, North S, Woodhull G (2002) Graphviz—open source graph drawing tools. In: Graph drawing. Springer, Heidelberg, pp 594–597

    Google Scholar 

  • Emmert-Streib F, Dehmer M (2011) Networks for systems biology: conceptual connection of data and function. IET Syst Biol 5(3):185–207

    Article  PubMed  CAS  Google Scholar 

  • Fang Z, Tian W, Ji H (2012) A network-based gene-weighting approach for pathway analysis. Cell Res 22(3):565–580

    Article  PubMed  CAS  Google Scholar 

  • Gallo G, Longo G, Pallottino S (1993) Directed hypergraphs and applications. Discr Appl Math 42(2):177–201

    Article  Google Scholar 

  • Garcia O, Saveanu C, Cline M, Fromont-Racine M, Jacquier A, Schwikowski B, Aittokallio T (2007) GOlorize: a cytoscape plug-in for network visualization with gene ontology-based layout and coloring. Bioinformatics 23(3):394

    Article  PubMed  CAS  Google Scholar 

  • Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Horthon T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini G, Sawitzki AJ, Smith C, Smyth G, Tierney L, Yang JYH, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80

    Article  PubMed  Google Scholar 

  • Gentleman R, Whalen E, Huber W, Falcon S (2009) Graph: a package to handle graph data structures. R package version 1.26.0

    Google Scholar 

  • Gentry J, Long L, Gentleman R, Falcon S (2007) Rgraphviz: plotting capabilities for R graph objects. http://www.bioconductor.org/, R package version 1.34.1

  • Harary F (1994) Graph theory. Addison-Wesley series in mathematics. Perseus Books, Boulder, Colorado, USA

    Google Scholar 

  • Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S, Marshall B, Mungall C, Richter J, Rubin GM, Blake JA, Bult C, Dolan M, Drabkin H, Eppig JT, Hill DP, Ni L, Ringwald M et al (2004) The gene ontology (GO) database and informatics resource. Nucleic Acids Res 32(Database issue):D258

    PubMed  CAS  Google Scholar 

  • Henegar C, Tordjman J, Achard V, Lacasa D, Cremer I, Guerre-Millo M, Poitou C, Basdevant A, Stich V, Viguerie N et al (2008) Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity. Genome Biol 9(1):R14

    Article  PubMed  Google Scholar 

  • Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A et al (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4):524

    Article  PubMed  CAS  Google Scholar 

  • Jacob L (2011) NCIgraph: networks from the NCI pathway integrated database as graphNEL objects.http://www.bioconductor.org/, R package version 1.0.0

  • Jonker R, Volgenant A (1987) A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing 38(4):325–340

    Article  Google Scholar 

  • Kalinka AT, Tomancak P (2011) Linkcomm: an R package for the generation, visualization, and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27(14):2011–2012

    Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27

    Article  PubMed  CAS  Google Scholar 

  • Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A et al (2009) Human protein reference database—2009 update. Nucleic Acids Res 37(suppl 1):D767

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Wilhelm T (2008) What is a complex graph? Phys A Stats Mech Appl 387(11):2637–2652

    Article  Google Scholar 

  • Kones JK, Soetaert K, van Oevelen D, Owino JO (2009) Are network indices robust indicators of food Web functioning? a Monte Carlo approach. Ecol Model 220(3):370–382

    Article  Google Scholar 

  • Kraskov A, Stögbauer H, Grassberger P (2004) Estimating mutual information. Phys Rev E 69(6):066138

    Article  Google Scholar 

  • Lahti L, Knuuttila JEA, Kaski S (2010) Global modeling of transcriptional responses in interaction networks. Bioinformatics 26(21):2713

    Article  PubMed  CAS  Google Scholar 

  • Lai Y, Wu B, Chen L, Zhao H (2004) A statistical method for identifying differential gene–gene Co-expression patterns. Bioinformatics 20(17):3146

    Article  PubMed  CAS  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

    Article  PubMed  Google Scholar 

  • Loots G, Ovcharenko I (2006) ECRbase: database of evolutionary conserved regions, promoters, and transcription factor binding sites in bertebrate genomes. Bioinformatics 23(1):122

    Article  PubMed  Google Scholar 

  • Ma H, Schadt EE, Kaplan LM, Zhao H (2011) COSINE: condition-specific Sub-network identification using a global optimization method. Bioinformatics 27(9):1290

    Article  PubMed  CAS  Google Scholar 

  • Mangan S, Alon U (2003) Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci USA 100(21):11980

    Article  PubMed  CAS  Google Scholar 

  • Margolin A, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera R, Califano A (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7:S7

    Article  PubMed  Google Scholar 

  • Mazurie A, Bonchev D, Schwikowski B, Buck GA (2008) Phylogenetic distances are encoded in networks of interacting pathways. Bioinformatics 24(22):2579

    Article  PubMed  CAS  Google Scholar 

  • Meyer PE, Kontos K, Lafitte F, Bontempi G (2007) Information-theoretic inference of large transcriptional regulatory networks. EURASIP J Bioinformatics Syst Biol 2007:8–8

    Google Scholar 

  • Meyer P, Lafitte F, Bontempi G (2008) Minet: a R/bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinformatics 9:461

    Article  PubMed  Google Scholar 

  • Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824

    Article  PubMed  CAS  Google Scholar 

  • Motulsky H (1995) Intuitive biostatistics, vol 173. Oxford University Press, New York

    Google Scholar 

  • Mowshowitz A (1968) Entropy and the complexity of the graphs I: an index of the relative complexity of a graph. Bull Math Biophys 30:175204

    Google Scholar 

  • Mueller LAJ, Kugler KG, Dander A, Graber A, Dehmer M (2011a) QuACN: an R package for analyzing complex biological networks quantitatively. Bioinformatics 27(1):140

    Article  PubMed  CAS  Google Scholar 

  • Mueller LAJ, Kugler KG, Netzer M, Graber A, Dehmer M (2011b) A network-based approach to classify the three domains of life. Biol Direct 6(1):53

    Article  PubMed  Google Scholar 

  • Opgen-Rhein R, Strimmer K (2006) Inferring gene dependency networks from genomic longitudinal data: a functional data approach. REVSTAT Stat J 4(1):53–65

    Google Scholar 

  • Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(9):1226–1238

    Google Scholar 

  • Perroud B, Lee J, Valkova N, Dhirapong A, Lin PY, Fiehn O, Kültz D, Weiss R (2006) Pathway analysis of kidney cancer using proteomics and metabolic profiling. Mol Cancer 5(1):64

    Article  PubMed  Google Scholar 

  • Picard F, Daudin JJ, Koskas M, Schbath S, Robin S (2008) Assessing the exceptionality of network motifs. J Comput Biol 15(1):1–20

    Article  PubMed  CAS  Google Scholar 

  • Prifti E, Zucker JD, Clement K, Henegar C (2008) FunNet: an integrative tool for exploring transcriptional interactions. Bioinformatics 24(22):2636

    Article  PubMed  CAS  Google Scholar 

  • Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D (2004) Defining and identifying communities in networks. Proc Natl Acad Sci USA 101(9):2658

    Article  PubMed  CAS  Google Scholar 

  • Rashevsky N (1955) Life, information theory, and topology. Bull Math Biophys 17:229–235

    Article  CAS  Google Scholar 

  • Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297(5586):1551

    Article  PubMed  CAS  Google Scholar 

  • Sales G, Romualdi C (2011) Parmigene - a parallel R package for mutual information estimation and gene network reconstruction. Bioinformatics 27(13):1876

    Article  PubMed  CAS  Google Scholar 

  • Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH (2009) PID: the pathway interaction database. Nucleic Acids Res 37:D674

    Article  PubMed  CAS  Google Scholar 

  • Schäfer J, Strimmer K (2005) An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21(6):754

    Article  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498

    Article  PubMed  CAS  Google Scholar 

  • Siek J, Lee LQ, Lumsdaine A (2002) The boost graph library. Addison-Wesley, Boston

    Google Scholar 

  • Skorobogatov VA, Dobrynin AA (1988) Metrical analysis of graphs. MATCH 23:105–155

    CAS  Google Scholar 

  • Spirin V, Mirny LA (2003) Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci 100(21):12123

    Article  PubMed  CAS  Google Scholar 

  • Tao H, Lei L, Ziliang Q, Kang T, Yixue L, Lu X (2010) Using GeneReg to construct time delay gene regulatory networks. BMC Res Notes 3:142

    Google Scholar 

  • Todeschini R, Consonni V, Mannhold R (2002) Handbook of molecular descriptors. Wiley-VCH, Weinheim

    Google Scholar 

  • Tourassi GD, Frederick ED, Markey MK, Floyd CE Jr (2001) Application of the mutual information criterion for feature selection in computer-aided diagnosis. Med Phys 28:2394

    Article  PubMed  CAS  Google Scholar 

  • Vidal M (2009) A unifying view of 21st century systems biology. FEBS Lett 583(24):3891–3894

    Article  PubMed  CAS  Google Scholar 

  • von Bertalanffy L (1950) The theory of open systems in physics and biology. Science 11:23–29

    Article  Google Scholar 

  • Waddington CH (1957) The strategy of the genes. Geo, Allen & Unwin London

    Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘Small-world’ networks. Nature 393:440–442

    Article  PubMed  CAS  Google Scholar 

  • Wu MC, Lin X (2009) Prior biological knowledge-based approaches for the analysis of genome-wide expression profiles using gene sets and pathways. Stat Methods Med Res 18(6):577

    Article  PubMed  Google Scholar 

  • Xia K, Fu Z, Hou L, Han JDJ (2008) Impacts of protein-protein interaction domains on organism and network complexity. Genome Res 18(9):1500

    Article  PubMed  CAS  Google Scholar 

  • Zinovyev A, Viara E, Calzone L, Barillot E (2008) BiNoM: a cytoscape plugin for manipulating and analyzing biological networks. Bioinformatics 24(6):876

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Matthias Dehmer thanks the Austrian Science Funds for supporting this work (project P22029-N13). This work was also partly supported by the Tiroler Wissenschaftsfonds and the Standortagentur Tirol (Tiroler Zukunftsstiftung).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Dehmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Mueller, L.A.J., Dehmer, M., Emmert-Streib, F. (2012). Network-Based Methods for Computational Diagnostics by Means of R. In: Trajanoski, Z. (eds) Computational Medicine. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0947-2_11

Download citation

Publish with us

Policies and ethics