Skip to main content

Synaptic Cell Adhesion Molecules

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((volume 970))

Abstract

During development of the nervous system following axon pathfinding, synaptic connections are established between neurons. Specific cell adhesion molecules (CAMs) accumulate at pre- and postsynaptic sites and trigger synaptic differentiation through interactions with intra- and extracellular scaffolds. These interactions are important to align pre- and postsynaptic transduction machineries and to couple the sites of cell-to-cell adhesion to the cytoskeleton and signaling complexes necessary to accumulate and recycle presynaptic vesicles, components of exo- and endocytic zones, and postsynaptic receptors. In mature brains, CAMs contribute to regulation of synaptic efficacy and plasticity, partially via direct interactions with postsynaptic neurotransmitter receptors and presynaptic voltage-gated ion channels. This chapter is to highlight the major classes of synaptic CAMs, their multiple functions, and the multistage concerted interactions between different CAMs and other components of synapses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andreyeva, A., Leshchyns’ka, I., Knepper, M., Betzel, C., Redecke, L., Sytnyk, V., & Schachner, M. (2010). CHL1 is a selective organizer of the presynaptic machinery chaperoning the SNARE complex. PloS One, 5, e12018.

    Article  PubMed  CAS  Google Scholar 

  • Ango, F., di Cristo, G., Higashiyama, H., Bennett, V., Wu, P., & Huang, Z. J. (2004). Ankyrin-based subcellular gradient of neurofascin, an immunoglobulin family protein, directs GABAergic innervation at purkinje axon initial segment. Cell, 119, 257–272.

    Article  PubMed  CAS  Google Scholar 

  • Aoto, J., Ting, P., Maghsoodi, B., Xu, N., Henkemeyer, M., & Chen, L. (2007). Postsynaptic ephrinB3 promotes shaft glutamatergic synapse formation. The Journal of Neuroscience, 27, 7508–7519.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, J. N., Saganich, M. J., Xu, N. J., Henkemeyer, M., Heinemann, S. F., & Contractor, A. (2006). B-ephrin reverse signaling is required for NMDA-independent long-term potentiation of mossy fibers in the hippocampus. The Journal of Neuroscience, 26, 3474–3481.

    Article  PubMed  CAS  Google Scholar 

  • Bamji, S. X., Shimazu, K., Kimes, N., Huelsken, J., Birchmeier, W., Lu, B., & Reichardt, L. F. (2003). Role of beta-catenin in synaptic vesicle localization and presynaptic assembly. Neuron, 40, 719–731.

    Article  PubMed  CAS  Google Scholar 

  • Barker, A. J., & Ullian, E. M. (2008). New roles for astrocytes in developing synaptic circuits. Communicative & Integrative Biology, 1, 207–211.

    Article  Google Scholar 

  • Barrow, S. L., Constable, J. R., Clark, E., El-Sabeawy, F., McAllister, A. K., & Washbourne, P. (2009). Neuroligin1: A cell adhesion molecule that recruits PSD-95 and NMDA receptors by distinct mechanisms during synaptogenesis. Neural Development, 4, 17.

    Article  PubMed  CAS  Google Scholar 

  • Becker, C. G., Artola, A., Gerardy-Schahn, R., Becker, T., Welzl, H., & Schachner, M. (1996). The polysialic acid modification of the neural cell adhesion molecule is involved in spatial learning and hippocampal long-term potentiation. Journal of Neuroscience Research, 45, 143–152.

    Article  PubMed  CAS  Google Scholar 

  • Benson, D. L., Yoshihara, Y., & Mori, K. (1998). Polarized distribution and cell type-specific localization of telencephalin, an intercellular adhesion molecule. Journal of Neuroscience Research, 52, 43–53.

    Article  PubMed  CAS  Google Scholar 

  • Berninghausen, O., Rahman, M. A., Silva, J. P., Davletov, B., Hopkins, C., & Ushkaryov, Y. A. (2007). Neurexin Ibeta and neuroligin are localized on opposite membranes in mature central synapses. Journal of Neurochemistry, 103, 1855–1863.

    Article  PubMed  CAS  Google Scholar 

  • Biederer, T., & Sudhof, T. C. (2001). CASK and protein 4.1 support F-actin nucleation on neurexins. Journal of Biological Chemistry, 276, 47869–47876.

    PubMed  CAS  Google Scholar 

  • Biederer, T., Sara, Y., Mozhayeva, M., Atasoy, D., Liu, X., Kavalali, E. T., & Sudhof, T. C. (2002). SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science, 297, 1525–1531.

    Article  PubMed  CAS  Google Scholar 

  • Bliss, T., Errington, M., Fransen, E., Godfraind, J. M., Kauer, J. A., Kooy, R. F., Maness, P. F., & Furley, A. J. (2000). Long-term potentiation in mice lacking the neural cell adhesion molecule L1. Current Biology, 10, 1607–1610.

    Article  PubMed  CAS  Google Scholar 

  • Bourgin, C., Murai, K. K., Richter, M., & Pasquale, E. B. (2007). The EphA4 receptor regulates dendritic spine remodeling by affecting beta1-integrin signaling pathways. The Journal of Cell Biology, 178, 1295–1307.

    Article  PubMed  CAS  Google Scholar 

  • Bouzioukh, F., Wilkinson, G. A., Adelmann, G., Frotscher, M., Stein, V., & Klein, R. (2007). Tyrosine phosphorylation sites in ephrinB2 are required for hippocampal long-term potentiation but not long-term depression. The Journal of Neuroscience, 27, 11279–11288.

    Article  PubMed  CAS  Google Scholar 

  • Bozdagi, O., Shan, W., Tanaka, H., Benson, D. L., & Huntley, G. W. (2000). Increasing numbers of synaptic puncta during late-phase LTP: N-cadherin is synthesized, recruited to synaptic sites, and required for potentiation. Neuron, 28, 245–259.

    Article  PubMed  CAS  Google Scholar 

  • Bozdagi, O., Wang, X. B., Nikitczuk, J. S., Anderson, T. R., Bloss, E. B., Radice, G. L., Zhou, Q., Benson, D. L., & Huntley, G. W. (2010). Persistence of coordinated long-term potentiation and dendritic spine enlargement at mature hippocampal CA1 synapses requires N-cadherin. The Journal of Neuroscience, 30, 9984–9989.

    Article  PubMed  CAS  Google Scholar 

  • Bukalo, O., Fentrop, N., Lee, A. Y., Salmen, B., Law, J. W., Wotjak, C. T., Schweizer, M., Dityatev, A., & Schachner, M. (2004). Conditional ablation of the neural cell adhesion molecule reduces precision of spatial learning, long-term potentiation, and depression in the CA1 subfield of mouse hippocampus. The Journal of Neuroscience, 24, 1565–1577.

    Article  PubMed  CAS  Google Scholar 

  • Chan, S. A., Polo-Parada, L., Landmesser, L. T., & Smith, C. (2005). Adrenal chromaffin cells exhibit impaired granule trafficking in NCAM knockout mice. Journal of Neurophysiology, 94, 1037–1047.

    Article  PubMed  CAS  Google Scholar 

  • Chang, K., Seabold, G. K., Wang, C. Y., & Wenthold, R. J. (2010). Reticulon 3 is an interacting partner of the SALM family of adhesion molecules. Journal of Neuroscience Research, 88, 266–274.

    Article  PubMed  CAS  Google Scholar 

  • Chih, B., Engelman, H., & Scheiffele, P. (2005). Control of excitatory and inhibitory synapse formation by neuroligins. Science, 307, 1324–1328.

    Article  PubMed  CAS  Google Scholar 

  • Chih, B., Gollan, L., & Scheiffele, P. (2006). Alternative splicing controls selective trans-synaptic interactions of the neuroligin-neurexin complex. Neuron, 51, 171–178.

    Article  PubMed  CAS  Google Scholar 

  • Chubykin, A. A., Atasoy, D., Etherton, M. R., Brose, N., Kavalali, E. T., Gibson, J. R., & Sudhof, T. C. (2007). Activity-dependent validation of excitatory versus inhibitory synapses by neuroligin-1 versus neuroligin-2. Neuron, 54, 919–931.

    Article  PubMed  CAS  Google Scholar 

  • Contractor, A., Rogers, C., Maron, C., Henkemeyer, M., Swanson, G. T., & Heinemann, S. F. (2002). Trans-synaptic Eph receptor-ephrin signaling in hippocampal mossy fiber LTP. Science, 296, 1864–1869.

    Article  PubMed  CAS  Google Scholar 

  • Dahlhaus, R., Hines, R. M., Eadie, B. D., Kannangara, T. S., Hines, D. J., Brown, C. E., Christie, B. R., & El-Husseini, A. (2010). Overexpression of the cell adhesion protein neuroligin-1 induces learning deficits and impairs synaptic plasticity by altering the ratio of excitation to inhibition in the hippocampus. Hippocampus, 20, 305–322.

    Article  PubMed  CAS  Google Scholar 

  • Dalva, M. B., Takasu, M. A., Lin, M. Z., Shamah, S. M., Hu, L., Gale, N. W., & Greenberg, M. E. (2000). EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell, 103, 945–956.

    Article  PubMed  CAS  Google Scholar 

  • de Wit, J., Sylwestrak, E., O’Sullivan, M. L., Otto, S., Tiglio, K., Savas, J. N., Yates, J. R., 3rd, Comoletti, D., Taylor, P., & Ghosh, A. (2009). LRRTM2 interacts with neurexin1 and regulates excitatory synapse formation. Neuron, 64, 799–806.

    Article  PubMed  CAS  Google Scholar 

  • Dean, C., Scholl, F. G., Choih, J., DeMaria, S., Berger, J., Isacoff, E., & Scheiffele, P. (2003). Neurexin mediates the assembly of presynaptic terminals. Nature Neuroscience, 6, 708–716.

    Article  PubMed  CAS  Google Scholar 

  • Deininger, K., Eder, M., Kramer, E. R., Zieglgansberger, W., Dodt, H. U., Dornmair, K., Colicelli, J., & Klein, R. (2008). The Rab5 guanylate exchange factor Rin1 regulates endocytosis of the EphA4 receptor in mature excitatory neurons. Proceedings of the National Academy of Sciences of the United States of America, 105, 12539–12544.

    Article  PubMed  CAS  Google Scholar 

  • Dickinson, B. A., Jo, J., Seok, H., Son, G. H., Whitcomb, D. J., Davies, C. H., Sheng, M., Collingridge, G. L., & Cho, K. (2009). A novel mechanism of hippocampal LTD involving muscarinic receptor-triggered interactions between AMPARs. GRIP and liprin-alpha. Molecular Brain, 2, 18.

    Article  PubMed  CAS  Google Scholar 

  • Dityatev, A., & Rusakov, D. A. (2011). Molecular signals of plasticity at the tetrapartite synapse. Current Opinion in Neurobiology, 21, 353–359.

    Article  PubMed  CAS  Google Scholar 

  • Dityatev, A., & Schachner, M. (2003). Extracellular matrix molecules and synaptic plasticity. Nature Reviews Neuroscience, 4, 456–468.

    Article  PubMed  CAS  Google Scholar 

  • Dityatev, A., Dityateva, G., & Schachner, M. (2000). Synaptic strength as a function of post-versus presynaptic expression of the neural cell adhesion molecule NCAM. Neuron, 26, 207–217.

    Article  PubMed  CAS  Google Scholar 

  • Dityatev, A., Dityateva, G., Sytnyk, V., Delling, M., Toni, N., Nikonenko, I., Muller, D., & Schachner, M. (2004). Polysialylated neural cell adhesion molecule promotes remodeling and formation of hippocampal synapses. The Journal of Neuroscience, 24, 9372–9382.

    Article  PubMed  CAS  Google Scholar 

  • Dunah, A. W., Hueske, E., Wyszynski, M., Hoogenraad, C. C., Jaworski, J., Pak, D. T., Simonetta, A., Liu, G., & Sheng, M. (2005). LAR receptor protein tyrosine phosphatases in the development and maintenance of excitatory synapses. Nature Neuroscience, 8, 458–467.

    PubMed  CAS  Google Scholar 

  • Eckhardt, M., Bukalo, O., Chazal, G., Wang, L., Goridis, C., Schachner, M., Gerardy-Schahn, R., Cremer, H., & Dityatev, A. (2000). Mice deficient in the polysialyltransferase ST8SiaIV/PST-1 allow discrimination of the roles of neural cell adhesion molecule protein and polysialic acid in neural development and synaptic plasticity. The Journal of Neuroscience, 20, 5234–5244.

    PubMed  CAS  Google Scholar 

  • Ethell, I. M., Irie, F., Kalo, M. S., Couchman, J. R., Pasquale, E. B., & Yamaguchi, Y. (2001). EphB/syndecan-2 signaling in dendritic spine morphogenesis. Neuron, 31, 1001–1013.

    Article  PubMed  CAS  Google Scholar 

  • Fogel, A. I., Akins, M. R., Krupp, A. J., Stagi, M., Stein, V., & Biederer, T. (2007). SynCAMs organize synapses through heterophilic adhesion. The Journal of Neuroscience, 27, 12516–12530.

    Article  PubMed  CAS  Google Scholar 

  • Fu, W. Y., et al. (2007). Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism. Nature Neuroscience, 10, 67–76.

    Article  PubMed  CAS  Google Scholar 

  • Furutani, Y., Matsuno, H., Kawasaki, M., Sasaki, T., Mori, K., & Yoshihara, Y. (2007). Interaction between telencephalin and ERM family proteins mediates dendritic filopodia formation. The Journal of Neuroscience, 27, 8866–8876.

    Article  PubMed  CAS  Google Scholar 

  • Futai, K., Kim, M. J., Hashikawa, T., Scheiffele, P., Sheng, M., & Hayashi, Y. (2007). Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95-neuroligin. Nature Neuroscience, 10, 186–195.

    Article  PubMed  CAS  Google Scholar 

  • Fux, C. M., Krug, M., Dityatev, A., Schuster, T., & Schachner, M. (2003). NCAM180 and glutamate receptor subtypes in potentiated spine synapses: An immunogold electron microscopic study. Molecular and Cellular Neuroscience, 24, 939–950.

    Article  PubMed  CAS  Google Scholar 

  • Galuska, S. P., et al. (2010). Synaptic cell adhesion molecule SynCAM 1 is a target for polysialylation in postnatal mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 107, 10250–10255.

    Article  PubMed  CAS  Google Scholar 

  • Giagtzoglou, N., Ly, C. V., & Bellen, H. J. (2009). Cell adhesion, the backbone of the synapse: “vertebrate” and “invertebrate” perspectives. Cold Spring Harbor Perspectives in Biology, 1, a003079.

    Article  PubMed  Google Scholar 

  • Gibson, J. R., Huber, K. M., & Sudhof, T. C. (2009). Neuroligin-2 deletion selectively decreases inhibitory synaptic transmission originating from fast-spiking but not from somatostatin-positive interneurons. The Journal of Neuroscience, 29, 13883–13897.

    Article  PubMed  CAS  Google Scholar 

  • Graf, E. R., Zhang, X., Jin, S. X., Linhoff, M. W., & Craig, A. M. (2004). Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell, 119, 1013–1026.

    Article  PubMed  CAS  Google Scholar 

  • Grunwald, I. C., Korte, M., Wolfer, D., Wilkinson, G. A., Unsicker, K., Lipp, H. P., Bonhoeffer, T., & Klein, R. (2001). Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity. Neuron, 32, 1027–1040.

    Article  PubMed  CAS  Google Scholar 

  • Grunwald, I. C., Korte, M., Adelmann, G., Plueck, A., Kullander, K., Adams, R. H., Frotscher, M., Bonhoeffer, T., & Klein, R. (2004). Hippocampal plasticity requires postsynaptic ephrinBs. Nature Neuroscience, 7, 33–40.

    Article  PubMed  CAS  Google Scholar 

  • Guan, H., & Maness, P. F. (2010). Perisomatic GABAergic innervation in prefrontal cortex is regulated by ankyrin interaction with the L1 cell adhesion molecule. Cerebral Cortex, 20, 2684–2693.

    Article  PubMed  Google Scholar 

  • Hammond, M. S., Sims, C., Parameshwaran, K., Suppiramaniam, V., Schachner, M., & Dityatev, A. (2006). Neural cell adhesion molecule-associated polysialic acid inhibits NR2B-containing N-methyl-D-aspartate receptors and prevents glutamate-induced cell death. Journal of Biological Chemistry, 281, 34859–34869.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto, T., Yamada, M., Maekawa, S., Nakashima, T., & Miyata, S. (2008). IgLON cell adhesion molecule Kilon is a crucial modulator for synapse number in hippocampal neurons. Brain Research, 1224, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto, T., Maekawa, S., & Miyata, S. (2009). IgLON cell adhesion molecules regulate synaptogenesis in hippocampal neurons. Cell Biochemistry and Function, 27, 496–498.

    Article  PubMed  CAS  Google Scholar 

  • Heine, M., Thoumine, O., Mondin, M., Tessier, B., Giannone, G., & Choquet, D. (2008). Activity-independent and subunit-specific recruitment of functional AMPA receptors at neurexin/neuroligin contacts. Proceedings of the National Academy of Sciences of the United States of America, 105, 20947–20952.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, J. T., Georgiou, J., Jia, Z., Robertson, J., Elowe, S., Roder, J. C., & Pawson, T. (2001). The receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function. Neuron, 32, 1041–1056.

    Article  PubMed  CAS  Google Scholar 

  • Henkemeyer, M., Itkis, O. S., Ngo, M., Hickmott, P. W., & Ethell, I. M. (2003). Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus. The Journal of Cell Biology, 163, 1313–1326.

    Article  PubMed  CAS  Google Scholar 

  • Hering, H., Lin, C. C., & Sheng, M. (2003). Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. The Journal of Neuroscience, 23, 3262–3271.

    PubMed  CAS  Google Scholar 

  • Honda, T., et al. (2006). Involvement of nectins in the formation of puncta adherentia junctions and the mossy fiber trajectory in the mouse hippocampus. Molecular and Cellular Neuroscience, 31, 315–325.

    Article  PubMed  CAS  Google Scholar 

  • Hortsch, M., Nagaraj, K., & Godenschwege, T. A. (2009). The interaction between L1-type proteins and ankyrins–a master switch for L1-type CAM function. Cellular and Molecular Biology Letters, 14, 57–69.

    Article  PubMed  CAS  Google Scholar 

  • Hoy, J. L., Constable, J. R., Vicini, S., Fu, Z., & Washbourne, P. (2009). SynCAM1 recruits NMDA receptors via protein 4.1B. Molecular and Cellular Neuroscience, 42, 466–483.

    Article  PubMed  CAS  Google Scholar 

  • Irie, F., & Yamaguchi, Y. (2002). EphB receptors regulate dendritic spine development via intersectin, Cdc42 and N-WASP. Nature Neuroscience, 5, 1117–1118.

    Article  PubMed  CAS  Google Scholar 

  • Israely, I., Costa, R. M., Xie, C. W., Silva, A. J., Kosik, K. S., & Liu, X. (2004). Deletion of the neuron-specific protein delta-catenin leads to severe cognitive and synaptic dysfunction. Current Biology, 14, 1657–1663.

    Article  PubMed  CAS  Google Scholar 

  • Jung, S. Y., et al. (2010). Input-specific synaptic plasticity in the amygdala is regulated by neuroligin-1 via postsynaptic NMDA receptors. Proceedings of the National Academy of Sciences of the United States of America, 107, 4710–4715.

    Article  PubMed  CAS  Google Scholar 

  • Jungling, K., Eulenburg, V., Moore, R., Kemler, R., Lessmann, V., & Gottmann, K. (2006). N-cadherin transsynaptically regulates short-term plasticity at glutamatergic synapses in embryonic stem cell-derived neurons. The Journal of Neuroscience, 26, 6968–6978.

    Article  PubMed  CAS  Google Scholar 

  • Kayser, M. S., McClelland, A. C., Hughes, E. G., & Dalva, M. B. (2006). Intracellular and trans-synaptic regulation of glutamatergic synaptogenesis by EphB receptors. The Journal of Neuroscience, 26, 12152–12164.

    Article  PubMed  CAS  Google Scholar 

  • Kayser, M. S., Nolt, M. J., & Dalva, M. B. (2008). EphB receptors couple dendritic filopodia motility to synapse formation. Neuron, 59, 56–69.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S., Burette, A., Chung, H. S., Kwon, S. K., Woo, J., Lee, H. W., Kim, K., Kim, H., Weinberg, R. J., & Kim, E. (2006). NGL family PSD-95-interacting adhesion molecules regulate excitatory synapse formation. Nature Neuroscience, 9, 1294–1301.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J., et al. (2008). Neuroligin-1 is required for normal expression of LTP and associative fear memory in the amygdala of adult animals. Proceedings of the National Academy of Sciences of the United States of America, 105, 9087–9092.

    Article  PubMed  CAS  Google Scholar 

  • Kleene, R., Cassens, C., Bahring, R., Theis, T., Xiao, M. F., Dityatev, A., Schafer-Nielsen, C., Doring, F., Wischmeyer, E., & Schachner, M. (2010). Functional consequences of the interactions among the neural cell adhesion molecule NCAM, the receptor tyrosine kinase TrkB, and the inwardly rectifying K+ channel KIR3.3. Journal of Biological Chemistry, 285, 28968–28979.

    Article  PubMed  CAS  Google Scholar 

  • Klein, R. (2009). Bidirectional modulation of synaptic functions by Eph/ephrin signaling. Nature Neuroscience, 12, 15–20.

    Article  PubMed  CAS  Google Scholar 

  • Ko, J., Na, M., Kim, S., Lee, J. R., & Kim, E. (2003). Interaction of the ERC family of RIM-binding proteins with the liprin-alpha family of multidomain proteins. Journal of Biological Chemistry, 278, 42377–42385.

    Article  PubMed  CAS  Google Scholar 

  • Ko, J., Kim, S., Chung, H. S., Kim, K., Han, K., Kim, H., Jun, H., Kaang, B. K., & Kim, E. (2006). SALM synaptic cell adhesion-like molecules regulate the differentiation of excitatory synapses. Neuron, 50, 233–245.

    Article  PubMed  CAS  Google Scholar 

  • Ko, J., Fuccillo, M. V., Malenka, R. C., & Sudhof, T. C. (2009). LRRTM2 functions as a neurexin ligand in promoting excitatory synapse formation. Neuron, 64, 791–798.

    Article  PubMed  CAS  Google Scholar 

  • Kochlamazashvili, G., et al. (2010). Neural cell adhesion molecule-associated polysialic acid regulates synaptic plasticity and learning by restraining the signaling through GluN2B-containing NMDA receptors. The Journal of Neuroscience, 30, 4171–4183.

    Article  PubMed  CAS  Google Scholar 

  • Kwon, S. K., Woo, J., Kim, S. Y., Kim, H., & Kim, E. (2010). Trans-synaptic adhesions between netrin-G ligand-3 (NGL-3) and receptor tyrosine phosphatases LAR, protein-tyrosine phosphatase delta (PTPdelta), and PTPsigma via specific domains regulate excitatory synapse formation. Journal of Biological Chemistry, 285, 13966–13978.

    Article  PubMed  CAS  Google Scholar 

  • Lauren, J., Airaksinen, M. S., Saarma, M., & Timmusk, T. (2003). A novel gene family encoding leucine-rich repeat transmembrane proteins differentially expressed in the nervous system. Genomics, 81, 411–421.

    Article  PubMed  CAS  Google Scholar 

  • Law, J. W., Lee, A. Y., Sun, M., Nikonenko, A. G., Chung, S. K., Dityatev, A., Schachner, M., & Morellini, F. (2003). Decreased anxiety, altered place learning, and increased CA1 basal excitatory synaptic transmission in mice with conditional ablation of the neural cell adhesion molecule L1. The Journal of Neuroscience, 23, 10419–10432.

    PubMed  CAS  Google Scholar 

  • Leshchyns’ka, I., Sytnyk, V., Richter, M., Andreyeva, A., Puchkov, D., & Schachner, M. (2006). The adhesion molecule CHL1 regulates uncoating of clathrin-coated synaptic vesicles. Neuron, 52, 1011–1025.

    Article  PubMed  CAS  Google Scholar 

  • Lim, S. T., Lim, K. C., Giuliano, R. E., & Federoff, H. J. (2008). Temporal and spatial localization of nectin-1 and l-afadin during synaptogenesis in hippocampal neurons. The Journal of Comparative Neurology, 507, 1228–1244.

    Article  PubMed  CAS  Google Scholar 

  • Linhoff, M. W., Lauren, J., Cassidy, R. M., Dobie, F. A., Takahashi, H., Nygaard, H. B., Airaksinen, M. S., Strittmatter, S. M., & Craig, A. M. (2009). An unbiased expression screen for synaptogenic proteins identifies the LRRTM protein family as synaptic organizers. Neuron, 61, 734–749.

    Article  PubMed  CAS  Google Scholar 

  • Lodge, A. P., Howard, M. R., McNamee, C. J., & Moss, D. J. (2000). Co-localisation, heterophilic interactions and regulated expression of IgLON family proteins in the chick nervous system. Molecular Brain Research, 82, 84–94.

    Article  PubMed  CAS  Google Scholar 

  • Mah, W., Ko, J., Nam, J., Han, K., Chung, W. S., & Kim, E. (2010). Selected SALM (synaptic adhesion-like molecule) family proteins regulate synapse formation. The Journal of Neuroscience, 30, 5559–5568.

    Article  PubMed  CAS  Google Scholar 

  • Majima, T., Ogita, H., Yamada, T., Amano, H., Togashi, H., Sakisaka, T., Tanaka-Okamoto, M., Ishizaki, H., Miyoshi, J., & Takai, Y. (2009). Involvement of afadin in the formation and remodeling of synapses in the hippocampus. Biochemical and Biophysical Research Communications, 385, 539–544.

    Article  PubMed  CAS  Google Scholar 

  • Marrs, G. S., Theisen, C. S., & Bruses, J. L. (2009). N-cadherin modulates voltage activated calcium influx via RhoA, p120-catenin, and myosin-actin interaction. Molecular and Cellular Neuroscience, 40, 390–400.

    Article  PubMed  CAS  Google Scholar 

  • Matsuno, H., Okabe, S., Mishina, M., Yanagida, T., Mori, K., & Yoshihara, Y. (2006). Telencephalin slows spine maturation. The Journal of Neuroscience, 26, 1776–1786.

    Article  PubMed  CAS  Google Scholar 

  • Mendez, P., De Roo, M., Poglia, L., Klauser, P., & Muller, D. (2010). N-cadherin mediates plasticity-induced long-term spine stabilization. The Journal of Cell Biology, 189, 589–600.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, G., Varoqueaux, F., Neeb, A., Oschlies, M., & Brose, N. (2004). The complexity of PDZ domain-mediated interactions at glutamatergic synapses: A case study on neuroligin. Neuropharmacology, 47, 724–733.

    Article  PubMed  CAS  Google Scholar 

  • Missler, M., Zhang, W., Rohlmann, A., Kattenstroth, G., Hammer, R. E., Gottmann, K., & Sudhof, T. C. (2003). Alpha-neurexins couple Ca2+ channels to synaptic vesicle exocytosis. Nature, 423, 939–948.

    Article  PubMed  CAS  Google Scholar 

  • Miyata, S., Matsumoto, N., Taguchi, K., Akagi, A., Iino, T., Funatsu, N., & Maekawa, S. (2003). Biochemical and ultrastructural analyses of IgLON cell adhesion molecules, Kilon and OBCAM in the rat brain. Neuroscience, 117, 645–658.

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi, A., et al. (2002). Nectin: An adhesion molecule involved in formation of synapses. The Journal of Cell Biology, 156, 555–565.

    Article  PubMed  CAS  Google Scholar 

  • Morellini, F., Lepsveridze, E., Kahler, B., Dityatev, A., & Schachner, M. (2007). Reduced reactivity to novelty, impaired social behavior, and enhanced basal synaptic excitatory activity in perforant path projections to the dentate gyrus in young adult mice deficient in the neural cell adhesion molecule CHL1. Molecular and Cellular Neuroscience, 34, 121–136.

    Article  PubMed  CAS  Google Scholar 

  • Muller, D., Wang, C., Skibo, G., Toni, N., Cremer, H., Calaora, V., Rougon, G., & Kiss, J. Z. (1996). PSA-NCAM is required for activity-induced synaptic plasticity. Neuron, 17, 413–422.

    Article  PubMed  CAS  Google Scholar 

  • Muller, D., Djebbara-Hannas, Z., Jourdain, P., Vutskits, L., Durbec, P., Rougon, G., & Kiss, J. Z. (2000). Brain-derived neurotrophic factor restores long-term potentiation in polysialic acid-neural cell adhesion molecule-deficient hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 97, 4315–4320.

    Article  PubMed  CAS  Google Scholar 

  • Murai, K. K., Misner, D., & Ranscht, B. (2002). Contactin supports synaptic plasticity associated with hippocampal long-term depression but not potentiation. Current Biology, 12, 181–190.

    Article  PubMed  CAS  Google Scholar 

  • Murai, K. K., Nguyen, L. N., Koolpe, M., McLennan, R., Krull, C. E., & Pasquale, E. B. (2003). Targeting the EphA4 receptor in the nervous system with biologically active peptides. Molecular and Cellular Neuroscience, 24, 1000–1011.

    Article  PubMed  CAS  Google Scholar 

  • Murase, S., Mosser, E., & Schuman, E. M. (2002). Depolarization drives beta-Catenin into neuronal spines promoting changes in synaptic structure and function. Neuron, 35, 91–105.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, K., et al. (2001). Enhancement of hippocampal LTP, reference memory and sensorimotor gating in mutant mice lacking a telencephalon-specific cell adhesion molecule. European Journal of Neuroscience, 13, 179–189.

    Article  PubMed  CAS  Google Scholar 

  • Nam, C. I., & Chen, L. (2005). Postsynaptic assembly induced by neurexin-neuroligin interaction and neurotransmitter. Proceedings of the National Academy of Sciences of the United States of America, 102, 6137–6142.

    Article  PubMed  CAS  Google Scholar 

  • Nikonenko, A. G., Sun, M., Lepsveridze, E., Apostolova, I., Petrova, I., Irintchev, A., Dityatev, A., & Schachner, M. (2006). Enhanced perisomatic inhibition and impaired long-term potentiation in the CA1 region of juvenile CHL1-deficient mice. European Journal of Neuroscience, 23, 1839–1852.

    Article  PubMed  Google Scholar 

  • Nishimura-Akiyoshi, S., Niimi, K., Nakashiba, T., & Itohara, S. (2007). Axonal netrin-Gs transneuronally determine lamina-specific subdendritic segments. Proceedings of the National Academy of Sciences of the United States of America, 104, 14801–14806.

    Article  PubMed  CAS  Google Scholar 

  • Nuriya, M., & Huganir, R. L. (2006). Regulation of AMPA receptor trafficking by N-cadherin. Journal of Neurochemistry, 97, 652–661.

    Article  PubMed  CAS  Google Scholar 

  • Oka, S., Mori, K., & Watanabe, Y. (1990). Mammalian telencephalic neurons express a segment-specific membrane glycoprotein, telencephalin. Neuroscience, 35, 93–103.

    Article  PubMed  CAS  Google Scholar 

  • Okuda, T., Yu, L. M., Cingolani, L. A., Kemler, R., & Goda, Y. (2007). Beta-Catenin regulates excitatory postsynaptic strength at hippocampal synapses. Proceedings of the National Academy of Sciences of the United States of America, 104, 13479–13484.

    Article  PubMed  CAS  Google Scholar 

  • Olsen, O., et al. (2005). Neurotransmitter release regulated by a MALS-liprin-alpha presynaptic complex. The Journal of Cell Biology, 170, 1127–1134.

    Article  PubMed  CAS  Google Scholar 

  • Penzes, P., Beeser, A., Chernoff, J., Schiller, M. R., Eipper, B. A., Mains, R. E., & Huganir, R. L. (2003). Rapid induction of dendritic spine morphogenesis by trans-synaptic ephrinB-EphB receptor activation of the Rho-GEF kalirin. Neuron, 37, 263–274.

    Article  PubMed  CAS  Google Scholar 

  • Pimenta, A. F., Reinoso, B. S., & Levitt, P. (1996). Expression of the mRNAs encoding the limbic system-associated membrane protein (LAMP): II. Fetal rat brain. The Journal of Comparative Neurology, 375, 289–302.

    Article  PubMed  CAS  Google Scholar 

  • Polo-Parada, L., Bose, C. M., & Landmesser, L. T. (2001). Alterations in transmission, vesicle dynamics, and transmitter release machinery at NCAM-deficient neuromuscular junctions. Neuron, 32, 815–828.

    Article  PubMed  CAS  Google Scholar 

  • Polo-Parada, L., Plattner, F., Bose, C., & Landmesser, L. T. (2005). NCAM 180 acting via a conserved C-terminal domain and MLCK is essential for effective transmission with repetitive stimulation. Neuron, 46, 917–931.

    Article  PubMed  CAS  Google Scholar 

  • Poulopoulos, A., et al. (2009). Neuroligin 2 drives postsynaptic assembly at perisomatic inhibitory synapses through gephyrin and collybistin. Neuron, 63, 628–642.

    Article  PubMed  CAS  Google Scholar 

  • Prange, O., Wong, T. P., Gerrow, K., Wang, Y. T., & El-Husseini, A. (2004). A balance between excitatory and inhibitory synapses is controlled by PSD-95 and neuroligin. Proceedings of the National Academy of Sciences of the United States of America, 101, 13915–13920.

    Article  PubMed  CAS  Google Scholar 

  • Pulido, R., Serra-Pages, C., Tang, M., & Streuli, M. (1995). The LAR/PTP delta/PTP sigma subfamily of transmembrane protein-tyrosine-phosphatases: Multiple human LAR, PTP delta, and PTP sigma isoforms are expressed in a tissue-specific manner and associate with the LAR-interacting protein LIP.1. Proceedings of the National Academy of Sciences of the United States of America, 92, 11686–11690.

    Article  PubMed  CAS  Google Scholar 

  • Rafuse, V. F., Polo-Parada, L., & Landmesser, L. T. (2000). Structural and functional alterations of neuromuscular junctions in NCAM-deficient mice. The Journal of Neuroscience, 20, 6529–6539.

    PubMed  CAS  Google Scholar 

  • Ramser, E. M., Wolters, G., Dityateva, G., Dityatev, A., Schachner, M., & Tilling, T. (2010). The 14-3-3zeta protein binds to the cell adhesion molecule L1, promotes L1 phosphorylation by CKII and influences L1-dependent neurite outgrowth. PloS One, 5, e13462.

    Article  PubMed  CAS  Google Scholar 

  • Richter, M., Murai, K. K., Bourgin, C., Pak, D. T., & Pasquale, E. B. (2007). The EphA4 receptor regulates neuronal morphology through SPAR-mediated inactivation of Rap GTPases. The Journal of Neuroscience, 27, 14205–14215.

    Article  PubMed  CAS  Google Scholar 

  • Robbins, E. M., Krupp, A. J., Perez de Arce, K., Ghosh, A. K., Fogel, A. I., Boucard, A., Sudhof, T. C., Stein, V., & Biederer, T. (2010). SynCAM 1 adhesion dynamically regulates synapse number and impacts plasticity and learning. Neuron, 68, 894–906.

    Article  PubMed  CAS  Google Scholar 

  • Rodenas-Ruano, A., Perez-Pinzon, M. A., Green, E. J., Henkemeyer, M., & Liebl, D. J. (2006). Distinct roles for ephrinB3 in the formation and function of hippocampal synapses. Developmental Biology, 292, 34–45.

    Article  PubMed  CAS  Google Scholar 

  • Rutishauser, U. (2008). Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nature Reviews Neuroscience, 9, 26–35.

    Article  PubMed  CAS  Google Scholar 

  • Saghatelyan, A. K., Nikonenko, A. G., Sun, M., Rolf, B., Putthoff, P., Kutsche, M., Bartsch, U., Dityatev, A., & Schachner, M. (2004). Reduced GABAergic transmission and number of hippocampal perisomatic inhibitory synapses in juvenile mice deficient in the neural cell adhesion molecule L1. Molecular and Cellular Neuroscience, 26, 191–203.

    Article  PubMed  CAS  Google Scholar 

  • Saglietti, L., et al. (2007). Extracellular interactions between GluR2 and N-cadherin in spine regulation. Neuron, 54, 461–477.

    Article  PubMed  CAS  Google Scholar 

  • Sakurai, K., Toyoshima, M., Ueda, H., Matsubara, K., Takeda, Y., Karagogeos, D., Shimoda, Y., & Watanabe, K. (2009). Contribution of the neural cell recognition molecule NB-3 to synapse formation between parallel fibers and Purkinje cells in mouse. Developmental Neurobiology, 69, 811–824.

    Article  PubMed  CAS  Google Scholar 

  • Sakurai, K., Toyoshima, M., Takeda, Y., Shimoda, Y., & Watanabe, K. (2010). Synaptic formation in subsets of glutamatergic terminals in the mouse hippocampal formation is affected by a deficiency in the neural cell recognition molecule NB-3. Neuroscience Letters, 473, 102–106.

    Article  PubMed  CAS  Google Scholar 

  • Sara, Y., Biederer, T., Atasoy, D., Chubykin, A., Mozhayeva, M. G., Sudhof, T. C., & Kavalali, E. T. (2005). Selective capability of SynCAM and neuroligin for functional synapse assembly. The Journal of Neuroscience, 25, 260–270.

    Article  PubMed  CAS  Google Scholar 

  • Schapitz, I. U., et al. (2010). Neuroligin 1 is dynamically exchanged at postsynaptic sites. The Journal of Neuroscience, 30, 12733–12744.

    Article  PubMed  CAS  Google Scholar 

  • Schoch, S., Castillo, P. E., Jo, T., Mukherjee, K., Geppert, M., Wang, Y., Schmitz, F., Malenka, R. C., & Sudhof, T. C. (2002). RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature, 415, 321–326.

    Article  PubMed  CAS  Google Scholar 

  • Schuster, T., Krug, M., Hassan, H., & Schachner, M. (1998). Increase in proportion of hippocampal spine synapses expressing neural cell adhesion molecule NCAM180 following long-term potentiation. Journal of Neurobiology, 37, 359–372.

    Article  PubMed  CAS  Google Scholar 

  • Seabold, G. K., Wang, P. Y., Chang, K., Wang, C. Y., Wang, Y. X., Petralia, R. S., & Wenthold, R. J. (2008). The SALM family of adhesion-like molecules forms heteromeric and homomeric complexes. Journal of Biological Chemistry, 283, 8395–8405.

    Article  PubMed  CAS  Google Scholar 

  • Senkov, O., Sun, M., Weinhold, B., Gerardy-Schahn, R., Schachner, M., & Dityatev, A. (2006). Polysialylated neural cell adhesion molecule is involved in induction of long-term potentiation and memory acquisition and consolidation in a fear-conditioning paradigm. The Journal of Neuroscience, 26, 10888–109898.

    Article  PubMed  CAS  Google Scholar 

  • Shimoda, Y., & Watanabe, K. (2009). Contactins: Emerging key roles in the development and function of the nervous system. Cell Adhesion & Migration, 3, 64–70.

    Article  Google Scholar 

  • Siddiqui, T. J., Pancaroglu, R., Kang, Y., Rooyakkers, A., & Craig, A. M. (2010). LRRTMs and neuroligins bind neurexins with a differential code to cooperate in glutamate synapse development. The Journal of Neuroscience, 30, 7495–7506.

    Article  PubMed  CAS  Google Scholar 

  • Silverman, J. B., Restituito, S., Lu, W., Lee-Edwards, L., Khatri, L., & Ziff, E. B. (2007). Synaptic anchorage of AMPA receptors by cadherins through neural plakophilin-related arm protein AMPA receptor-binding protein complexes. The Journal of Neuroscience, 27, 8505–8516.

    Article  PubMed  CAS  Google Scholar 

  • Stagi, M., Fogel, A. I., & Biederer, T. (2010). SynCAM 1 participates in axo-dendritic contact assembly and shapes neuronal growth cones. Proceedings of the National Academy of Sciences of the United States of America, 107, 7568–7573.

    Article  PubMed  CAS  Google Scholar 

  • Stan, A., Pielarski, K. N., Brigadski, T., Wittenmayer, N., Fedorchenko, O., Gohla, A., Lessmann, V., Dresbach, T., & Gottmann, K. (2010). Essential cooperation of N-cadherin and neuroligin-1 in the transsynaptic control of vesicle accumulation. Proceedings of the National Academy of Sciences of the United States of America, 107, 11116–11121.

    Article  PubMed  CAS  Google Scholar 

  • Stoenica, L., Senkov, O., Gerardy-Schahn, R., Weinhold, B., Schachner, M., & Dityatev, A. (2006). In vivo synaptic plasticity in the dentate gyrus of mice deficient in the neural cell adhesion molecule NCAM or its polysialic acid. European Journal of Neuroscience, 23, 2255–2264.

    Article  PubMed  Google Scholar 

  • Sytnyk, V., Leshchyns’ka, I., Delling, M., Dityateva, G., Dityatev, A., & Schachner, M. (2002). Neural cell adhesion molecule promotes accumulation of TGN organelles at sites of neuron-to-neuron contacts. The Journal of Cell Biology, 159, 649–661.

    Article  PubMed  CAS  Google Scholar 

  • Sytnyk, V., Leshchyns’ka, I., Nikonenko, A. G., & Schachner, M. (2006). NCAM promotes assembly and activity-dependent remodeling of the postsynaptic signaling complex. The Journal of Cell Biology, 174, 1071–1085.

    Article  PubMed  CAS  Google Scholar 

  • Tabuchi, K., Biederer, T., Butz, S., & Sudhof, T. C. (2002). CASK participates in alternative tripartite complexes in which Mint 1 competes for binding with caskin 1, a novel CASK-binding protein. The Journal of Neuroscience, 22, 4264–4273.

    PubMed  CAS  Google Scholar 

  • Takasu, M. A., Dalva, M. B., Zigmond, R. E., & Greenberg, M. E. (2002). Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science, 295, 491–495.

    Article  PubMed  CAS  Google Scholar 

  • Tallafuss, A., Constable, J. R., & Washbourne, P. (2010). Organization of central synapses by adhesion molecules. European Journal of Neuroscience, 32, 198–206.

    Article  PubMed  Google Scholar 

  • Tanaka, H., Shan, W., Phillips, G. R., Arndt, K., Bozdagi, O., Shapiro, L., Huntley, G. W., Benson, D. L., & Colman, D. R. (2000). Molecular modification of N-cadherin in response to synaptic activity. Neuron, 25, 93–107.

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi, H., Gollan, L., Scholl, F. G., Mahadomrongkul, V., Dobler, E., Limthong, N., Peck, M., Aoki, C., & Scheiffele, P. (2007). Silencing of neuroligin function by postsynaptic neurexins. The Journal of Neuroscience, 27, 2815–2824.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, L. A., Akins, M. R., & Biederer, T. (2008). Expression and adhesion profiles of SynCAM molecules indicate distinct neuronal functions. The Journal of Comparative Neurology, 510, 47–67.

    Article  PubMed  CAS  Google Scholar 

  • Tian, L., Stefanidakis, M., Ning, L., Van Lint, P., Nyman-Huttunen, H., Libert, C., Itohara, S., Mishina, M., Rauvala, H., & Gahmberg, C. G. (2007). Activation of NMDA receptors promotes dendritic spine development through MMP-mediated ICAM-5 cleavage. The Journal of Cell Biology, 178, 687–700.

    Article  PubMed  CAS  Google Scholar 

  • Tolias, K. F., Bikoff, J. B., Kane, C. G., Tolias, C. S., Hu, L., & Greenberg, M. E. (2007). The Rac1 guanine nucleotide exchange factor Tiam1 mediates EphB receptor-dependent dendritic spine development. Proceedings of the National Academy of Sciences of the United States of America, 104, 7265–7270.

    Article  PubMed  CAS  Google Scholar 

  • Uemura, T., Lee, S. J., Yasumura, M., Takeuchi, T., Yoshida, T., Ra, M., Taguchi, R., Sakimura, K., & Mishina, M. (2010). Trans-synaptic interaction of GluRdelta2 and Neurexin through Cbln1 mediates synapse formation in the cerebellum. Cell, 141, 1068–1079.

    Article  PubMed  CAS  Google Scholar 

  • Vaithianathan, T., Matthias, K., Bahr, B., Schachner, M., Suppiramaniam, V., Dityatev, A., & Steinhauser, C. (2004). Neural cell adhesion molecule-associated polysialic acid potentiates alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor currents. Journal of Biological Chemistry, 279, 47975–47984.

    Article  PubMed  CAS  Google Scholar 

  • Varoqueaux, F., Aramuni, G., Rawson, R. L., Mohrmann, R., Missler, M., Gottmann, K., Zhang, W., Sudhof, T. C., & Brose, N. (2006). Neuroligins determine synapse maturation and function. Neuron, 51, 741–754.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C. Y., Chang, K., Petralia, R. S., Wang, Y. X., Seabold, G. K., & Wenthold, R. J. (2006). A novel family of adhesion-like molecules that interacts with the NMDA receptor. The Journal of Neuroscience, 26, 2174–2183.

    Article  PubMed  CAS  Google Scholar 

  • Woo, J., Kwon, S. K., Choi, S., Kim, S., Lee, J. R., Dunah, A. W., Sheng, M., & Kim, E. (2009). Trans-synaptic adhesion between NGL-3 and LAR regulates the formation of excitatory synapses. Nature Neuroscience, 12, 428–437.

    Article  PubMed  CAS  Google Scholar 

  • Woolfrey, K. M., et al. (2009). Epac2 induces synapse remodeling and depression and its disease-associated forms alter spines. Nature Neuroscience, 12, 1275–1284.

    Article  PubMed  CAS  Google Scholar 

  • Xie, Z., Photowala, H., Cahill, M. E., Srivastava, D. P., Woolfrey, K. M., Shum, C. Y., Huganir, R. L., & Penzes, P. (2008). Coordination of synaptic adhesion with dendritic spine remodeling by AF-6 and kalirin-7. The Journal of Neuroscience, 28, 6079–6091.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, A., Irie, K., Deguchi-Tawarada, M., Ohtsuka, T., & Takai, Y. (2003). Nectin-dependent localization of synaptic scaffolding molecule (S-SCAM) at the puncta adherentia junctions formed between the mossy fibre terminals and the dendrites of pyramidal cells in the CA3 area of the mouse hippocampus. Genes to Cells, 8, 985–994.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, M., Hashimoto, T., Hayashi, N., Higuchi, M., Murakami, A., Nakashima, T., Maekawa, S., & Miyata, S. (2007). Synaptic adhesion molecule OBCAM; synaptogenesis and dynamic internalization. Brain Research, 1165, 5–14.

    Article  PubMed  CAS  Google Scholar 

  • Yasuda, S., et al. (2007). Activity-induced protocadherin arcadlin regulates dendritic spine number by triggering N-cadherin endocytosis via TAO2beta and p38 MAP kinases. Neuron, 56, 456–471.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, W., Rohlmann, A., Sargsyan, V., Aramuni, G., Hammer, R. E., Sudhof, T. C., & Missler, M. (2005). Extracellular domains of alpha-neurexins participate in regulating synaptic transmission by selectively affecting N- and P/Q-type Ca2+ channels. The Journal of Neuroscience, 25, 4330–4342.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, C., Atasoy, D., Arac, D., Yang, X., Fucillo, M. V., Robison, A. J., Ko, J., Brunger, A. T., & Sudhof, T. C. (2010). Neurexins physically and functionally interact with GABA(A) receptors. Neuron, 66, 403–416.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, L., Martinez, S. J., Haber, M., Jones, E. V., Bouvier, D., Doucet, G., Corera, A. T., Fon, E. A., Zisch, A. H., & Murai, K. K. (2007). EphA4 signaling regulates phospholipase Cgamma1 activation, cofilin membrane association, and dendritic spine morphology. The Journal of Neuroscience, 27, 5127–5138.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work in the authors’ laboratories is supported by the Italian Institute of Technology, San Paolo Foundation, and the Government of the Russian Federation (AD) and by NICHD funding for intramural research (OB). We thank Dr. Philip Lee for his careful and critical reading of this manuscript. We sincerely apologize to all those colleagues whose work is not cited here because of space considerations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Dityatev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/WIen

About this chapter

Cite this chapter

Bukalo, O., Dityatev, A. (2012). Synaptic Cell Adhesion Molecules. In: Kreutz, M., Sala, C. (eds) Synaptic Plasticity. Advances in Experimental Medicine and Biology, vol 970. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0932-8_5

Download citation

Publish with us

Policies and ethics