Skip to main content

Preparation and Properties of Cellulose Solutions

  • Chapter
  • First Online:
The European Polysaccharide Network of Excellence (EPNOE)

Abstract

Cellulose cannot melt and is not soluble in common organic solvents. The first part of this chapter is a review of the main aspects of cellulose dissolution. Research results obtained in several EPNOE laboratories are then described. This includes the mechanisms of the dissolution of native cellulose fibres, solution properties in sodium hydroxide water and ionic liquids, stabilisation of cellulose in N-methylmorpholine-N-oxide–water and mixtures of cellulose with other polysaccharide or lignin in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adusumali RB, Reifferscheid M, Weber H, Roeder T, Sixta H, Gindl W (2006) Mechanical properties of regenerated cellulose fibres for composites. Macromol Symp 244:119–125

    Google Scholar 

  • Atalla RH, Agarwal UP (1985) Raman microprobe evidence for lignin orientation in the cell wall of native tissue. Science 227:636–638

    PubMed  CAS  Google Scholar 

  • Atalla RH, Hackney JM, Uhlin I, Thompson NS (1993) Hemicelluloses as structure regulators in the aggregation of native cellulose. Int J Biol Macromol 15:109–112

    PubMed  CAS  Google Scholar 

  • Barthel S, Heinze T (2006) Acylation and carbanilation of cellulose in ionic liquids. Green Chem 8:301–306

    CAS  Google Scholar 

  • Benoît H (1948) Calcul de l’écart quadratique moyen entre les extrémités de diverses chaînes moléculaires de type usuel. J Polym Sci 3:376–388

    Google Scholar 

  • Besombes S, Mazeau K (2005) The cellulose/lignin assembly assessed by molecular modeling. Part 2: seeking for evidence of organization of lignin molecules at the interface with cellulose. Plant Physiol Biochem 43:277–286

    PubMed  CAS  Google Scholar 

  • Biganska O, Navard P (2005) Kinetics of precipitation of cellulose from cellulose-NMMO-water solutions. Biomacromolecules 6:1949–1953

    Google Scholar 

  • Blachot JF, Brunet N, Cavaille JY, Navard P (1998) Rheological behaviour of cellulose/(N-methylmorpholine N-oxyde-water) solutions. Rheol Acta 37:107–114

    CAS  Google Scholar 

  • Boerstel H, Maatman H, Westerink JB, Koenders BM (2001) Liquid crystalline solutions of cellulose in phosphoric acid. Polymer 42:7371–7379

    Google Scholar 

  • Brandner A, Zengel HG (1980) German Patent 303468

    Google Scholar 

  • British Celanese (1925) GB 263810

    Google Scholar 

  • Budtov VP, Bel’nikevich NG, Litvinova LS (2010) Thermodynamics and viscosities of dilute polymer solutions in binary solvents. Polym Sci Ser A 52:362–367

    Google Scholar 

  • Buijtenhuijs FA, Abbas M, Witteveen AJ (1986) The degradation and stabilization of cellulose dissolved in N-methylmorpholine-N-oxide (NMMO). Papier 40:615–619

    CAS  Google Scholar 

  • Büttner T, Graneß G, Wendler F, Meister F, Dohrn W (2003) German Patent 2003 (TITK) DE 10331342

    Google Scholar 

  • Cai J, Zang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH:urea aqueous solutions. Macromol Biosci 5:539–548

    PubMed  CAS  Google Scholar 

  • Cai J, Zhang LN (2006) Unique gelation behavior of cellulose in NaOH/Urea aqueous solution. Biomacromolecules 7:183–189

    PubMed  CAS  Google Scholar 

  • Cai J, Zhang L, Zhou J, Li H, Chen H, Jin H (2004) Novel fibres prepared from cellulose in NaOH:urea aqueous solutions. Macromol Rapid Commun 25:1558–1562

    CAS  Google Scholar 

  • Cai J, Zhang L, Zhou J, Qi H, Chen H, Kondo T, Chen X, Chu B (2007) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825

    CAS  Google Scholar 

  • Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, Chu B, Guo X, Xu J, Cheng H, Han C, Kuga S (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41:9345–9351

    CAS  Google Scholar 

  • Cazacu G, Popa VI (2004) Blends and composites based on cellulose materials. In: Dumitriu S (ed) Polysaccharide: structural diversity and functional versatility, vol 2. Dekker, New York, pp 1141–1177

    Google Scholar 

  • Chanzy H, Roche E (1976) Fibrous transformation of Valonia cellulose I into cellulose II. J Appl Polym Symp 28:701

    CAS  Google Scholar 

  • Chanzy H, Nawrot S, Peguy A, Smith P, Chevalier J (1982) Phase behavior of the quasiternary system N-methylmorpholine-N-oxide, water, and cellulose. J Polym Sci 20:1909–1924

    CAS  Google Scholar 

  • Chanzy H, Noe P, Paillet M, Smith P (1983) Swelling and dissolution of cellulose in amine oxide/water systems. J Appl Polym Sci 37:239–259

    CAS  Google Scholar 

  • Chaudemanche C, Navard P (2011) Influence of fibre morphology on the swelling and dissolution mechanisms of Lyocell regenerated cellulose fibres. Cellulose 18:1–15

    CAS  Google Scholar 

  • Chen X, Burger C, Wan F, Zhang J, Rong L, Hsiao B, Chu B, Cai J, Zhang L (2007) Structure study of cellulose fibers wet-spun from environmentally friendly NaOH-urea aqueous solutions. Biomacromolecules 8:1918–1926

    PubMed  CAS  Google Scholar 

  • Chesson A (1993) Mechanistic model of forage cell wall degradation. In: Jung HG, Buxton DR, Hatfield RD, Ralph J (eds) Forage cell wall structure and digestibility. UAS Wisconsin, Madison, p 358

    Google Scholar 

  • Cibik T (2003) Untersuchungen am System NMMO/H2O/Cellulose. PhD Thesis, Technical University of Berlin

    Google Scholar 

  • Ciechańska D, Wawro D, Stęplewski W, Wesolowska E, Vehvilonen M, Nousiainen P, Kamppuri T, Hroch Z, Sandak, Janicki J, Włochowicz A, Rom M, Kovalainen A (2007) Ecological method of manufacture of the cellulose fibres for advanced technical products. In Edana conference, Nonwovens Research Academy, 29–30 Mar 2007, University of Leeds, UK

    Google Scholar 

  • Clark AH, Ross-Murphy SB (1987) Structural and mechanical properties of biopolymer gels. Adv Polym Sci 83:57–192

    CAS  Google Scholar 

  • Cohen-Adad R, Tranquard A, Peronne R, Negri P, Rollet AP (1960) Le système eau-hydroxyde de sodium. Comptes Rendus de l’Académie des Sciences, Paris, France, 251 (part 3), pp 2035–2037

    Google Scholar 

  • Cross CF, Bevan EJ (1892) Improvements in Dissolving Cellulose and Allied Compounds. British patent no. 8,700

    Google Scholar 

  • Collier JR, Watson JL, Collier BJ, Petrovan S (2009) Rheology of 1-butyl-methylimidazolium chloride cellulose solutions. II. Solution character and preparation. J Appl Polym Sci 111:1019–1027

    CAS  Google Scholar 

  • Cuissinat C, Navard P (2006a) Swelling and dissolution of cellulose, Part I: free floating cotton and wood fibres in N-methylmorpholine-N-oxide – water mixtures. Macromol Symp 244:1–18

    CAS  Google Scholar 

  • Cuissinat C, Navard P (2006b) Swelling and dissolution of cellulose, Part II: free floating cotton and wood fibres in NaOH water-additives systems. Macromol Symp 244:19–30

    CAS  Google Scholar 

  • Cuissinat C, Navard P (2008) Swelling and dissolution of cellulose, Part III: Plant fibres in aqueous systems. Cellulose 15:67–74

    CAS  Google Scholar 

  • Cuissinat C, Navard P, Heinze T (2008a) Swelling and dissolution of cellulose, Part IV: Free floating cotton and wood fibres in ionic liquids. Carbohydr Polym 72:590–596

    CAS  Google Scholar 

  • Cuissinat C, Navard P, Heinze T (2008b) Swelling and dissolution of cellulose, Part V: Cellulose derivatives fibres in aqueous systems and ionic liquids. Cellulose 15:75–80

    CAS  Google Scholar 

  • Danilov SN, Samsonova TI, Bolotnikova LS (1970) Investigation of solutions of cellulose. Russ Chem Rev 39:156–168

    Google Scholar 

  • Dave V, Glasser WG (1997) Cellulose-based fibres from liquid crystalline solutions: 5. Processing and morphology of CAB blends with lignin. Polymer 38:2121–2126

    CAS  Google Scholar 

  • Dave V, Glasser WG, Wilkies GL (1992) Evidence of cholesteric morphology in films of cellulose acetate butyrate by transmission electron microscopy. Polym Bull 29:565–570

    CAS  Google Scholar 

  • Davidson GF (1934) The dissolution of chemically modified cotton cellulose in alkaline solutions. Part I: In solutions of NaOH, particularly at T°C below the normal. J Text Inst 25:T174–196

    CAS  Google Scholar 

  • Davidson GF (1936) The dissolution of chemically modified cotton cellulose inalkaline solutions. Part II: A comparison of the solvent action of solutions of Lithium, Sodium, Potassium and tetramethylammonium hydroxides. J Text Inst 27:T112–T130

    Google Scholar 

  • Davidson GF (1937) The solution of chemically modified cotton cellulose in alkaline solutions. III. In solutions of sodium and potassium hydroxide containing dissolved zinc, beryllium and aluminum oxides. J Text Inst 28:2

    Google Scholar 

  • Degen A, Kosec M (2000) Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution. J Eur Ceram Soc 20:667–673

    CAS  Google Scholar 

  • Dondos A, Benoit H (1973) The relationship between the unperturbed dimensions of polymers in mixed solvents and the thermodynamic properties of the solvent mixture. Macromolecules 6:242–245

    CAS  Google Scholar 

  • Drechsler U, Radosta S, Vorwerg W (2000) Characterization of cellulose in solvent mixtures with N-methylmorpholine N-oxide by static light scattering. Macromol Chem Phys 201:2023–2030

    CAS  Google Scholar 

  • Ducos F, Biganska O, Schuster KS, Navard P (2006) Influence of the Lyocell fibre structure on their fibrillation. Cell Chem Technol 40(5):299–311

    CAS  Google Scholar 

  • Egal M (2006) Structure and properties of cellulose/NaOH aqueous solutions, gels and regenerated objects. PhD thesis, Ecole des Mines de Paris/Cemef, Sophia-Antipolis, France

    Google Scholar 

  • Egal M, Budtova T, Navard P (2007) Structure of aqueous solutions of microcrystalline cellulose/sodium hydroxide below 0 °C and the limit of cellulose dissolution. Biomacromolecules 8:2282–2287

    PubMed  CAS  Google Scholar 

  • Egal M, Budtova T, Navard P (2008) The dissolution of microcrystalline cellulose in sodium hydroxide-urea aqueous solutions. Cellulose 15:361–370

    CAS  Google Scholar 

  • El Seoud OA, Koschella A, Fidale LC, Dorn S, Heinze T (2007) Applications of ionic liquids in carbohydrate chemistry: a window of opportunities. Biomacromolecules 8:2629–2647

    PubMed  CAS  Google Scholar 

  • Fink H-P, Weigel P, Purz H-J (1998) Formation of lyocell-type fibres with skin-core structure. Lenz Ber 78:41–44

    CAS  Google Scholar 

  • Fink HP, Gensrich J, Rihm R (2001) Structure and properties of CarbaCell-type cellulosic fibres. In: Proceedings of the 6th Asian textile conference, Hong-Kong, 22–24 Aug 2001

    Google Scholar 

  • Fink H-P, Weigel P, Purz HJ, Ganster J (2001b) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26(9):1473–1524

    CAS  Google Scholar 

  • Firgo H, Eibl K, Kalt W, Meister G (1994) Kritishe fragen zur zukunft der NMMO-technologie. Lenz Ber 9:81–90

    Google Scholar 

  • Flemming N, Thaysen AC (1919) On the deterioration of cotton on wet storage. Biochem J 14:25–29

    Google Scholar 

  • Franks NA, Varga JK (1979) Process for making precipitated cellulose. US Patent 4,145,532

    Google Scholar 

  • Franz H, Reusche P, Schoen W, Wiesener E, Taeger E, Schleicher H, Lukanoff B (1983) (AdW Teltow, TITK) German Patent 218104, 17 Oct 1983

    Google Scholar 

  • Gavillon R, Budtova T (2007) Kinetics of cellulose regeneration from cellulose-NaOH-water gels and comparison with cellulose-N-methylmorpholine-N-oxide-water solutions. Biomacromolecules 8:424–432

    PubMed  CAS  Google Scholar 

  • Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose-NaOH aqueous solutions. Biomacromolecules 9:269–277

    PubMed  CAS  Google Scholar 

  • Gericke M, Liebert T, El Seoud O, Heinze T (2011) Tailored media for homogeneous cellulose chemistry: ionic liquid/co-solvent mixtures. Macromol Mater Eng 296:83–493

    Google Scholar 

  • Gericke M, Liebert T, Heinze T (2009a) Interaction of ionic liquids with polysaccharides, 8 – synthesis of cellulose sulfates for polyelectrolyte complex formation. Macromol Biosci 9:343–353

    PubMed  CAS  Google Scholar 

  • Gericke M, Schlufter K, Liebert T, Heinze T, Budtova T (2009b) Rheological properties of cellulose/ionic liquid solutions: from dilute to concentrated states. Biomacromolecules 10:1188–1194

    PubMed  CAS  Google Scholar 

  • Glasser WG, Rials TG, Kelley SS, Dave V (1998) Studies of the molecular interaction between cellulose and lignin as a model for the hierarchical structure of wood. In: Heinze TJ, Glasser WG, Rojas O (eds) Cellulose derivatives. Modification, characterization and nanostructures. ACS symposium series 688 Chapter 19, pp 265–282

    Google Scholar 

  • Glasser WG, Atalla RH, Blackwell J, Brown R Jr, Burchard W, French AD, Klemm DO, Nishiyama Y (2012a) About the structure of cellulose: debating the Lindman hypothesis. Cellulose. doi:10.1007/s10570-012-9691-7

  • Glasser WG, Atalla RH, Blackwell J, Brown R Jr, Burchard W, French AD, Klemm DO, Navard P, Nishiyama Y (2012b) Erratum to: about the structure of cellulose: debating the Lindman hypothesis. Cellulose. doi:10.1007/s10570-012-9702-8

  • Graenacher C (1934) Cellulose solution, US patent 1943176, 9 Jan 1934

    Google Scholar 

  • Graenacher C, Sallman R (1939) Cellulose solutions. US Patent 2179181

    Google Scholar 

  • Guo Q (1999) Thermosetting Polymer Blends: Miscibility, Crystallization, and Related Properties. In: Shonaike GO, Simon G (eds) Polymer blends and alloys, Marcel Dekker: New York, Chap. 6, pp 155–187

    Google Scholar 

  • Gupta AK, Cotton JP, Marchal E, Burchard W, Benoit H (1976) Persistence length of cellulose tricarbanilate by small angle neutron scattering. Polymer 17:363–366

    CAS  Google Scholar 

  • Gupta KM, Hu Z, Jiang J (2011) Mechanistic understanding of interactions between cellulose and ionic liquids: A molecular simulation study. Polymer 52:5904–5911

    CAS  Google Scholar 

  • Guthrie JT, Manning CS (1990) The cellulose/N-methylmorpholine-N-oxide/H2O system: degradation aspects. In: Kennedy JF, Phillips GO, Williams PA (eds) Degradation Aspects, Cellulose Sources and Explotation. Ellis Horwood, New York, pp 49–57

    Google Scholar 

  • Hairdelin L, Thunberg J, Perzon E, Westman G, Walkenstrom P, Gatenholm P (2012) Electrospinning of cellulose nanofibers from ionic liquids: the effect of different cosolvents. J Appl Polym Sci 125:1901–1909

    Google Scholar 

  • Haque A, Morris E (1993) Thermogelation of methylcellulose. Part I: Molecular structures and processes. Carbohydr Polym 22:161–173

    CAS  Google Scholar 

  • Harrison W (1928) Manufacture of carbohydrate derivatives. US Patent 1,684, 732

    Google Scholar 

  • Hasegawa M, Isogai A, Onabe T, Usada M, Atalla RH (1992) Characterization of cellulose–chitosan blend films. J Appl Polym Sci 45:1873–1879

    CAS  Google Scholar 

  • Hattori K, Abe E, Yoshide T, Cuculo JA (2004) New solvents for cellulose. II Ethylenediamine/thiocyanate salt system. Polym J 36:123–130

    CAS  Google Scholar 

  • Haward SJ, Sharma V, Butts CP, McKinley GH, Rahatekar SS (2012) Shear and extensional rheology of cellulose/ionic liquid solutions. Biomacromolecules 13:1688–1699

    PubMed  CAS  Google Scholar 

  • Hill JW, Jacobsen RA (1938) US patent 2,134,825

    Google Scholar 

  • Hock CW (1950) Degradation of cellulose as revealed microscopically. Text Res J 20:141–151

    CAS  Google Scholar 

  • Holt C, Mackie W, Sezllen DB (1976) Configuration of cellulose trinitrate in solution. Polymer 17:1027–1034

    CAS  Google Scholar 

  • Hong PD, Huang HT (2000) Effect of co-solvent complex on preferential absorption phenomenon in polyvinyl alcohol ternary solutions. Polymer 41:6195–6204

    CAS  Google Scholar 

  • Houtman CJ, Atalla RH (1995) Cellulose-lignin interactions. A computational study. Plant Physiol 107:997–984

    Google Scholar 

  • Innerlohinger J, Weber HK, Kraft G (2006) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Symp 244:126–138

    CAS  Google Scholar 

  • Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319

    CAS  Google Scholar 

  • Jin H, Zha C, Gu L (2007) Direct dissolution of cellulose in NaOH:thiourea/urea aqueous solutions. Carbohydr Polym 342:851–858

    CAS  Google Scholar 

  • Johnson DL (1969) Compounds dissolved in cyclic amine oxides. US Patent 3,447,939

    Google Scholar 

  • Joly C, Kofman M, Gauthier RJ (1996) Polypropylene/cellulose fiber composites chemical treatment of the cellulose assuming compatibilization between the two materials. J Macromol Sci Pure Appl Chem A33(12):1981–1996

    CAS  Google Scholar 

  • Kahlem J, Masuch K, Leonhard K (2010) Modelling cellulose solubilities in ionic liquids using CPSMO-RS. Green Chem 12:2172–2187

    Google Scholar 

  • Kalt W, Männer J, Firgo H (1993) (Lenzing) PCT Int. Appl. 9,508,010, 14 Sep1993

    Google Scholar 

  • Kamide K, Saito M (1983) Persistence length of cellulose and cellulose derivatives in solution. Makromol Chem Rapid Commun 4:33–39

    CAS  Google Scholar 

  • Kamide K, Saito M (1987) Cellulose and cellulose derivatives: recent advances in physical chemistry. Adv Polym Sci 83:1–56

    CAS  Google Scholar 

  • Kamide K, Okajima K, Matsui T, Kowsaka K (1984) Study on the solubility of cellulose in aqueous alkali solution by deuteration IR and 13C NMR. Polym J 16–12:857–866

    Google Scholar 

  • Kamide K, Saito M, Kowsaka K (1987) Temperature dependence of limiting viscosity number and radius of gyration for cellulose dissolved in aqueous 8 % sodium hydroxide solution. Polym J 19:1173–1181

    CAS  Google Scholar 

  • Kamide K, Yasuda K, Matsui T, Okajima K, Yamashiki T (1990) Structural change in alkali-soluble cellulose solid during its dissolution into alkaline solutions. Cellulose Chem Technol 24:23–31

    CAS  Google Scholar 

  • Kamide K, Okajima K, Kowsaka K (1992) Dissolution of natural cellulose into aqueous alkali solution: role of super-molecular structure of cellulose. Polym J 24–1:71–96

    Google Scholar 

  • Kasaai M (2002) Comparison of various solvents for determination of intrinsic viscosity and viscometric constants for cellulose. J Appl Polym Sci 86:2189–2193

    CAS  Google Scholar 

  • Kihlman M, Wallberg O, Stigsson L, Germgard U (2011) Dissolution of dissolving pulp in alkaline solvents after stream explosion pretreatments. Holzforschung 65:613–617

    CAS  Google Scholar 

  • Kim IS, Kim JP, Kwak SY, Ko YS, Kwon YK (2006) Novel regenerated cellulosic material prepared by an environmentally-friendly process. Polymer 47:1333–1339

    CAS  Google Scholar 

  • Kim J, Wang N, Chen Y, Lee S-K, Yun G-Y (2007) Electroactive-paper actuator made with cellulose/NaOH/urea and sodium alginate. Cellulose 14:217–223

    CAS  Google Scholar 

  • Klemchuk PP (1985) Antioxydants. In: Gerhartz W, Yamamoto YS (eds) Ullmann’s encyclopedia of industrial chemistry, vol A3. Weinheim, VCH, pp 91–111

    Google Scholar 

  • Kohler S, Heinze T (2007) Efficient synthesis of cellulose fuorates in 1-N-butyl-3-methylimidazolium chloride. Cellulose 14:489–495

    Google Scholar 

  • Kondo T, Kasai W, Brown RM (2004) Formation of nematic ordered cellulose and chitin. Cellulose 11:463–474

    CAS  Google Scholar 

  • Konkin A, Wendler F, Roth H-K, Schroedner M, Bauer R-U, Meister F, Heinze T, Aganov A, Garipov R (2006) Electron spin resonance study of radicals generated in cellulose/N-methylmorpholine solutions after flash photolysis at 77 K. Magn Reson Chem 44:594–605

    PubMed  CAS  Google Scholar 

  • Kosan B, Michels C (1999) Chem Fibers Int 49:50–54

    CAS  Google Scholar 

  • Kosan B, Michels C, Meister F (2008a) Dissolution and forming of cellulose with ionic liquids. Cellulose 15:59–66

    CAS  Google Scholar 

  • Kosan B, Schwikal K, Hesse-Ertelt S, Meister F (2008) In: Proceedings 8th international symposium alternative cellulose – manufacturing, forming, properties, Rudolstadt, Germany, 03–04 Sept 2008

    Google Scholar 

  • Kuang QL, Zhao JC, Niu YH, Zhang J, Wang ZG (2008) Celluloses in an ionic liquid: the rheological properties of the solutions spanning the dilute and semidilute regimes. J Phys Chem B 112:10234–10240

    PubMed  CAS  Google Scholar 

  • Kunze J, Fink HP (2005) Structural changes and activation of cellulose by caustic soda solution with urea. Macromol Symp 223:175–187

    CAS  Google Scholar 

  • Kuo Y-N, Hong J (2005) Investigation of solubility of microcrystalline cellulose in aqueous NaOH. Polym Adv Technol 16:425–428

    CAS  Google Scholar 

  • Laity PR (1983) (Courtaulds) PCT International Application 8,304,415, 7 June 1983

    Google Scholar 

  • Laszkiewicz B (1998) Solubility of bacterial cellulose and its structural properties. J Appl Polym Sci 67:1871–1876

    CAS  Google Scholar 

  • Laszkiewicz B, Cuculo JA (1993) Solubility of cellulose III in sodium hydroxide solution. J Appl Polym Sci 50:27–34

    Google Scholar 

  • Laszkiewicz B, Wcislo P (1990) Sodium cellulose formation by activation process. J Appl Polym Sci 39:415–425

    CAS  Google Scholar 

  • Le KA, Sescousse R, Budtova T (2012) Influence of water on cellulose-EMIMAc solution properties: a viscometric study. Cellulose 19:45–54

    CAS  Google Scholar 

  • LeMoigne N (2008) Mécanismes de gonflement et de dissolution des fibres de cellulose. Thèse de doctorat. Ecole Nationale Supérieure des Mines de Paris. Sophia Antipolis, France

    Google Scholar 

  • LeMoigne N, Montes E, Pannetier C, Höfte H, Navard P (2008) Gradient in dissolution capacity of successively deposited cell wall layers in cotton fibers. Macromol Symp 262:65–71

    CAS  Google Scholar 

  • LeMoigne N, Bikard J, Navard P (2010a) Contraction and rotation and contraction of native and regenerated cellulose fibres upon swelling and dissolution: the role of stress unbalance. Cellulose 17(3):507–519

    Google Scholar 

  • LeMoigne N, Jardeby K, Navard P (2010b) Structural changes and alkaline solubility of wood cellulose fibers after enzymatic peeling treatment. Carbohydr Polym 79:325–332

    CAS  Google Scholar 

  • Liebert TF (2010) Cellulose solvents-remarkable history, bright future. In: Liebert TF, Heinze TJ, Edgazr KJ (eds) Cellulose solvents: for analysis, shaping and chemical modification, ACS Symposium Series 1033, Oxford Press University, pp 3–54

    Google Scholar 

  • Lin C-X, Zhan H-Y, Liu M-H, Fu S-Y, Lucia LA (2009) Novel preparation and characterisation of cellulose microparticles functionalised in ionic liquids. Langmuir 25:10116–10120

    PubMed  CAS  Google Scholar 

  • Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156(1):76–81

    CAS  Google Scholar 

  • Liu Y, Piron DL (1998) Study of tin cementation in alkaline solution. J Electrochem Soc 145:186–190

    CAS  Google Scholar 

  • Liu W, Budtova T, Navard P (2011) Influence of ZnO on the properties of dilute and semi-dilute cellulose-NaOH-water solutions. Cellulose 18:911–920

    CAS  Google Scholar 

  • Lovell PA (1989) Dilute solution viscometry. In: Colin B, Colin C (eds) Comprehensive polymer science, the synthesis, characterization, reactions and applications of polymers, vol I, Polymer characterization. Pergamon Press, Oxford

    Google Scholar 

  • Lovell CS, Walker A, Damion RA, Radhi A, Tanner SF, Budtova T, Ries ME (2010) Influence of cellulose on ion diffusivity in 1-ethyl-3-methyl-imidazolium acetate cellulose solutions. Biomacromolecules 11:2927–2935

    CAS  Google Scholar 

  • Lu A, Liu Y, Zhang L, Potthast A (2011) J Phys Chem B 115:12801–12808

    PubMed  CAS  Google Scholar 

  • Lue A, Liu Y, Zhang L, Potthast A (2011) Light scattering study on the dynamic behaviour of cellulose inclusion complex in LiOH/urea aqueous solution. Polymer 52:3857–3864

    CAS  Google Scholar 

  • Lukanoff B, Schleicher H (1981) (AdW Teltow) German Patent 158656, 27 Apr 1981

    Google Scholar 

  • Marsh JT (1941) The growth and structure of cotton, Mercerising. Chapman & Hall, London

    Google Scholar 

  • Masegosa RM, Prolongo MG, Hernandez-Fuentes I (1984) Preferential and total sorption of poly(methyl methacrylate) in the cosolvent formed by acetonitrile with pentyl acetate and with alcohols (1-butanol, 1-propanol, and methanol). Macromolecules 17:1181–1187

    CAS  Google Scholar 

  • Matsui T, Sano T, Yamane C, Kamide K, Okajima K (1995) Structure and morphology of cellulose films coagulated from novel cellulose/aqueous sodium hydroxide solutions by using aqueous sulphuric acid with various concentrations. Polym J 27–8:797–812

    Google Scholar 

  • Matsumoto T, Tatsumi D, Tamai N, Takaki T (2001) Solution properties of celluloses from different biological origins in LiCl-DMAc. Cellulose 8:275–282

    CAS  Google Scholar 

  • Maximova N, Osterberg M, Koljonen K, Stenius P (2001) Lignin adsorption on cellulose fibre surfaces: effect on surface chemistry, surface morphology and paper strength. Cellulose 8:113–125

    CAS  Google Scholar 

  • Maximova N, Stenius P, Salmi J (2004) Lignin uptake by cellulose fibres from aqueous solutions. Nord Pulp Pap Res J 19:135–145

    CAS  Google Scholar 

  • McCormick CL, Lichatowich DK (1979) Homogeneous solution reactions of cellulose, chitin, and other polysaccharides to produce controlled-activity pesticide systems. J Polym Sci Polym Lett Ed 17(8):479–484

    CAS  Google Scholar 

  • McCormick CL, Callais PA, Hutchinson BH (1985) Solution studies of cellulose in lithium chloride and N,N-dimethylacetamide. Macromolecules 18:2394–2401

    CAS  Google Scholar 

  • Michels C (1998) Beitrag zur Bestimmung von Molmasseverteilungen in Cellulosen aus rheologischen Daten. Determination of the mole-mass distributions of cellulose, using rheological data. Das Papier 52(1):3–8

    CAS  Google Scholar 

  • Michels C, Kosan B (2000) Chem Fibers Int 50:556–561

    CAS  Google Scholar 

  • Michels C, Mertel H (1984) (TITK) German Patent 229708, 13 Dec 1984

    Google Scholar 

  • Mikolajczyk W, Struszczyk H, Urbanowski A, Wawro D, Starostka P (2002) Process for producing fibres, film, casings and other products from modified soluble cellulose. Poland, Patent no. WO 02/22924 (21 mars 2002)

    Google Scholar 

  • Miller-Chou B, Koenig JL (2003) A review of polymer dissolution. Prog Polym Sci 28:1223–1270

    CAS  Google Scholar 

  • Morris ER (1990) Shear-thinning of “random coil” polysaccharides: characterisation by two parameters from a simple linear plot. Carbohydr Polym 13:85–96

    CAS  Google Scholar 

  • Morris ER, Cutler AN, Ross-Murphy S, Rees DA, Price J (1981) Concentration and shear rate dependence of viscosity in random coil polysaccharide solutions. Carbohydr Polym 1:5–21

    CAS  Google Scholar 

  • Musatova GN, Mogilevskii EM, Ginzberg MA, Arkhangelskii DN (1972) The dissolution temperature of cellulose xanthate. Fibre Chem 2:451–453

    Google Scholar 

  • Nägeli C (1864) Ueber den inneren Bau der vegetabilischen Zellenmem- branen Sitzber. Bay. Akad. Wiss. Munchen 1:282–323

    Google Scholar 

  • Nisho Y (1994) Hyperfine composites of cellulose with synthetic polymers. In: Gilbert RD (ed) Cellulosic polymers, blends and composites. Hanser Publishers, New York, pp 95–113

    Google Scholar 

  • Noda A, Hayamizu K, Watanabe M (2001) Pulsed-gradient spin-echo H-1 and F-19 NMR ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate room-temperature ionic liquids. J Phys Chem B 105:4603–4610

    CAS  Google Scholar 

  • Noordermeer JWM, Daryanani R, Janeschitz-Kriegl H (1975) Flow birefringence studies of polymer conformation: cellulose tricarbanilate in two characteristics solvents. Polymer 16:359–369

    CAS  Google Scholar 

  • Northolt MG, Boerstel H, Maatman H, Huisman R, Veurink J, Elzerman H (2001) The structure and properties of cellulose fibres spun from an anisotropic phosphoric acid solution. Polymer 42:8249–8264

    CAS  Google Scholar 

  • Novoselov NP, Tret’yak VM, Sinel’nikov EV, Saschina ES (1997) Russ J Gen Chem 67(3):430–434

    CAS  Google Scholar 

  • Okajima K, Yamane C (1997) Cellulose filament spun from cellulose aqueous NaOH solution system. Cell Commun 4:7–12

    CAS  Google Scholar 

  • Ott E, Spurlin HM, Grafflin MW (1954) In Cellulose and cellulose derivatives (Part 1). Interscience Publisher, New York, p 353

    Google Scholar 

  • Pang F-J, He C-J, Wang Q-R (2003) Preparation and properties of cellulose/chitin blend fiber. J Appl Polym Sci 90:3430–3436

    CAS  Google Scholar 

  • Pennetier G (1883) Note micrographique sur les altérations du cotton. Bull Soc Ind Rouen 11:235–237

    Google Scholar 

  • Persin Z, Stana-Kleinschek K, Kreze T (2002) Hydrophilic/hydrophobic characteristics of different cellulose fibres monitored by tensiometry. Croatica chemica acta 75(1):271–280

    Google Scholar 

  • Perez DDS, Ruggiero R, Morais LC, Machado AEH, Mazeau K (2004) Theoretical and experimental studies on the adsorption of aromatic compounds onto cellulose. Langmuir 20:3151–3158

    Google Scholar 

  • Phillies GDJ (1986) Universal scaling equation for self-diffusion by macromolecules in solution. Macromolecules 19:2367–2376

    CAS  Google Scholar 

  • Pickering SU (1893) The hydrates of sodium, potassium and lithium hydroxides. J Chem Soc 63:890–909

    CAS  Google Scholar 

  • Pingping Z, Yuanli L, Haiyang Y, Xiaoming C (2006) Effect of non-ideal mixed solvents on dimensions of poly(N-vinylpyrrolidone) and poly(methyl methacrylate) coils. J Macromol Sci Part B Phys 45:1125–1134

    Google Scholar 

  • Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interactions with cellulose. Chem Rev 109:6712–6728

    PubMed  CAS  Google Scholar 

  • Potthast A, Rosenau T, Buchner R, Röder T, Ebner G, Bruglachner H, Sixta H, Kosma P (2002) The cellulose solvent system/N,N-dimethylacetamide/lithium chloride revisited: the effect of water on physicochemical properties and chemical stability. Cellulose 9:41–53

    CAS  Google Scholar 

  • Pouchly J, Patterson D (1976) Polymers in mixed solvents. Macromolecules 9:574–579

    CAS  Google Scholar 

  • Prasad K, Kaneko Y, Kadokawa J (2009) Novel Gelling Systems of κ-, ι- and λ-Carrageenans and their composite gels with cellulose using ionic liquid. Macromol Biosci 9:376–382

    PubMed  CAS  Google Scholar 

  • Qi H, Chang C, Zhang L (2008a) Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solutions. Cellulose 15:779–787

    CAS  Google Scholar 

  • Qi H, Cai J, Zhang L, Nishiyama Y, Rattaz A (2008b) Influence of finishing oil on structure and properties of multifilament fibers from cellulose dope in NaOH/urea aqueous solution. Cellulose 15:81–89

    CAS  Google Scholar 

  • Rademacher P, Bauch J, Puls J (1986) Investigations of the wood from pollution-affected spruce. Holzforschung 40:331–338

    CAS  Google Scholar 

  • Ramos LA, Assaf JM, El Seoud OA, Frollini E (2005a) Influence of the supramolecular structure and physicochemical properties of cellulose on its dissolution in a lithium chloride/N,N-dimethylacetamide solvent system. Biomacromolecules 6:2638–2647

    PubMed  CAS  Google Scholar 

  • Ramos LA, Frollinni E, Heinze T (2005b) Carboxymethylation of cellulose in the new solvent dimethylsulfoxide/tetrabutylammonium fluoride. Carbohydr Polym 60:259–267

    CAS  Google Scholar 

  • Reichle RA, McCurdy KG, Hepler LG (1975) Zinc hydroxide – solubility product and hydroxyl–complex stability-constants from 12.5-75 °C. Can J Chem 53:3841–3845

    CAS  Google Scholar 

  • Rials TG, Glasser WG (1989) Multiphase materials with lignin. VI. Effect of cellulose derivative structure on blend morphology with lignin. Wood Fiber Sci 21:80–90

    CAS  Google Scholar 

  • Rials TG, Glasser W (1990) Multiphase materials with lignin: 5. Effect of lignin structure on hydroxypropyl cellulose blend morphology. Polymer 31:1333–1338

    CAS  Google Scholar 

  • Röder T, Morgenstern B (1999) The influence of activation on the solution state opf cellulose dissolved in N-methylmorpholine N-oxyde-monohydrate. Polymer 40:4143–4147

    Google Scholar 

  • Röder T, Morgenstern B, Glatter O (2000) Light scattering studies on solutions of cellulose in N,N-dimethylacetamide/lithium chloride. Lenz Ber 79:97–101

    Google Scholar 

  • Rollet AP, Cohen-Adad R (1964) Les systèmes “eau-hydroxyde alcalin”. Revue de Chimie Minérale 1:451

    CAS  Google Scholar 

  • Rosenau T, Potthast A, Sixta H, Kosma P (2001) The chemistry of side reactions and by-product formation in the system NMMO/cellulose (Lyocell process). Progr Polym Sci 26:1763–1837

    CAS  Google Scholar 

  • Ross-Murphy SB (1991) Concentration dependence of gelation time. In: Dickinson E (ed) Food polymers, gels and colloids. Royal Society of Chemistry, Cambridge, pp 357–368

    Google Scholar 

  • Roy C, Budtova T, Navard P, Bedue O (2001) Structure of cellulose-soda solutions at low temperatures. Biomacromolecules 2:687–693

    PubMed  CAS  Google Scholar 

  • Roy C, Budtova T, Navard P (2003) Rheological properties and gelation of aqueous cellulose-NaOH solutions. Biomacromolecules 4:259–264

    PubMed  CAS  Google Scholar 

  • Ruan D, Zhang L, Zhou J, Jin H, Chen H (2004) Structure and properties of novel fibers spun from cellulose in NaOH/thiourea aqueous solution. Macromol Biosci 4(12):1105–1112

    PubMed  CAS  Google Scholar 

  • Ruan D, Lue A, Zhang L (2008) Gelation behaviours of cellulose solution dissolved in aqueous NaOH-thiourea at low temperature. Polymer 49:1027–1036

    CAS  Google Scholar 

  • Russler A, Lange A, Potthast A, Rosenau T, Berger-Nicoletti E, Sixta H, Kosma P (2005) A novel method for analysis of xanthate group distribution in viscoses. Macromol Symp 223:189–200

    CAS  Google Scholar 

  • Russler A, Potthast A, Rosenau T, Lange T, Saake B, Sixta H, Kosma P (2006) Determination of substituent distribution of viscoses by GPC. Holzforschung 60:467–473

    CAS  Google Scholar 

  • Saito G (1939) Das verhalten der zellulose in alkalilösungen. I. Mitteilung. Kolloid-Beihefte 29:365–454

    Google Scholar 

  • Sammons RJ, Collier JR, Rials TG, Petrovan S (2008) Rheology of 1-butyl-methylimidazolium chloride cellulose solutions. I. Shear rheology. J Appl Polym Sci 110:1175–1181

    CAS  Google Scholar 

  • Schulz L, Seger B, Burchard W (2000) Structures of cellulose in solution. Macromol Chem Phys 201:2008–2022

    CAS  Google Scholar 

  • Segal L, Eggerton F (1961) Some aspects of the reaction between urea and cellulose. Text Res J 31:460–471

    CAS  Google Scholar 

  • Seger B, Aberle T, Burchard W (1996) Solution behaviour of cellulose and amylose in iron-sodium tartrate (FeTNa). Carbohydr Polym 31(1–2):105–112

    CAS  Google Scholar 

  • Sescousse R, Budtova T (2009) Influence of processing parameters on regeneration kinetics and morphology of porous cellulose from cellulose-NaOH-water solutions. Cellulose 16:417–426

    CAS  Google Scholar 

  • Sescousse R, Le KA, Ries ME, Budtova T (2010a) Viscosity of cellulose-imidazolium-based ionic liquid solutions. J Phys Chem B 114:7222–7228

    PubMed  CAS  Google Scholar 

  • Sescousse R, Smacchia A, Budtova T (2010b) Influence of lignin on cellulose-NaOH-water mixtures properties and on Aerocellulose morphology. Cellulose 17:1137

    CAS  Google Scholar 

  • Sescousse R, Gavillon R, Budtova T (2011a) Wet and dry highly porous cellulose beads from cellulose-NaOH-water solutions: influence of the preparation conditions on beads shape and encapsulation of inorganic particles. J Mater Sci 46:759–765

    CAS  Google Scholar 

  • Sescousse R, Gavillon R, Budtova T (2011b) Aerocellulose from cellulose-ionic liquid solutions: preparation, properties and comparison with cellulose-NaOH and cellulose-NMMO routes. Carbohydr Polym 83:1766–1774

    CAS  Google Scholar 

  • Sobue H, Kiessig H, Hess K (1939) The cellulose-sodium hydroxide-water system as a function of the temperature. Z Physik Chem B 43:309–328

    Google Scholar 

  • Sprague BS, Noether HD (1961) The relationship of fine structure to mechanical properties of stretched saponified acetate fibers. Text Res J 31:858–865

    CAS  Google Scholar 

  • Sternemalm E, Höije A, Gatenholm P (2008) Effects of arabinose substitution on the material. Properties of arabinoxylan films. Carbohydr Res 343:753–757

    PubMed  CAS  Google Scholar 

  • Struszczyk H, Wawro D, Starostka P, Mikolajscyk W, Urbanowski A (2000) EP 1317573 B1 “Process for producing fibres, film, casings and other products from modified soluble cellulose”, 13/09/2000

    Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975

    PubMed  CAS  Google Scholar 

  • Taeger E, Franz H, Mertel H, Schleicher H, Lang H, Lukanoff B (1985) Formeln Fasern Fertigware 4:14–22

    Google Scholar 

  • Taeger E, Berghof K, Maron R, Meister F (1997) Eignshaftsänderungen im Alceru-faden durch zweitpolymere. Lenz Ber 76:126–131

    CAS  Google Scholar 

  • Tamai N, Oano H, Tatsumi D, Matsumoto T (2003) Differences in rheological properties of plant and bacrterial cellulose in LiCl//N,N-dimethylacetamide. J Soc Rheol Jap 31(3):119–130

    CAS  Google Scholar 

  • Tasker S, Baadyal JPS, Backson SCE, Richards RW (1994) Hydroxyl accessibility in celluloses. Polymer 35(22):4717–4721

    CAS  Google Scholar 

  • Terashima N, Seguchi Y (1988) Heterogeneity in formation of lignin. IX. Factors affecting the formation of condensed structures in lignin. Cell Chem Technol 22:147

    CAS  Google Scholar 

  • The Editors of “Dyer and Calico Printer” (1903) Mercerisation: a practical and historical manual, vol I. Heywood and Company Ltd., London

    Google Scholar 

  • Tokuda H, Ishii K, Susan M, Tsuzuki S, Hayamizu K, Watanabe M (2006) Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures. J Phys Chem B 110:2833–2839

    PubMed  CAS  Google Scholar 

  • Tripp VW, Rollins ML (1952) Morphology and chemical composition of certain components of cotton fiber cell wall. Anal Chem 24:1721–1728

    CAS  Google Scholar 

  • Tsioptsias C, Stefopoulos A, Kokkinomalis I, Papadopoulou L, Panayiotou C (2008) Development of micro- and nano-porous composite materials by processing of cellulose with ionic liquids and supercritical CO2. Green Chem 10:965–971

    CAS  Google Scholar 

  • Tsuzuki S, Shinoda W, Saito H, Mikami M, Tokuda H, Watanabe M (2009) Molecular dynamics simulations of ionic liquids: cation and anion dependence of self-diffusion coefficients of ions. J Phys Chem B 113:10641–10649

    PubMed  CAS  Google Scholar 

  • Turbak AF, Hammer RB, Davies RE, Hergert HL (1980) Cellulose solvents. Chem Tech 10:51–57

    CAS  Google Scholar 

  • Turbak AF, El-Kafrawy A, Snyder FW, Auerbach AB (1981) Solvent system for cellulose, US Patent 4,302,252

    Google Scholar 

  • Turner MB, Spear SK, Holbrey JD, Rogers RD (2004) Production of bioactive cellulose films reconstituted from ionic liquids. Biomacromolecules 5:1379–1384

    PubMed  CAS  Google Scholar 

  • Urahata SM, Ribeiro MCC (2005) Single particle dynamics in ionic liquids of 1-alkyl-3-methylimidazolium cations. J Chem Phys 122:024511–024520

    PubMed  Google Scholar 

  • Vehviläinen M, Kamppuri T, Rom M, Janicki J, Ciechanska D, Grönqvist S, Sioika-Aho M, Christoffersson K, Nousiainen P (2008) Effect of wet spinning parameters on the properties of novel cellulosic fibres. Cellulose 15:671–680

    Google Scholar 

  • Warwicker JO, Jeffries R, Colbran RL, Robinson RN (1966) A review of the literature on the effect of caustic soda and other swelling agents on the fine structure of cotton. St Ann’s Press, Manchester, 93

    Google Scholar 

  • Wendler F, Graneß G, Heinze T (2005a) Characterization of autocatalytic reactions in modified cellulose/NMMO solutions by thermal analysis and UV/VIS spectroscopy. Cellulose 12(4):411–422

    CAS  Google Scholar 

  • Wendler F, Kolbe A, Meister F, Heinze T (2005b) Thermostability of lyocell dopes modified with surface – active additives. Macromol Mater Eng 290:826–832

    CAS  Google Scholar 

  • Wendler F, Graneß G, Büttner R, Meister F, Heinze T (2006) A novel polymeric stabilizing system for modified lyocell solutions. J Polym Sci Part B Polym Phys 44:1702

    CAS  Google Scholar 

  • Wendler F, Konkin A, Heinze T (2008) Studies on the stabilization of modified lyocell solutions. Macromol Symp 262:72–84

    CAS  Google Scholar 

  • Wendler F, Meister F, Wawro D, Wesolowska E, Ciechanska D, Saake B, Puls J, Le Moigne N, Navard P (2010) Polysaccharide Blend Fibres Formed from NaOH, N-Methylmorpholine-N-oxide and 1-Ethyl-3-methylimidazolium acetate. Fibers Text Eastern Eur 18(79):21–31

    CAS  Google Scholar 

  • Weng L, Zhang L, Ruan D, Shi L, Xu J (2004) Thermal gelation of cellulose in a NaOH/thiourea aqueous solution. Langmuir 20(6):2086–2093

    PubMed  CAS  Google Scholar 

  • Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol 30(2):367–382

    CAS  Google Scholar 

  • Yamada H, Kowsaka K, Matsui T, Okajima K, Kamide K (1992) Nuclear magnetic study on the dissolution of natural and regenerated celluloses onto aqueous alkali solutions. Cell Chem Technol 26:141–150

    CAS  Google Scholar 

  • Yamane C, Saito M, Kowsaka K, Kataoka N, Sagara K, Kamide K (1994) New cellulosic filament yarn spun from cellulose/aq NaOH solution. In: Proceedings of ’94 cellulose R&D, 1st annual meeting of the Cellulose Society of Japan (Cellulose Society of Japan, ed.) Tokyo, pp 183–188

    Google Scholar 

  • Yamane C, Saito M, Okajima K (1996a) Industrial preparation method of cellulose-alkali dope with high solubility. Sen’I Gakkaaishi 52–6:310–317

    Google Scholar 

  • Yamane C, Saito M, Okajima K (1996b) Specification of alkali soluble pulp suitable for new cellulosic filament production. Sen’I Gakkaaishi 52–6:318–324

    Google Scholar 

  • Yamane C, Saito M, Okajima K (1996c) Spinning of alkali soluble cellulose-caustic soda solution system using sulphuric acid as coagulant. Sen’I Gakkaaishi 52–6:369–377

    Google Scholar 

  • Yamane C, Saito M, Okajima K (1996d) New spinning process of cellulose filament production from alkali soluble cellulose dope-net process. Sen’I Gakkaaishi 52–6:378–384

    Google Scholar 

  • Yamashiki T, Kamide K, Okajima K, Kowsaka K, Matsui T, Fukase H (1988) Some characteristic features of dilute aqueous alkali solutions of specific alkali concentration (2.5 mol l-1) which possess maximum solubility power against cellulose. Polymer J 20(6):447–457

    CAS  Google Scholar 

  • Yamashiki T, Kamide K, Okajima K (1990a) New cellulose fibres from aq. alkali cellulose solution. In: Kennedy JF, Phillips GO, Williams PA (eds) Cellulose sources and exploitation. Ellis Horwood Ltd., New York, pp 197–202

    Google Scholar 

  • Yamashiki T, Matsui T, Saitoh M, Okajima K, Kamide K (1990b) Characterisation of cellulose treated by the steam explosion method. Part 1: Influence of cellulose resources on changes in morphology, degree of polymerisation, solubility and solid structure. Br Polym J 22:73–83

    CAS  Google Scholar 

  • Yamashiki T, Matsui T, Saitoh M, Okajima K, Kamide K (1990c) Characterisation of cellulose treated by the steam explosion method. Part 2: Effect of treatment conditions on changes in morphology, degree of polymerisation, solubility in aqueous sodium hydroxide and supermolecular structure of soft wood pulp during steam explosion. Br Polym J 22:121–128

    CAS  Google Scholar 

  • Yamashiki T, Saitoh M, Yasuda K, Okajima K, Kamide K (1990d) Cellulose fibre spun from gelatinized cellulose/aqueous sodium hydroxide system by the wet-spinning method. Cell Chem Technol 24:237–249

    CAS  Google Scholar 

  • Yamashiki T, Matsui T, Kowsaka K, Saitoh M, Okajima K, Kamide K (1992) New class of cellulose fiber spun from the novel solution of cellulose by wet spinning method. J Appl Polym Sci 44:691–698

    CAS  Google Scholar 

  • Zadorecki P, Michell AJ (1989) Future prospects for wood cellulose as reinforcement in organic polymer composites. Polym Compos 10:69–77

    CAS  Google Scholar 

  • Zhang H, Tong M (2007) Influence of hemicelluloses on the structure and properties of Lyocell fibers. Polym Eng Sci 47:702–706

    CAS  Google Scholar 

  • Zhang L, Ruan D, Zhou J (2001) Structure and properties of regenerated cellulose films prepared from cotton linters in NaOH/urea aqueous solution. Ind Eng Chem Res 40:5923–5928

    CAS  Google Scholar 

  • Zhang L, Ruan D, Gao S (2002) Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. J Polym Sci Part B 40:1521–1529

    CAS  Google Scholar 

  • Zhang H, Wu J, Zhang J, He J (2005) 1-allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277

    CAS  Google Scholar 

  • Zhang S, Li FX, Yu JY (2009) Preparation of cellulose/chitin blend bio-fibres via direct dissolution. Cell Chem Technol 43:393–398

    CAS  Google Scholar 

  • Zhang JM, Zhang H, Wu J, Zhang J, He JS, Xiang JF (2010) NMR spectroscopic studies of cellobiose solvation in EmimAc aimed to understand the dissolution mechanism of cellulose in ionic liquids. Phys Chem Chem Phys 12:1941–1947

    PubMed  CAS  Google Scholar 

  • Zhang S, Li FX, Yu JY (2011) Kinetics of cellulose regeneration from cellulose-NaOH/thiourea/urea/H2O system. Cell Chem Technol 45:5

    Google Scholar 

  • Zhao Q, Yam RCM, Zhang B, Yang Y, Cheng X, Li RKY (2009) Novel all-cellulose ecocomposites prepared in ionic liquids. Cellulose 16:217–226

    CAS  Google Scholar 

  • Zhou J, Zhang L (2000) Solubility of cellulose in NaOH/Urea aqueous solution. Polym J 32(10):866–870

    CAS  Google Scholar 

  • Zhou J, Zhang L, Cai J, Shu H (2002a) Cellulose microporous membranes prepared from NaOH/urea aqueous solution. J Memb Sci 210:77–90

    CAS  Google Scholar 

  • Zhou J, Zhang L, Shu H, Chen F (2002b) Regenerated cellulose films from NaOH/urea aqueous solution by coagulating with sulphuric acid. J Macromol Sci Phys B41(1):1–15

    CAS  Google Scholar 

  • Zhou J, Zhang L, Cai J (2004) Behaviour of cellulose in NaOH/urea aqueous solution characterized by light scattering and viscosimetry. J Polym Sci Part B Polym Phys 42:347–353

    CAS  Google Scholar 

  • Zhu SD, Wu YX, Chen QM, Yu ZN, Wang CW, Jin SW, Ding YG, Wu G (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325–327

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Navard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/WIen

About this chapter

Cite this chapter

Navard, P., Wendler, F., Meister, F., Bercea, M., Budtova, T. (2012). Preparation and Properties of Cellulose Solutions. In: Navard, P. (eds) The European Polysaccharide Network of Excellence (EPNOE). Springer, Vienna. https://doi.org/10.1007/978-3-7091-0421-7_5

Download citation

Publish with us

Policies and ethics