Skip to main content

Simulation of Solidification of a Nucleated Isotactic Polypropylene in a Quiescent Condition

  • Conference paper
  • First Online:
  • 1597 Accesses

Abstract

Nucleating agents play an important role as additives in the production of injection-moulded components from semi-crystalline thermoplastics. To date, however, no work has been published in the scientific literature, which simulates the influence of nucleating agents on the formation of the microstructure of semi-crystalline thermoplastics. This research gap is to be closed within the framework of the research.

The aim of previous researches at the Institute for Plastics Processing (IKV) was to predict the microstructure of injection-moulded components using an in-house developed model to describe the crystallisation of semi-crystalline thermoplastics, which was implemented into software, called “SphaeroSim”. Although, it was able to simulate only a homogeneous pure melt without any additive. Within this work, the SphaeroSim is further developed to consider the additives and to distinguish between alpha- and beta nucleating agents. To consider the nucleating agents, the possibility to set up predefined nuclei is added to the model. Finally, the growth rate of beta crystals is measured on the hot stage at different temperatures to realise the consideration of beta nucleating agents. Finally, the solidification process on the hot stage is simulated and compared to the experimental results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tordjeman, P., Robert, C., Marin, G., Gerard, P.: The effect of α, β crystalline structure on the mechanical properties of polypropylene. Eur. Phys. J. 4(4), 459–465 (2001)

    Google Scholar 

  2. Wypych, G.: Handbook of Nucleating Agents. ChemTec Publishing, Canada (2016)

    Google Scholar 

  3. Palza, H., Vera, J., Wilhelm, M., Zapata, P.: Spherulite growth rate in polypropylene/silica nanoparticle composites: effect of particle morphology and compatibilizer. Macromol. Mater. Eng. 296(8), 744–751 (2011)

    Article  Google Scholar 

  4. Xu, T., Zhang, A., Zhao, Y., Han, Z., Xue, L.: Crystallization kinetics and morphology of biodegradable poly(lactic acid) with a hydrazide nucleating agent. Polym. Test. 45, 101–106 (2015)

    Article  Google Scholar 

  5. Petchwattana, N., Covavisaruch, S., Sripanya, P.: Effect of nano-scaled styrene butadiene rubber based nucleating agent on the thermal, crystallization and physical properties of isotactic polypropylene. J. Alloys Compd. 582, 190–195 (2014)

    Article  Google Scholar 

  6. Karger-Kocsis, J.: How does “phase transformation toughening” work in semicrystalline polymers? Polym. Eng. Sci. 36(2), 203–210 (1996)

    Article  Google Scholar 

  7. Varley, R.J., Dell’Olio, M., Yuan, Q., Khor, S., Leong, K.H., Bateman, S.: Different β nucleants and the resultant microstructural, fracture, and tensile properties for filled and unfilled ISO polypropylene. J. Appl. Polym. Sci. 128(1), 619–627 (2013)

    Article  Google Scholar 

  8. Zhang, Y., Zhang, L., Liu, H., Du, H., Zhang, J., Wang, T., Zhang, X.: Novel approach to tune mechanics of β-nucleation agent nucleated polypropylene: role of oriented β spherulite. Polymer 54(21), 6026–6035 (2013)

    Article  Google Scholar 

  9. Kersch, M., Schmidt, H.W., Altstädt, V.: Influence of different beta-nucleating agents on the morphology of isotactic polypropylene and their toughening effectiveness. Polymer 98, 320–326 (2016)

    Article  Google Scholar 

  10. Michler, G.H., Balta-Calleja, F.J.: Nano- and Micromechanics of Polymers. Hanser, München (2012)

    Book  Google Scholar 

  11. Laschet, G., Spekowius, M., Spina, R., Hopmann, C.: Multiscale simulation to predict microstructure dependent effective elastic properties of an injection molded polypropylene component. Mech. Mater. 105, 123–137 (2017)

    Article  Google Scholar 

  12. Spina, R., Spekowius, R., Hopmann, C.: Multiphysics simulation of thermoplastic polymer crystallization. Mater. Des. 105, 455–469 (2016)

    Article  Google Scholar 

  13. Wienke, S., Spekowius, M., Dammer, A., Mey, D.A., Hopmann, C., Müller, M.S.: Towards an accurate simulation of the crystallization process in injection molded plastic components by hybrid parallelization. Int. J. High Perform. Comput. Appl. 28(3), 356–367 (2013)

    Article  Google Scholar 

  14. Spina, R., Spekowius, M., Hopmann, C.: Analysis of polymer crystallization with a multiscale modeling approach. Key Eng. Mater. 611, 928–936 (2014)

    Article  Google Scholar 

  15. Lamberti, G.: A direct way to determine iPP density nucleation from DSC isothermal measurements. Polym. Bull. 52(6), 443–449 (2004)

    Article  Google Scholar 

  16. Spekowius, M.: New Microscale Model for the Description of Crystallization of Semi-Crystalline Thermoplastics. Verlag Mainz, Aachen (2017)

    Google Scholar 

  17. Lotz, B.: α and β phases of isotactic polypropylene: a case of growth kinetics `phase reentrency’ in polymer crystallization. Polymer 39(19), 4561–4567 (1998)

    Article  Google Scholar 

  18. Lovinger, A.J., Chua, J.O., Gryte, C.C.: Studies on the α and β forms of isotactic polypropylene by crystallization in a temperature gradient. J. Polym. Sci. Polym. Phys. Ed. 15(4), 641–656 (1977)

    Article  Google Scholar 

  19. Zhang, B., Chen, J., Zhang, X., Shen, C.: Formation of β-cylindrites under supercooled extrusion of isotactic polypropylene at low shear stress. Polymer 52(9), 2075–2084 (2011)

    Article  Google Scholar 

  20. Nakamura, K., Shimizu, S., Umemoto, S., Thierry, A., Lotz, B., Okui, N.: Temperature dependence of crystal growth rate for α and β forms of isotactic polypropylene. Polym. J. 40, 915 (2008)

    Article  Google Scholar 

  21. Janeschitz-Kriegl, H.: Crystallization Modalities in Polymer Melt Processing. Springer, Wien (2010)

    Book  Google Scholar 

  22. Ziabicki, A.: Generalized theory of nucleation kinetics. IV. Nucleation as diffusion in the space of cluster dimensions, positions, orientations, and internal structure. J. Chem. Phys. 85(5), 3042–3057 (1986)

    Article  Google Scholar 

  23. Hoffman, J.D., Davis, G.T., Lauritzen, J.I.: The rate of crystallization of linear polymers with chain folding. In: Hannay, N.B. (ed.) Treatise on Solid State Chemistry. Springer, New York (1976)

    Google Scholar 

Download references

Acknowledgment

This dedicated research has been funded by the Deutsche Forschungsgemeinschaft (DFG) as a part of the project “Simulation of the development of the microstructure of injection-moulded semi-crystalline thermoplastics by means of a multi-scale approach under consideration of shear-induced crystal forms (alpha and beta)” (Project-ID: HO 4776/53-1). We would like to extend our thanks to the DFG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Nokhostin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nokhostin, H., Hopmann, C. (2020). Simulation of Solidification of a Nucleated Isotactic Polypropylene in a Quiescent Condition. In: Hopmann, C., Dahlmann, R. (eds) Advances in Polymer Processing 2020. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-60809-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-60809-8_25

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-60808-1

  • Online ISBN: 978-3-662-60809-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics