Skip to main content

Permeation Properties of Laser-Sintered Polyamide 12 Sheets in Comparison to an Extruded Polyamide 12 Film

  • Conference paper
  • First Online:

Abstract

Laser sintering of polymers is widely used for the production of individual products and small-batch series. However, the qualification of laser-sintered polymeric components for new application fields, e.g. in the food and packaging industry, is still limited due to missing knowledge on physicochemical material properties. This work investigates the mass transfer of low molecular weight substances through laser-sintered polyamide 12 sheets in comparison to an extruded polyamide 12 film. Analysis of structural material properties reveals significant differences between both materials depending on the production processes. Despite their apparent porosity, laser-sintered sheets show lower permeation coefficients for water vapor and oxygen compared to extruded films. This might be related to the higher crystallinity of the laser-sintered vs. the extruded material, arising from the slow cooling rate of the polymer in the laser sintering process.

This research brings knowledge of the different permeation behavior of laser-sintered and extruded polyamide 12 in relation to the structural properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gebhardt, A., Hötter, J.-S.: Additive Manufacturing: 3D Printing for Prototyping and Manufacturing. Hanser, Munich (2016)

    Book  Google Scholar 

  2. Goodridge, R., Tuck, C., Hague, R.: Laser sintering of polyamides and other polymers. Prog. Mater. Sci. 57, 229–267 (2012)

    Article  Google Scholar 

  3. Schmid, M.: Laser Sintering with Plastics: Technology, Processes, and Materials. Hanser, Munich (2018)

    Book  Google Scholar 

  4. Wörz, A., Wudy, K., Drummer, D., Wegner, A., Witt, G.: Comparison of long-term properties of laser sintered and injection molded polyamide 12 parts. J. Polym. Eng. 38, 573–582 (2018)

    Article  Google Scholar 

  5. Van Hooreweder, B., Moens, D., Boonen, R., Kruth, J.-P., Sas, P.: On the difference in material structure and fatigue properties of nylon specimens produced by injection molding and selective laser sintering. Polym. Test. 32, 972–981 (2013)

    Article  Google Scholar 

  6. Brandrup, J., Immergut, E.H., Grulke, E.A., Abe, A., Bloch, D.R.: Polymer Handbook, 4th edn. Wiley, New York (1999)

    Google Scholar 

  7. Bourell, D.L., Watt, T.J., Leigh, D.K., Fulcher, B.: Performance limitations in polymer laser sintering. Phys. Procedia 56, 147–156 (2014)

    Article  Google Scholar 

  8. Langowski, H.C.: Permeation of Gases and Condensable Substances through Monolayer and Multilayer Structures. In: Piringer, O.G., Baner, A.L. (eds.) Plastic Packaging. Interactions with Food and Pharmaceuticals, pp. 297–347. Wiley-VCH, Weinheim (2008)

    Chapter  Google Scholar 

  9. Barrer, R.M.: Diffusion in and Through Solids. University Press, Cambridge (1941)

    Google Scholar 

  10. Crank, J.: The Mathematics of Diffusion, 2nd edn. Clarendon Press, Oxford (1975)

    MATH  Google Scholar 

  11. Wegner, A.: Theory on the continuation of melting processes as basic requirement for a robust processing in laser sintering of thermoplastics (Diss.), Universitätsbibliothek Duisburg-Essen (2015)

    Google Scholar 

  12. Liebrich, A., Langowski, H.C., Schreiber, R., Pinzer, B.R.: Porosity distribution in laser-sintered polymeric thin sheets as revealed by X-ray micro tomography. Polym. Test. 76, 286–297 (2019)

    Article  Google Scholar 

  13. Gogolewski, S., Czerntawska, K., Gastorek, M.: Effect of annealing on thermal properties and crystalline structure of polyamides. Nylon 12 (polylaurolactam). Colloid Polym. Sci. 258, 1130–1136 (1980)

    Article  Google Scholar 

  14. Launhardt, M., Wörz, A., Loderer, A., Laumer, T., Drummer, D., Hausotte, T., Schmidt, M.: Detecting surface roughness on SLS parts with various measuring techniques. Polym. Test. 53, 217–226 (2016)

    Article  Google Scholar 

  15. Liebrich, A., Langowski, H.C., Schreiber, R., Pinzer, B.R.: Permeation properties of laser-sintered polyamide 12 sheets in relation to their material structure, to be published in Additive Manufacturing

    Google Scholar 

  16. Müller, K., Scheuerer, Z., Florian, V., Skutschik, T., Sängerlaub, S.: Comparison of test methods for oxygen permeability: optical method versus carrier gas method. Polym. Test. 63, 126–132 (2017)

    Article  Google Scholar 

  17. Rüsenberg, S., Schmidt, L., Schmid, H.: Mechanical and physical properties—A way to assess quality of laser sintered parts. In: Proceedings of the 22nd International Solid Freeform Fabrication Symposium, pp. 239–251 (2011)

    Google Scholar 

  18. Verbelen, L., Dadbakhsh, S., Van den Eynde, M., Kruth, J.-P., Goderis, B., Van Puyvelde, P.: Characterization of polyamide powders for determination of laser sintering processability. Eur. Polym. J. 75, 163–174 (2016)

    Article  Google Scholar 

  19. Meyer, K.R., Hornung, K.H., Feldmann, R., Smigerski, H.J.: Method for polytropically precipitating polyamide powder coating compositions where the polyamides have at least 10 aliphatically bound carbon atoms per carbonamide group. US Patent 4,334,056, 1982

    Google Scholar 

  20. Scholten, H., Christoph, W.: Use of a nylon-12 for selective laser sintering. US Patent 6,245,281, 2001

    Google Scholar 

  21. Schmid, M., Amado, A., Wegener, K.: Materials perspective of polymers for additive manufacturing with selective laser sintering. J. Mater. Res. 29, 1824–1832 (2014)

    Article  Google Scholar 

  22. Zarringhalam, H., Majewski, C., Hopkinson, N.: Degree of particle melt in Nylon-12 selective laser-sintered parts. Rapid Prototyp. J. 15, 126–132 (2009)

    Article  Google Scholar 

  23. Domininghaus, H.: Kunststoffe: Eigenschaften und Anwendungen (Plastics: Properties and Applications), 7th edn. Springer, Berlin (2008)

    Book  Google Scholar 

  24. McKeen, L.W.: Permeability Properties of Plastics and Elastomers. William Andrew Publishing, Oxford (2012)

    Google Scholar 

  25. Tasch, D., Mad, A., Stadlbauer, R., Schagerl, M.: Thickness dependency of mechanical properties of laser-sintered polyamide lightweight structures. Addit. Manuf. 23, 25–33 (2018)

    Article  Google Scholar 

  26. Michaels, A., Parker Jr., R.: Sorption and flow of gases in polyethylene. J. Polym. Sci. 41, 53–71 (1959)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Monika Gessler from EOS Electro Optical Systems GmbH (Krailling, Germany) for her helpful advice and for providing the LS samples for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Liebrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liebrich, A., Langowski, HC., Schreiber, R., Pinzer, B. (2020). Permeation Properties of Laser-Sintered Polyamide 12 Sheets in Comparison to an Extruded Polyamide 12 Film. In: Hopmann, C., Dahlmann, R. (eds) Advances in Polymer Processing 2020. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-60809-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-60809-8_21

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-60808-1

  • Online ISBN: 978-3-662-60809-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics