Skip to main content

Thermal Energy Storage Systems Based on Metal Hydride Materials

  • Chapter
  • First Online:
Book cover Nanostructured Materials for Next-Generation Energy Storage and Conversion

Abstract

A comprehensive techno-economic analysis of candidate metal hydride materials, used for thermal energy storage applications, is carried out. The selected systems show the potential to exceed the performance of latent heat or phase change heat storage systems and can closely approach the US Department of Energy targets for concentrating solar power plant applications. A paired metal hydride system is selected as possible thermal energy storage to be integrated with high-temperature steam power plants. Its performance is simulated adopting a finite element-based detailed transport phenomena model. Results show the ability of the system to achieve the required operating temperatures and to store and release thermal energy appropriately.

Author Contribution

The paper was entirely written by CC and BH. Figures and charts were supplied and edited by CC. The final draft was reviewed and edited by BH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The kinetics energy term as well as potential term, referred to the reference exergetic state, have been assumed negligible

  2. 2.

    The kinetics energy term as well as potential term, referred to the reference exergetic state, have been assumed negligible

References

  1. https://www.seia.org/initiatives/concentrating-solar-power. Accessed Mar 2019

  2. A. Gil, M. Medrano, I. Martorell, A. Lazaro, P. Dolado, B. Zalba, et al., State of the art on high-temperature thermal energy storage for power generation. Part 1 – concepts, materials, and modellization. Renew. Sust. Energ. Rev. 14, 31–55 (2010)

    Article  CAS  Google Scholar 

  3. J. Stekli, L. Irwin, R. Pitchumani, Technical challenges and opportunities for concentrating solar power with thermal energy storage. J. Therm. Sci. Eng. Appl. 5, 021011-1-12 (2013)

    Article  Google Scholar 

  4. S. Izquierdo, C. Montanes, C. Dopazo, N. Fueyo, Analysis of CSP plants for the definition of energy policies: the influence on electricity cost of solar multiples, capacity factors, and energy storage. Energy Policy 38(10), 6215–6221 (2010)

    Article  Google Scholar 

  5. P. Denholm, M. Hand, Grid flexibility and storage required to achieve very high penetration of variable renewable electricity. Energy Policy 39(3), 1817–1830 (2011)

    Article  Google Scholar 

  6. https://www.energy.gov/eere/solar/sunshot-2030. Accessed Mar 2019

  7. R. Dominguez, L. Baringo, A. Conejo, An optimal strategy for a concentrating solar power plant. Appl. Energy 98, 316–325 (2012)

    Article  Google Scholar 

  8. S. Kuravi, J. Trahan, Y. Goswami, M.M. Rahman, E.K. Stefanakos, Thermal energy storage technologies and systems for concentrating solar power plants. Prog. Energy Combust. Sci. 39(4), 285–319 (2013)

    Article  Google Scholar 

  9. C. Corgnale, B. Hardy, T. Motyka, R. Zidan, J. Teprovich, B. Peters, Screening analysis of metal hydride based thermal energy storage systems for concentrating solar power plants. Renew. Sust. Energ. Rev. 38, 821–833 (2014)

    Article  CAS  Google Scholar 

  10. D.A. Sheppard, M. Paskevicius, T.D. Humphries, M. Felderhoff, G. Capurso, J. Bellosta von Colbe, et al., Metal hydrides for concentrating solar thermal power energy storage. Appl. Phys. A 122, 395 (2016)

    Article  Google Scholar 

  11. B. Bogdanovic, A. Ritter, B. Spliethoff, Active MgH2-Mg systems for reversible chemical energy-storage. Angew. Chem. Int. Ed. Engl. 29(3), 223–234 (1990)

    Article  Google Scholar 

  12. L. Schlapbach, A. Zuttel, Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2002)

    Article  Google Scholar 

  13. L. Schlapbach, Hydrogen-fuelled vehicles. Nature 460, 809–811 (2009)

    Article  CAS  Google Scholar 

  14. B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Metal hydride materials for solid hydrogen storage: a review. Int. J. Hydrog. Energy 32(9), 1121–1140 (2007)

    Article  CAS  Google Scholar 

  15. J. Bellosta von Colbe, J.R. Ares, J. Barale, M. Baricco, C. Buckley, G. Capurso, et al., Application of hydrides in hydrogen storage and compression: achievements, outlook, and perspectives. Int. J. Hydrog. Energy 44(15), 7780–7808 (2019)

    Article  CAS  Google Scholar 

  16. M.V. Lototskyy, V.A. Yartys, B.G. Pollet, R.C. Bowman, Metal hydride hydrogen compressors: a review. Int. J. Hydrog. Energy 39(11), 5818–5851 (2014)

    Article  CAS  Google Scholar 

  17. P.M. Golben, J.M. Rosso: Hydrogen compressor. US Patent US4402187A, published 1983

    Google Scholar 

  18. C. Corgnale, M. Sulic, Techno-economic analysis of high-pressure metal hydride compression systems. Metals 8(6), 469 (2018)

    Article  Google Scholar 

  19. X.Y. Chen, L.X. Wei, L. Deng, F.S. Yang, Z.X. Zhang, A review on the metal hydride based hydrogen purification and separation technology. Appl. Mech. Mater. 448, 3027–3036 (2014)

    Google Scholar 

  20. P. Chen, Z. Xiong, J. Luo, J. Lin, K. Lee Tan, Interaction of hydrogen with metal nitrides and imides. Nature 420, 302–304 (2002)

    Article  CAS  Google Scholar 

  21. G.J. Grashoff, C.E. Pilkington, C.W. Corti, The purification of hydrogen. Platin. Met. Rev. 27(4), 157–169 (1983)

    CAS  Google Scholar 

  22. N.C. Srivastava, I.W. Eames, A review of adsorbents and adsorbates in solid–vapor adsorption heat pump systems. Appl. Therm. Eng. 18(9–10), 707–714 (1998)

    Article  CAS  Google Scholar 

  23. T. Nishizaki, M. Miyamoto, K. Miyamoto, K. Yoshida, K. Yamaji, Y. Nakata: Metal hydride heat pump system. US Patent US4523635A, published 1985

    Google Scholar 

  24. P. Mathukumar, M. Groll, Metal hydride based heating and cooling systems: a review. Int. J. Hydrog. Energy 35(8), 3817–3831 (2010)

    Article  Google Scholar 

  25. M. Mohan, M. Sharma, S.V. Kumar, E. Anil Kumar, A. Satheesh, P. Muthukumar, Performance analysis of metal hydride based simultaneous cooling and heat transformation system. Int. J. Hydrog. Energy 44(21), 10906–10915 (2019)

    Article  CAS  Google Scholar 

  26. C. Corgnale, T. Motyka, S. Greenway, J. Perez-Berrios, A. Nakano, I. Ito, Metal hydride bed system model for renewable source driven regenerative fuel cell. J. Alloy Compd. 580(1), S406–S409 (2013)

    Article  CAS  Google Scholar 

  27. J. Bloch, M.H. Mintz, Kinetics and mechanisms of metal hydride formation – a review. J. Alloys Compd. 253, 529–541 (1997)

    Article  Google Scholar 

  28. B.J. Hardy, D.L. Anton, Hierarchical methodology for modeling hydrogen storage systems. Part I: Scoping models. Int. J. Hydrog. Energy 34, 2269–2277 (2009)

    Article  CAS  Google Scholar 

  29. B.J. Hardy, D.L. Anton, Hierarchical methodology for modeling hydrogen storage systems. Part II: Detailed models. Int. J. Hydrog. Energy 34, 2992–3004 (2009)

    Article  CAS  Google Scholar 

  30. S. Wolf: Hydrogen sponge heat pump. 10th Intersociety Energy Conversion Engineering Conf. (IECEC), Paper 759196 (1975)

    Google Scholar 

  31. A.W. McClaine: Method and apparatus for heat transfer, using metal hydrides. US Patent 4,039,023 (1977)

    Google Scholar 

  32. K.J. Kim, K.T. Feldman Jr, G. Lloyd, A. Razani, Compressor-driven metal-hydride heat pumps. Appl. Therm. Eng. 17(6), 551–560 (1997)

    Article  CAS  Google Scholar 

  33. Z. Ma, C. Turchi: Advanced supercritical carbon dioxide power cycle configurations for use in concentrating solar power systems. Conference Paper NREL/CP-5500-50787 March 2011

    Google Scholar 

  34. J.N. Phillips: Supercritical CO2 Brayton power cycles, in 5th International Supercritical CO2 Power Cycles Symposium March 30, 2016

    Google Scholar 

  35. A. Rimpel, N. Smith, J. Wilkes, H. Delgado, T. Allison, R.A. Bidkar, et al. Test rig design for large supercritical CO2 turbine seals, in The 6th International Supercritical CO2 Power Cycles Symposium March 27–29, 2018, Pittsburgh, Pennsylvania

    Google Scholar 

  36. R.T. Caldwell, J.W. McDonald, A. Pietsch, Solar-energy receiver with lithium-hydride heat storage. Sol. Energy 9, 48–60 (1965)

    Article  CAS  Google Scholar 

  37. R.J. Hanold, R.D. Johnston: Power plant heat storage arrangement. US Patent US3029596 (1962)

    Google Scholar 

  38. B. Bogdanovic, T.H. Hartwig, B. Spliethoff, The development, testing, and optimization of energy-storage materials based on the MgH2-Mg system. Int. J. Hydrog. Energy 18(7), 575–589 (1993)

    Article  CAS  Google Scholar 

  39. B. Bogdanovic, H. Hofmann, A. Neuy, A. Reiser, K. Schlichte, Ni-doped versus undoped Mg–MgH2 materials for high-temperature heat or hydrogen storage. J. Alloys Compd. 292, 57–71 (1999)

    Article  CAS  Google Scholar 

  40. M. Felderhoff, B. Bogdanović, High-temperature metal hydrides as heat storage materials for solar and related applications. Int. J. Mol. Sci. 10, 325–344 (2009)

    Article  CAS  Google Scholar 

  41. B. Bogdanović, A. Ritter, B. Spliethoff, K. Straßburger, A process steam generator based on the high-temperature magnesium hydride/magnesium heat storage system. Int. J. Hydrog. Energy 20, 811–822 (1995)

    Article  Google Scholar 

  42. M. Wierse, R. Werner, Magnesium hydride for thermal energy storage in a small-scale solar-thermal power station. J. Less Common Met. 172–174(3), 1111–1121 (1991)

    Article  Google Scholar 

  43. A. Reiser, B. Bogdanovic, K. Schlichte, The application of Mg-based metal-hydrides as heat energy storage systems. Int. J. Hydrog. Energy 25, 425–430 (2000)

    Article  CAS  Google Scholar 

  44. D. Sheppard, M. Paskevicius, C. Buckley, Thermodynamics of hydrogen desorption from NaMgH3 and its application as a solar heat storage medium. Chem. Mater. 23, 4298–4300 (2011)

    Article  CAS  Google Scholar 

  45. B. Bogdanović, A. Reiser, K. Schlichte, B. Spliethoff, B. Tesche, Thermodynamics and dynamics of the Mg-Fe H system and its potential for thermochemical thermal energy storage. J. Alloys Comp. 345, 77–89 (2002)

    Article  Google Scholar 

  46. D. Sheppard, C. Corgnale, B. Hardy, T. Motyka, R. Zidan, M. Paskevicious, et al., Hydriding characteristics of NaMgH2F with preliminary technical and cost evaluation of magnesium-based metal hydride materials for concentrating solar power thermal storage. RSC Adv. 4, 26552–26562 (2014)

    Article  CAS  Google Scholar 

  47. P. Ward, C. Corgnale, J. Teprovich, T. Motyka, B. Hardy, B. Peters, et al., High-performance metal hydride based thermal energy storage systems for concentrating solar power applications. J. Alloys Compd. 645(1), S374–S378 (2015)

    Article  CAS  Google Scholar 

  48. C. Corgnale, B. Hardy, T. Motyka, R. Zidan, Metal hydride based thermal energy storage system requirements for high performance concentrating solar power plants. Int. J. Hydrog. Energy 41(44), 20217–20230 (2016)

    Article  CAS  Google Scholar 

  49. T.D. Humphries, D.A. Sheppard, M.R. Rowles, M.V. Sofianos, C.E. Buckley, Fluoride substitution in sodium hydride for thermal energy storage applications. J. Mater. Chem. A 4, 12170–12178 (2016)

    Article  CAS  Google Scholar 

  50. D. Harries, A novel thermochemical energy storage technology, in Proceedings of EcoGeneration Conf, Sydney, Australia (2010)

    Google Scholar 

  51. P.A. Ward, J.A. Teprovich, Y. Liu, J. He, R. Zidan, High-temperature thermal energy storage in the CaAl2 system. J. Alloys Compd. 735, 2611–2615 (2018)

    Article  CAS  Google Scholar 

  52. I. Yonezu, K. Nasako, N. Honda, T. Sakai, Development of thermal energy storage technology using metal hydrides. J. Less Common Met. 89(2), 351–358 (1983)

    Article  CAS  Google Scholar 

  53. S. Chumphongphan, M. Paskevicius, D. Sheppard, C. Buckley, Effect of Al and Mo substitution on the structural and hydrogen storage properties of CaNi5. Int. J. Hydrog. Energy 38, 2325–2331 (2013)

    Article  CAS  Google Scholar 

  54. G.G. Libowitz: Thermal energy storage systems employing metal hydrides. US Patent: US4040410 (1977)

    Google Scholar 

  55. G. Libowitz, Z. Blank, Solid metal hydrides: properties relating to their application in solar heating and cooling, in Solid State Chemistry of Energy Conversion and Storage, ed. by J. B. Goodenough, M. S. Whittingham, (ACS, Washington, DC, 1976), pp. 271–283

    Google Scholar 

  56. D. Harries, M. Paskevicius, D. Sheppard, T. Price, C. Buckley, Concentrating solar thermal heat storage using metal hydrides. Proc. IEEE 100, 539–549 (2012)

    Article  CAS  Google Scholar 

  57. B. Bogdanovic, M. Schwickardi, Ti-doped alkali metal aluminum hydrides as potential novel reversible hydrogen storage materials. J. Alloys Compd. 253–254, 1–9 (1997)

    Article  Google Scholar 

  58. T. Motyka: Savannah River National Laboratory Regenerative Fuel Cell Project. SRNL-STI-2008-00388, Nov. 11, 2008 (2008)

    Google Scholar 

  59. K.M. Guthrie, Data and techniques for preliminary capital cost estimating. Chem. Eng. Prog. 76(6), 114–142 (1969)

    Google Scholar 

  60. E. Douglas, Industrial Chemical Process Design (McGraw-Hill Professional Engineering, New York (USA) 2003)

    Google Scholar 

  61. https://www.aspentech.com/en/products/pages/aspen-in-plant-cost-estimator. Accessed Mar 2019

  62. A. Chaise, P. De Rango, P. Marty, D. Fruchart, Experimental and numerical study of a magnesium hydride tank. Int. J. Hydrog. Energy 35, 6311–6322 (2010)

    Article  CAS  Google Scholar 

  63. https://agmetalminer.com/metal-prices/. Accessed Mar 2019

  64. P. Di Pietro, E. Skolnik: Analysis of the sodium hydride-based hydrogen storage system, in Proceedings of the 2000 Hydrogen Program NREL/CP-570-28890, Washington DC (USA), (2000)

    Google Scholar 

  65. W. Mueller, J. Blackledge, G. Libowitz, Metal Hydrides (Academic, New York/London, 1968)

    Google Scholar 

  66. C. Corgnale, B.J. Hardy, D.A. Tamburello, S.L. Garrison, D.L. Anton, Acceptability envelops for metal hydride-based hydrogen storage systems. Int. J. Hydrog. Energy 37, 2812–2824 (2012)

    Article  CAS  Google Scholar 

  67. J.M. Pasini, C. Corgnale, B. van Hassel, T. Motyka, S. Kumar, K. Simmons, Metal hydride material requirements for automotive hydrogen storage systems. Int. J. Hydrog. Energy 38(23), 9755–9765 (2013)

    Article  CAS  Google Scholar 

  68. C. Corgnale, W. Summers, Solar hydrogen production by the hybrid sulfur process. Int. J. Hydrog. Energy 36(18), 11604–11619 (2011)

    Article  CAS  Google Scholar 

  69. A. d’Entremont, C. Corgnale, B. Hardy, R. Zidan, Simulation of high-temperature thermal energy storage system based on coupled metal hydrides for solar driven steam power plants. Int. J. Hydrog. Energy 43(2), 817–830 (2018)

    Article  Google Scholar 

  70. F. Cziesla, J. Bewerunge, A. Senzel: Lunen – state of the art Ultra Supercritical Steam Power Plant under construction. POWER-GEN Europe 2009, Cologne, Germany (2009). Available online at https://www.energy.siemens.com/nl/pool/hq/power-generation/power-plants/steam. Accessed Jan 2019

  71. Website: http://webbook.nist.gov/chemistry/fluid/. Accessed Nov 2016

  72. T. Gamo, Y. Moriwaki, N. Yanagihara, T. Yamashita, T. Iwaki, Formation and properties of titanium-manganese alloy hydrides. Int. J. Hydrog. Energy 19(1), 39–47 (1985)

    Article  Google Scholar 

  73. T.A. Zotov, R.B. Sivov, E.A. Movlaev, S.V. Mitrokhin, V.N. Verbetsky, IMC hydrides with high hydrogen dissociation pressure. J. Alloys Compd. 509S, 839S–843S (2011)

    Article  Google Scholar 

  74. G. Kolb, C. Ho, T. Mancini, J. Gary: Power tower technology roadmap and cost reduction plan. Sandia Report SAND2011-2419, April 2011 (2011)

    Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), under Award Number DE-EE0007118. The authors wish to acknowledge Dr. L. Irwin, Mr. M. Lausten, PE, and Dr. A. Schultz, who were the US Department of Energy managers, for their useful discussions and direction. The authors also wish to thank Drs. R. Zidan and A. d’Entremont (Savannah River National Laboratory, USA), Dr. T. Motyka (Greenway Energy, USA), Drs. C. Buckley and D. Sheppard (both Curtin University, Australia), and Mr. S. Sullivan (Brayton Energy, USA).

Disclaimer

“This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Corgnale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Corgnale, C., Hardy, B. (2019). Thermal Energy Storage Systems Based on Metal Hydride Materials. In: Atesin, T.A., Bashir, S., Liu, J.L. (eds) Nanostructured Materials for Next-Generation Energy Storage and Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59594-7_10

Download citation

Publish with us

Policies and ethics