Skip to main content

Ursprung und Evolution des Lebendigen

  • Chapter
  • First Online:
Astrobiologie - die Suche nach außerirdischem Leben
  • 1682 Accesses

Zusammenfassung

Viele Wege führen zum Leben – Reaktion für Reaktion werden die abiotischen Grundlagen der allerersten ökologischen Interaktion und ihrer evolutionären Entfaltung entschlüsselt. Doch wie sieht dieses Leben aus und ist es überhaupt möglich, Leben widerspruchsfrei zu definieren? Das kleinstmögliche Leben birgt das Potenzial, alles, was wir über unsere Erde und ferne Welten zu wissen glauben, größtmöglich zu verändern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Allwood AC, Walter MR, Kamber BS et al (2006) Stromatolite reef from the Early Archaean era of Australia. Nature 441:714–718

    Article  Google Scholar 

  • Allwood AC, Rosing MT, Flannery DT et al (2018) Reassessing evidence of life in 3,700-million-year-old rocks of Greenland. Nature 563:241–244

    Article  Google Scholar 

  • Altwegg K, Balsiger H, Bar-Nun A et al (2015) 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347(6220):1261952

    Article  Google Scholar 

  • Altwegg K, Balsiger H, Bar-Nun A et al (2016) Prebiotic chemicals – amino acids and phosphorus – in the coma of comet 67/PChuryumov-Gerasimenko. Sci Adv 2(5):e1600285

    Article  Google Scholar 

  • Armstrong DL, Lancet D, Zidovetzki R (2018) Replication of Simulated Prebiotic Amphiphilic Vesicles in a finite environment exhibits complex behavior that includes high progeny variability and competition. Astrobioloy 18:419–430

    Article  Google Scholar 

  • Arvidson RE, Squyres SW, Anderson RC et al (2006) Overview of the spirit Mars exploration rover mission to Gusev Crater: landing site to Backstay Rock in the Columbia Hills. JGR Planets 111:E2

    Google Scholar 

  • Balaram B, Canham T, Duncan C et al (2018) Mars helicopter technology demonstration. 2018 AIAA Atmospheric Flight Mechanics Conference, AIAA SciTech Forum, AIAA 2018-0023

    Google Scholar 

  • Baluska F, Mancuso S (2016) Vision in plants via plant-specific ocelli? Trends Plant Sci 21:727–730

    Article  Google Scholar 

  • Bamford DH, Grimes JM, Stuart DI (2005) What does structure tell us about virus evolution? Curr Opin Struct Biol 15:655–663

    Article  Google Scholar 

  • Becker S, Thoma I, Deutsch A et al (2016) A high-yielding, strictly regioselective prebiotic purine nucleoside formation pathway. Science 352(6287):833–836

    Article  Google Scholar 

  • Berliner AJ, Mochizuki T, Stedman KM (2018) Astrovirology: viruses at large in the universe. Astrobiology 18:207–223

    Article  Google Scholar 

  • Blöchl E, Keller M, Wächtershäuser G et al (1992) Reactions depending on iron sulfide and linking geochemistry with biochemistry. Proc Natl Acad Sci 89:8117–8120

    Article  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ et al (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 46:623–626

    Article  Google Scholar 

  • Boetius A (2005) Lost city life. Science 307(5714):1420–1422

    Article  Google Scholar 

  • Bost N, Ramboz C, LeBreton N et al (2015) Testing the ability of the ExoMars 2018 payload to document geological context and potential habitability on Mars. Planet Space Sci 108:87–97

    Article  Google Scholar 

  • Brockwell TG, Meech KJ, Pickens K et al (2016) The mass spectrometer for planetary exploration (MASPEX). In Aerospace Conference 2016 IEEE, IEEE, Big Sky, MT

    Google Scholar 

  • Cech TR (1987) The chemistry of self-splicing RNA and RNA enzymes. Science 236:1532–1539

    Article  Google Scholar 

  • Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13:260–270

    Article  Google Scholar 

  • Christensen PR, Bandfield JL, Clark RN et al (2000) Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: evidence for near-surface water. JGR Planets 105:9623–9642

    Article  Google Scholar 

  • Christensen PR, Morris RV, Lane MD et al (2001) Global mapping of Martian hematite mineral deposits: Remnants of water-driven processes on early Mars. JGR Planets 106:23873–23885

    Article  Google Scholar 

  • Collins MA, Buick RK (1989) Effect of temperature on the spoilage of sotred peas by Rhodotorula glutinis. Food Microbiol 6:135–141

    Article  Google Scholar 

  • Cordier D, Carrasco N (2019) The floatability of aerosols and wave damping on Titan’s seas. Nat Geosci 12:315–320

    Article  Google Scholar 

  • Damer B, Deamer D (2015) Coupled phases and combinatorial selection in fluctuating hydrothermal pools: a scenario to guide experimental approaches to the origin of cellular life. Life 5:872–887

    Article  Google Scholar 

  • Darwin F (1887) The life and letters of Charles Darwin. Bd. 3. John Murray, London, 18. Viele Werke und Briefe Darwins wurden von seinem Sohn Francis Darwin veröffentlicht und sind heute online verfügbar unter darwin-online.org.uk

    Google Scholar 

  • De Vera J-PP, Schulze-Makuch D, Khan A et al (2014) Adaptation of an Antarctic lichen to Martian niche conditions can occur within 34 days. Planet Space Sci 98:182–190

    Article  Google Scholar 

  • Deeg CM, Zimmer MM, George E et al (2018) Chromulinavorax destructans, a pathogenic TM6 bacterium with an unusual replication strategy targeting protist mitochondrion. bioRxiv:10.1101/ 379388

    Google Scholar 

  • Di Giulio M (2011) The last universal common ancestor (LUCA) and the ancestors of archaea and bacteria were progenotes. J Mol Evol 72:119–126

    Article  Google Scholar 

  • DLR (2018) MASCOT lands safely on asteroid Ryugu. Presseveröffentlichung. https://www.dlr.de/dlr/presse/en/desktopdefault.aspx/tabid-10172/213_read-30118/#/gallery/32231. Zugegriffen: 15. Febr. 2019

  • Egel R (2012) Primal eukaryogenesis: on the communal nature of precellular states, ancestral to modern life. Life 2:170–212

    Article  Google Scholar 

  • ESA (2005) Europe arrives at the New Frontier – The Huygens landing on Titan. ESA Bulletin 121. Open access. http://www.esa.int/esapub/bulletin/bulletin121/bul121a_lebreton.pdf. Zugegriffen: 15. Febr. 2019

  • Erez Z, Steinberger-Levy I, Shamir M et al (2017) Communication between viruses guides lysis-lysogeny decisions. Nature 541:488–493

    Article  Google Scholar 

  • Forterre P (2011) Manipulation of cellular syntheses and the nature of viruses: the virocell concept. C R Chim 14:392–399

    Article  Google Scholar 

  • Forterre P (2017) Viruses in the 21st century: from the curiosity-driven discovery of giant viruses to new concepts and definitions of life. Clin Infect Dis 65:S74–S79

    Article  Google Scholar 

  • Gilbert W (1986) The RNA world. Nature 319(6055):618

    Article  Google Scholar 

  • Gissinger C, Petitdemange L (2019) A magnetically driven equatorial jet in Europa’s ocean. Nat Astron 3:401–407

    Article  Google Scholar 

  • Goesmann F, Brinckerhoff WB, Raulin F et al (2017) The Mars Organic Molecule Analyzer (MOMA) instrument: characterization of organic material in martian sediments. Astrobiology 17:655–685

    Article  Google Scholar 

  • Golombek MP, Cook RA, Economou T et al (1997) Overview of the Mars Pathfinder mission and assessment of landing site predictions. Science 278:1743–1748

    Article  Google Scholar 

  • Grotzinger JP (2014) Habitability, taphonomy, and the search for organic carbon on Mars. Science 343:386–387

    Article  Google Scholar 

  • Heinz J, Schirmack J, Airo A et al (2018) Enhanced microbial survivability in subzero brines. Astrobiology 18:1171–1180

    Article  Google Scholar 

  • Hendrix AR, Hurford TA, Barge LM et al (2019) The NASA roadmap to ocean worlds. Astrobiology 19:1–27

    Article  Google Scholar 

  • Hörst SM, Yelle RV, Buch A et al (2012) Formation of amino acids and nucleotide bases in a Titan atmosphere simulation experiment. Astrobiology 12(9):809–817

    Article  Google Scholar 

  • Horowitz NH et al (1976) The Viking carbon assimilation experiments: interim report. Science 194(4721):1321f

    Article  Google Scholar 

  • Hoshika S, Leal NA, Kim M-J et al (2019) Hachimoji DNA and RNA: a genetic system with eight building blocks. Science 363:884–887

    Article  Google Scholar 

  • Hsu H-W, Postberg F, Sekine Y et al (2015) Ongoing hydrothermal activities within Enceladus. Nature 519:207–210

    Article  Google Scholar 

  • Hughes SS, Haberle CW, Kobs Nawotniak SE et al (2018) BASALT A: Basaltic Terrains in Idao and Hawaii as Planetary Analogues for Mars geology and Astrobiology. Astrobiology 19. https://doi.org/10.1089/ast.2018.1847

  • Hutchins KS, Jakosky BM (1996) Evolution of martian atmospheric argon: implications for sources of volatiles. J Geophys Res: Planets 101:14933–14949

    Article  Google Scholar 

  • Iess L et al (2014) The gravity field and interior structure of enceladus. Science 344(6179):6178–6180

    Article  Google Scholar 

  • Janjic A (2018) The need for including virus detection methods in future Mars missions. Astrobiology 18:1611–1614

    Article  Google Scholar 

  • Jia X, Kivelson MG, Khurana K et al (2018) Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures. Nat Astron 2:459–464

    Article  Google Scholar 

  • Karr JR, Sanghvi JC, Macklin DN et al (2012) A whole-cell computational model predicts phenotype from genotype. Cell 150(2):389–401

    Article  Google Scholar 

  • Khurana KK et al (1998) Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature 395:777–780

    Article  Google Scholar 

  • Kim SC, O’Flaherty DK, Zhou L et al (2018) Inosine, but none of the 8-oxo-purines, is a plausible component of a primordial version of RNA. PNAS 115:13318–13323

    Article  Google Scholar 

  • Kite ES, Gaidos E, Onstott TC (2018) Valuing life-detection missions. Astrobiology 18:834–840

    Article  Google Scholar 

  • Klein HP et al (1976) The viking biological investigation: preliminary results. Science 194(4260):99–105

    Article  Google Scholar 

  • Klose J, Polz MFP, Wagner M et al (2015) Endosymbionts escape dead hydrothermal vent tubeworms to enrich the free-living population. PNAS 112:11300–11305

    Article  Google Scholar 

  • Konstantinidis K, Flores Martinez CL, Dachwald B et al (2015) A lander mission to probe suglacial water on Saturn’s moon Enceladus for life. Acta Astronaut 106:63–89

    Article  Google Scholar 

  • Koonin EV, Martin W (2005) On the origin of genomes and cells within inorganic compartments. Trends Genet 21:647–654

    Article  Google Scholar 

  • Koonin EV, Senkevich TG, Dolja VV (2006) The ancient Virus world and evolution of cells. Biol Direct 1:29

    Article  Google Scholar 

  • Kushner DJ, Baker A, Dunstall TG (1999) Pharmalogical uses and perspectives of heavy water and deuterated compounds. Can J Physiol Pharmacol 77:79–88

    Article  Google Scholar 

  • Loeb A (2013) The habitable epoche of the early universe. Int J Astrobiol 13(4):337–339

    Article  Google Scholar 

  • Lorenz RD, Stiles B, Kirk RL et al (2008) Titan’s rotation revelas an internal ocean and changing zonal winds. Science 319:1649–1651

    Article  Google Scholar 

  • Lou E, Fujisawa S, Barlas A et al (2012) Tunneling Nanotubes – a new paradigm for studying intercellular communication and therapeutics in cancer. Communicative & Integr Biology 5:399–403

    Article  Google Scholar 

  • Mahaffy PR, Webster CR, Atreya SK et al (2013) Abundance and isotopic composition of gases in the Martian atmosphere from the Curiosity rover. Science 341:263–266

    Article  Google Scholar 

  • Malaska MJ, Hodyss R, Lunine JI et al (2017) Laboratory measurements of nitrogen dissolution in Titan lake fluids. Icarus 289:94–105

    Article  Google Scholar 

  • Mastrogiuseppe M, Poggiali V, Hayes AG et al (2019) Deep and methane-rich lakes on Titan. Nat Astron. https://doi.org/10.1038/s41550-019-0714-2

    Article  Google Scholar 

  • Matijevic JR, Crisp J, Bickler DB et al (1997) Characterization of the Martian surface deposits by the Mars Pathfinder rover, Sojourner. Science 278:1765–1768

    Article  Google Scholar 

  • McElroy MB, Kong TY, Yung YL (1977) Photochemistry and evolution of Mars’ atmosphere: a Viking perspective. J Geophys Res 82:4379–4388

    Article  Google Scholar 

  • McKay CP, Smith HD (2005) Possibilites for methanogenic life in liquid methane on the surface of Titan. Icarus 178:274–276

    Article  Google Scholar 

  • McSween HY Jr, Murchie SL, Crisp JA et al (1999) Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site. JGR Planets 104:8679–8715

    Article  Google Scholar 

  • Menez B, Pisapia C, Andreani M et al (2018) Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere. Nature 564:59–63

    Article  Google Scholar 

  • Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117(3046):528f

    Article  Google Scholar 

  • Miteva V, Sowers T, Brenchley J (2007) Production of N2O by ammonia oxidizing bacteria at subfreezing temperatures as a model for assessing the N2O anomalies in the Vostok Ice core. Geomicrobiol J 24:451–459

    Article  Google Scholar 

  • Mitri G, Showman AP, Lunine JI et al (2008) Resurfacing of Titan by ammonia-water cryomagma. Icarus 196:216–224

    Article  Google Scholar 

  • Morris RV, Ruff SW, Gellert R et al (2010) Identification of carbonate-rich outcrops on Mars by the Spirit rover. Science 329:421–424

    Article  Google Scholar 

  • Morris PW, Gupta H, Nagy Z et al (2016) Herschel/HIFI spectral mapping of C+, CH+, and CH in Orion BN/KL: the prevailing role of ultraviolet irradiation in CH+ formation. Astrophys J 829(1):15

    Article  Google Scholar 

  • NASA (2014) Curiosity finds Iron meteorite on Mars. NASA-Pressemitteilung. https://www.nasa.gov/jpl/msl/pia18387. Zugegriffen: 15. Febr. 2019

  • NASA (2017a) Journey to the center of icy moons. Pressemitteilung der NASA. https://www.nasa.gov/feature/journey-to-the-center-of-icy-moons. Zugegriffen: 15. Febr. 2019

  • NASA (2017b) Mars Rover curiosity examines possible mud cracks. Presseveröffentlichung der NASA. https://www.nasa.gov/feature/jpl/mars-rover-curiosity-examines-possible-mud-cracks. Zugegriffen: 15. Febr. 2019

  • NASA (2018) NASA Announces Landing Site for Mars 2020 Rover. Presseveröffentlichung der NASA. https://www.nasa.gov/press-release/nasa-announces-landing-site-for-mars-2020-rover. Zugegriffen: 15. Febr. 2019

  • Niederholtmeyer H, Chaggan C, Devaraj NK et al (2018) Communication and quorum sensing in non-living mimics of eukaryotic cells. Nat Commun 9:5027

    Article  Google Scholar 

  • Niemann HB, Atreya SK, Bauer SJ et al (2005) The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe. Nature 438(7069):779–784

    Article  Google Scholar 

  • Niemann HB, Atreya SK, Demick JE et al (2010) Composition of Titan’s lower atmosphere and simple surface vola- tiles as measured by the Cassini-Huygens probe gas chromatograph mass spectrometer experiment. J Geophys Res 115:E12

    Article  Google Scholar 

  • Nimmo F, Hamilton DP, McKinnon WB et al (2016) Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto. Nature 540:94–96

    Article  Google Scholar 

  • Nordheim TA, Hand KP, Paranicas C (2018) Preservation of potential biosignatures in the shallow subsurface of Europa. Nature Astronomy 2:673–679

    Article  Google Scholar 

  • Nutman AP, Bennett VC, Friend CRL et al (2016) Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537:535–538

    Article  Google Scholar 

  • Oleson SR (2016) Titan submarine: exploring the depths of Kranken Mare. Nennung des Konzepts im Vortrag NASA Glenn Research Centers auf dem NASA-Innovative-Advanced-Concepts-Symposium, Raleigh, North Carolina

    Google Scholar 

  • Oparin A (1947) Die Entstehung des Lebens auf der Erde. Volk und Wissen, Berlin. 1924 erschien die russische Originalliteratur: Oparin A., Proiskhozhdenie zhizny, Izd. Moskovhii RabochiI, Moskau

    Google Scholar 

  • Orosei R, Lauro SE, Pettinelli E et al (2018) Radar evidence of subglacial liquid water on Mars. Science 361:490–493

    Google Scholar 

  • Pande S, Kost C (2017) Bacterial unculturability and the formation of intercellular metabolic networks. Trends Microbiol 25:349–361

    Article  Google Scholar 

  • Parness A, Frost M, Boston P et al (2012) Rock climbing robot for exploration and sample acquisition at lava tubes, steep slopes, and cliff walls. Nennung der Arbeit im Vortrag des NASA Jet Propulsion Laboratory auf dem NASA-Innovative-Advanced-Concepts-Symposium, Raleigh, North Carolina

    Google Scholar 

  • Pasteur L (1864) On spontaneous generation: an address delivered by Louis Pasteur at the „Sorbonne Scientific Soiree“ of April 7, 1864. Revue des cours scientifics I (1863–1864):257–264. Englische Übersetzung mitsamt handschriftlichen Korrekturen von Pasteur im Auftrag von Bruno Latour, Copyright Alex Levine 1993

    Google Scholar 

  • Pearce BKD, Pudritz RE, Semenov DA et al (2017) Origin of the RNA world: the fate of nucleobases in warm little ponds. PNAS 114:11327–11332

    Article  Google Scholar 

  • Penalosa J (1983) Shoot dynamics and adaptive morphology of Ipomoea phillomega (Vell.) House (Convolvulaceae), a Tropical Rainforest Liana. Ann Bot 52(5):737–754. (u. A. in Silvertown, J, Charlesworth D (2001) Plant Population Biology 13. Blackwell Publishing, Malden.)

    Google Scholar 

  • Phillips CB, Pappalardo RT (2014) Europa clipper mission concept: exploring Jupiter’s ocean moon. EOS Trans AGU 95:165–167

    Article  Google Scholar 

  • Postberg F, Kempf S, Schmidt J et al (2009) Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459:1098–1101

    Article  Google Scholar 

  • Postberg F, Schmidt J, Hillier J et al (2011) A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature 474:620–622

    Article  Google Scholar 

  • Postberg F, Khawaja N, Abel B et al (2018) Macromolecular organic compounds from the depths of Enceladus. Nature 558:564–568

    Article  Google Scholar 

  • Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242

    Article  Google Scholar 

  • Rustom A, Saffrich R, Markovic I et al (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010

    Article  Google Scholar 

  • Raulin F (2005) Exo-astrobiological aspects of Europa and Titan: From observations to speculations. Space Sci Rev 116(1):471–486

    Article  Google Scholar 

  • Ramirez RM, Kopparapu R, Zugger ME et al (2014) Warming early Mars with CO2 and H2. Nat Geosci 7:59–63

    Article  Google Scholar 

  • Sagan C, Salpeter EE (1976) Particles, environments and possible ecologies in the Jovian atmosphere. Astrophys J Suppl 32:737–755

    Article  Google Scholar 

  • Salinas-de-Leon P, Phillips B, Ebert D et al (2018) Deep-sea hydrothermal vents as natural egg-case incubators at the Galapagos Rift. Sci Rep 8:1788

    Article  Google Scholar 

  • Schuergers N, Lenn T, Kampmann R et al (2016) Cyanobacteria use micro-optics to sense light direction. eLife 5:e12620

    Article  Google Scholar 

  • Schulz F, Alteio L, Goudeau D et al (2018) Hidden diversity of soil giant viruses. Nat Commun 9:4881

    Article  Google Scholar 

  • Schvarcz CR, Steward GF (2018) A giant virus infecting green algae encodes key fermentation genes. Virology 518:423–433

    Article  Google Scholar 

  • Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14(8):e1002533

    Article  Google Scholar 

  • Shematovich VI (2018) Ocean worlds in the outer regions of the solar system (Review). Sol Syst Res 52:371–381

    Article  Google Scholar 

  • Sojo V, Herschy B, Whicher A et al (2016) The origion of life in alkaline hydrothermal vents. Astrobiology 16:181–197

    Article  Google Scholar 

  • Squyres SW, Arvidson RE, Bollen D et al (2006) Overview of the opportunity Mars exploration Rover Mission to Meridiani Planum: Eagle crater to Purgatory Ripple. JGR Planets 111:E12

    Google Scholar 

  • Stamenkovic V, Ward LM, Mischna M, Fischer WW (2018) O2 solubility in Martian near-surface environemnts and implications for aerobic life. Nat Geosci 11:905–909

    Article  Google Scholar 

  • Stevens AH, Childers D, Fox-Powell M et al (2019) Growth, viability, and death of Planktonic and biofilm Sphingomonas desiccabilis in simulated Martian brines. Astrobiology 19:87–98

    Article  Google Scholar 

  • Stofan ER (2007) The lakes of Titan. Nature 445:61–64

    Article  Google Scholar 

  • Strobel DF (2010) Molecular hydrogen in Titan’s atmosphere: implications of the measured tropospheric and thermospheric mole fractions. Icarus 208(2):878–886

    Article  Google Scholar 

  • Squyres SW, Arvidson RE, Bell JF et al (2012) Ancient impact and aqueous processes at Endeavour Crater, Mars. Science 336:570–576

    Article  Google Scholar 

  • Taubner R-S, Pappenreiter P, Zwicker J et al (2018) Biological methane production under putative Enceladus-like conditions. Nat Commun 9:748

    Article  Google Scholar 

  • Tinoco I Jr, Bustamante C (1999) How RNA folds. J Mol Biol 293(2):271–281

    Article  Google Scholar 

  • Toyota T, Maru N, Hanczyc MM et al (2009) Self-propelled oil droplets consuming >fuel< surfactant. J Am Chem Soc 131(14):5012f

    Article  Google Scholar 

  • Trainer MG, Brinckerhoff WB, Freissinet C et al (2018a) Dragonfly: investigating the surface composition of Titan. 49th Lunar andPlanetary Science Conference, Document ID 20180003047

    Google Scholar 

  • Trainer MG, Brinckerhoff WB, Freissinet C et al (2018b) Dragonfly: investigating the surface composition of Titan. NASA-Pressemitteilung. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20180003047.pdf. Zugegriffen: 15. Febr. 2019

  • Tyler RH (2008) Strong ocean tidal flow and heating on moons of the outer planets. Nature 456:770–772

    Article  Google Scholar 

  • Van Thienen P, Vlaar NJ, Van den Berg AP (2005) Assessment of the cooling capacity of plate tectonics and flood volcanism in the evolution of Earth, Mars and Venus. Phys Earth Planet Inter 150:287–315

    Article  Google Scholar 

  • Viedma C (2007) Chiral symmetry breaking and complete chiral purity by thermodynamic-kinetic feedback near equilibrium: implications for the origin of biochirality. Astrobiology 7:312–319

    Article  Google Scholar 

  • Wächtershäuser G (1988) Pyrite formation, the first energy source for life: A hypothesis. Syst Appl Microbiol 10(3):207–210

    Article  Google Scholar 

  • Wächtershäuser G (1992) Groundworks for an evolutionary biochemistry: the iron-sulphur world. Prog Biophys Mol Biol 58(2):85–201

    Article  Google Scholar 

  • Webster CR, Mahaffy PR, Flesch GJ et al (2013) Isotope ratios of H, C, and O in CO2 and H2O of the Martian atmosphere. Science 341:260–263

    Article  Google Scholar 

  • Williams RME, Grotzinger JP, Dietrich WE et al (2013) Martian fluvial conglomerates at gale crater. Science 340:1068–1072

    Article  Google Scholar 

  • Wolfe-Simon F, Switzer Blum J, Kulp TR et al (2010) A Bacterium that can grow by using arsenic instead of phosphorus. Science 323(6034):1163–1166

    Article  Google Scholar 

  • Yamamoto M, Nakamura R, Oguri K et al (2013) Generation of electricity and illumination by an environmental fuel cell in deep-sea hydrothermal vents. Angew Chem Int Ed 52:10758–10761

    Article  Google Scholar 

  • Yarus M (2010) Getting past the RNA world: the initial Darwinian Ancestor. RNA worlds: from Life’s origins to diversity in gene regulation. Cold Spring Habror Laboratory Press, New York, S 43–50

    Google Scholar 

  • Yates JS, Palmer PI, Biller B et al (2017) Atmospheric Habitable Zones in Y Dwarf Atmospheres. Astrophys J 836:184

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Janjic, A. (2019). Ursprung und Evolution des Lebendigen. In: Astrobiologie - die Suche nach außerirdischem Leben. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59492-6_3

Download citation

Publish with us

Policies and ethics