Skip to main content

Vision-based Generation of Precedence Graphs

  • Conference paper
  • First Online:
Tagungsband des 4. Kongresses Montage Handhabung Industrieroboter

Zusammenfassung

The current developments in robotics aim towards a usage in households and small and medium-sized enterprises. In this case it is necessary to coordinate human and robot by describing the task in a common model. Precedence graphs are a possible representation of such a model. The generation of these is tedious especially for non-experts.We contribute a vision-based approach which generates precedence graphs based on a world representation generated by an registered eye-in-hand camera. To achieve this, we describe a world representation based on boundary representation models and a corresponding object recognition method. The results are used to generate the precedence graph by calculating the AND/OR graph as an intermediate step. We evaluate our approach based on several scene models and on a real world application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. A. Billard, and S. Calinon: Handbook of Robotics Chapter 59: Robot Programming by Demonstration. Springer, 2007

    Google Scholar 

  2. A. Bourjault: Contribution a une approche methodologique de l’assemblage automatise. Elaboration automatique des sequences operatoires. Phd thesis, Université de Franche-Comté, Besançon, 1984

    Google Scholar 

  3. H. Bruyninckx, T. Lefebvre, L. Mihaylova, E. Staffetti, J. De Schutter, and J. Xiao: A roadmap for autonomous robotic assembly. IEEE International Symposium on Assembly and Task Planning , 2001

    Google Scholar 

  4. CGAL: The Computational Geometry Algorithms Library. https://www.cgal.org/, 2018. Accessed 02.11.2018

  5. T. L. De Fazio, and D. E. Whitney: Simplified generation of all mechanical assembly sequences. IEEE Journal of Robotics and Automation, 1987

    Google Scholar 

  6. P. Jimnez: Survey on assembly sequencing: A combinatorial and geometrical perspective. Journal of Intelligent Manufacturing, 2013

    Google Scholar 

  7. L. Kavraki, J.-C. Latombe, and R. H. Wilson: On the complexity of assembly partitioning. Information Processing Letters, 1993

    Google Scholar 

  8. S. M. La Valle: Planning algorithms. Cambridge University Press, 2006

    Google Scholar 

  9. J. M. Lien: 3D point-based Minkowski sum. http://masc.cs.gmu.edu/wiki/Software#m+3dpt, 2007. Accessed 02.11.2018

  10. J. M. Lien: A simple method for computing Minkowski sum boundary in 3D using collision detection. Springer Tracts in Advanced Robotics, 2010

    Google Scholar 

  11. D. G. Lowe: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004

    Google Scholar 

  12. L. S. Homem de Mello, and A. C. Sanderson: Representations of Mechanical Assembly Sequences, 1991

    Google Scholar 

  13. R. Mojtahedzadeh, A. Bouguerra, and A. J. Lilienthal. Automatic relational scene representation for safe robotic manipulation. IEEE International Conference on Intelligent Robots and Systems, 2013

    Google Scholar 

  14. X. Niu, H. Ding, and Y. Xiong: A hierarchical approach to generating precedence graphs for assembly planning. International Journal of Machine Tools and Manufacture, 2003

    Google Scholar 

  15. K. Nottensteiner, T. Bodenmller, M. Kaecker, M. A. Roa, A. Stemmer, T. Stouraitis, D. Seidel, and U. Thomas: A Complete Automated Chain for Flexible Assembly using Recognition, Planning and Sensor-Based Execution. International Symposium on Robotics, 2016

    Google Scholar 

  16. D. Riedelbauch and D. Henrich: Coordinating Flexible Human-Robot Teams by Local World State Observation. IEEE International Symposium on Robot and Human Interactive Communication, 2017

    Google Scholar 

  17. M. Sand and D. Henrich: Incremental reconstruction of planar B-Rep models from multiple point clouds. The Visual Computer, 2016

    Google Scholar 

  18. M. Sand and D. Henrich: Matching and Pose Estimation of Noisy, Partial and Planar B-Rep Models. Computer Graphics International, 2017

    Google Scholar 

  19. U. Thomas, T. M. Barrenscheenm and F. M. Wahl: Efficient Assembly Sequence Planning Using Stereographical Projections of k. IEEE Symposium on Assembly and Task Planning, 2003

    Google Scholar 

  20. U. Thomas, T. Stouraitis, and M. A Roa: Flexible assembly through integrated assembly sequence planning and grasp planning. IEEE International Conference on Automation Science and Engineering, 2015

    Google Scholar 

  21. J. Xiao, and X. Ji: A divide-and-merge approach to automatic generation of contact states and planning of contact motion. Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation, 2000

    Google Scholar 

  22. Y. Z. Zhang, J. Ni, Z. Q. Lin, and X. M. Lai: Automated sequencing and subassembly detection in automobile body assembly planning. Journal of Materials Processing Technology, 2002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorian Rohner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rohner, D., Fichtner, M., Henrich, D. (2019). Vision-based Generation of Precedence Graphs. In: Schüppstuhl, T., Tracht, K., Roßmann, J. (eds) Tagungsband des 4. Kongresses Montage Handhabung Industrieroboter. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59317-2_2

Download citation

Publish with us

Policies and ethics