Skip to main content

Data Standards, Device Interfaces, and Interoperability

  • Chapter
  • First Online:
Neurocritical Care Informatics

Abstract

In this chapter, we discuss challenges to standardizing data acquisition and interoperability in the neurocritical care realm. Currently, neurocritical care practitioners are limited in the scope and depth of the data that can be acquired and analyzed in real time or retrospectively because the devices, equipment, and applications are not well integrated or designed for those purposes. We provide a brief background pertinent to critical care data standards and an overview of the current “state of the art.” Specifically, we summarize the current data standards—both formally defined and de facto—as well as provide an overview of the software and hardware interfaces typically found on critical care instrumentation. Next, we discuss the challenges that must be overcome to provide hardware and software interoperability within neurocritical care facilities. Finally, we provide examples of successful standards development and deployment in other fields with suggestions for neurocritical care practitioners to adopt into their current workflow. Overcoming the challenges to interoperability of medical devices will help to expand the diagnostic and prognostic tools available in neurocritical care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. HIMSS. iHIT study—final report. https://www.himss.org/library/clinical-informatics/2013-ihit-studyfull-report (2013).

  2. Goldman JM, Schrenker RA, Jackson JL, Whitehead SF. Plug-and-play in the operating room of the future. Biomed Instrum Technol. 2005;39(3):194–9.

    PubMed  Google Scholar 

  3. Kemp B. SignalML from an EDF+ perspective. Comput Methods Programs Biomed. 2004;76(3):261–3. https://doi.org/10.1016/j.cmpb.2004.05.008.

    Article  PubMed  Google Scholar 

  4. Kemp B, Olivan J. European data format ‘plus’ (EDF+), an EDF alike standard format for the exchange of physiological data. Clin Neurophysiol. 2003;114(9):1755–61.

    Article  PubMed  Google Scholar 

  5. Kemp B, Varri A, Rosa AC, Nielsen KD, Gade J. A simple format for exchange of digitized polygraphic recordings. Electroencephalogr Clin Neurophysiol. 1992;82(5):391–3.

    Article  CAS  PubMed  Google Scholar 

  6. Bidgood WD Jr, Horii SC, Prior FW, Van Syckle DE. Understanding and using DICOM, the data interchange standard for biomedical imaging. J Am Med Inform Assoc. 1997;4(3):199–212.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Graham RN, Perriss RW, Scarsbrook AF. DICOM demystified: a review of digital file formats and their use in radiological practice. Clin Radiol. 2005;60(11):1133–40. https://doi.org/10.1016/j.crad.2005.07.003.

    Article  CAS  PubMed  Google Scholar 

  8. Wang Y, Best DE, Hoffman JG, Horii SC, Lehr JL, Lodwick GS, Morse RR, Murphy LL, Nelson OL, Perry J, et al. ACR-NEMA digital imaging and communications standards: minimum requirements. Radiology. 1988;166(2):529–32. https://doi.org/10.1148/radiology.166.2.3336730.

    Article  CAS  PubMed  Google Scholar 

  9. Dougherty MT, Folk MJ, Zadok E, Bernstein HJ, Bernstein FC, Eliceiri KW, Benger W, Best C. Unifying biological image formats with HDF5. Commun ACM. 2009;52(10):42–7. https://doi.org/10.1145/1562764.1562781.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mason CE, Zumbo P, Sanders S, Folk M, Robinson D, Aydt R, Gollery M, Welsh M, Olson NE, Smith TM. Standardizing the next generation of bioinformatics software development with BioHDF (HDF5). Adv Exp Med Biol. 2010;680:693–700. https://doi.org/10.1007/978-1-4419-5913-3_77.

    Article  PubMed  Google Scholar 

  11. Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, Petroni G, Lujan S, Pridgeon J, Barber J, Machamer J, Chaddock K, Celix JM, Cherner M, Hendrix T, Global Neurotrauma Research G. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 2012;367(26):2471–81. https://doi.org/10.1056/NEJMoa1207363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Clarke M, Bogia D, Hassing K, Steubesand L, Chan T, Ayyagari D. Developing a standard for personal health devices based on 11073. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:6175–7. https://doi.org/10.1109/IEMBS.2007.4353764.

    Article  Google Scholar 

  13. Benjamin DM. Reducing medication errors and increasing patient safety: case studies in clinical pharmacology. J Clin Pharmacol. 2003;43(7):768–83.

    Article  PubMed  Google Scholar 

  14. Eichhorn JH. Prevention of intraoperative anesthesia accidents and related severe injury through safety monitoring. Anesthesiology. 1989;70(4):572–7.

    Article  CAS  PubMed  Google Scholar 

  15. Etches RC. Respiratory depression associated with patient-controlled analgesia: a review of eight cases. Can J Anaesth. 1994;41(2):125–32. https://doi.org/10.1007/BF03009805.

    Article  CAS  PubMed  Google Scholar 

  16. White PF. Mishaps with patient-controlled analgesia. Anesthesiology. 1987;66(1):81–3.

    Article  CAS  PubMed  Google Scholar 

  17. Bezroukov N. Open source software development as a special type of academic research: critique of vulgar Raymondism. First Monday. 1999;4(10)

    Google Scholar 

  18. Raymond ES. The cathedral & the bazaar. Sebastopol, CA: O’Reilly Media Inc.; 2001.

    Google Scholar 

  19. Jurney R. Agile data science. 1st ed. Sebastopol, CA: O’Reilly Media Inc.; 2013.

    Google Scholar 

  20. O’Neil C, Schutt R. Doing data science: straight talk from the frontline. 1st ed. Sebastopol, CA: O’Reilly Media Inc.; 2013.

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank Jan Wittenber for his thoughtful review and comments to this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Moberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moberg, R., Wilson, C.G., Goldstein, R. (2020). Data Standards, Device Interfaces, and Interoperability. In: De Georgia, M., Loparo, K. (eds) Neurocritical Care Informatics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59307-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-59307-3_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-59305-9

  • Online ISBN: 978-3-662-59307-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics