Skip to main content

Physical Processes in Protoplanetary Disks

  • Chapter
  • First Online:

Part of the book series: Saas-Fee Advanced Course ((SAASFEE,volume 45))

Abstract

This review, based on lectures given at the 45th Saas-Fee Advanced Course “From Protoplanetary Disks to Planet Formation”, introduces physical processes in protoplanetary disks relevant to accretion and the initial stages of planet formation. After a brief overview of the observational context, I introduce the elementary theory of disk structure and evolution, review the gas-phase physics of angular momentum transport through turbulence and disk winds, and discuss possible origins for the episodic accretion observed in Young Stellar Objects. Turning to solids, I review the evolution of single particles under aerodynamic forces, and describe the conditions necessary for the development of collective gas-particle instabilities. Observations show that disks can exhibit pronounced large-scale structure, and I discuss the types of structures that may form from gas and particle interactions at ice lines, vortices and zonal flows, prior to the formation of large planetary bodies. I conclude with disk dispersal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Accretion from lower density gas within the star forming region could persist to later times [403].

  2. 2.

    To see this, substitute \(x \equiv h \nu /k_B T\) and approximate the limits as \(r_\mathrm{in} = 0\) and \(r_\mathrm{out} = \infty \).

  3. 3.

    Representing fluid motions as microturbulence is a standard approximation for stellar atmospheres, but whether it is generally valid for disk turbulence is not obvious. Simon et al. [380] showed that it works reasonably well in the case where turbulence is driven by the magnetohydrodynamic instabilities discussed in Sect. 1.5.4.4.

  4. 4.

    The minimum mass Solar Nebula (MMSN) [175, 429], an approximate lower bound for the amount of disk gas needed to form the planets in the Solar System, can be useful as a reference model despite its tenuous connection to actual conditions in the disk at the time of planet formation. The MMSN has a gas surface density profile \(\varSigma (r) = 1.7 \times 10^3 (r/\text {AU})^{-3/2} \ \mathrm{g \ cm^{-2}}\).

  5. 5.

    Note that the amount of power involved in any of these non-thermal ionization processes is rather small when compared to that liberated by accretion [192]. Any additional processes that could convert even a small fraction of the accretion energy into non-thermal particles would likely matter for the ionization state.

  6. 6.

    Umebayashi and Nakano noted that if cosmic rays have an approximately isotropic angular distribution at the disk surface, geometric effects lead to a faster than exponential attenuation deep in the disk [415].

  7. 7.

    The size of the disk (and even whether it is tidally truncated at all) will be different if the disk is substantially misaligned with respect to the orbital plane of the binary [261, 293].

  8. 8.

    We can also consider situations where the magnetic pressure in the disk is stronger than the gas pressure, though it must always be weaker than \(\rho v_\phi ^2\).

  9. 9.

    Ignoring magnetic fields in astrophysical accretion flows is generally a stupid thing to do, and indeed there is broad consensus that the magnetorotational instability (MRI) [45] is responsible for turbulence and angular momentum transport in most accretion disks. In protoplanetary disks, however, the low ionization fraction means that the dominance of MHD instabilities is much less obvious, and purely hydrodynamic effects could in principle be important.

  10. 10.

    As we shall see, a general rule is that all disk instabilities have long histories and pre-histories.

  11. 11.

    The mathematics of the MRI was worked out by Velikhov [422] and Chandrasekhar [85] around 1960. Thirty years passed before Balbus and Hawley [44] recognized the importance of the instability for accretion flows.

  12. 12.

    An analysis that retains the x-dependence can be found in the original Balbus and Hawley paper [44], and follows an essentially identical approach. Studying the stability of non-axisymmetric perturbations (in y), however, requires a different and more involved analysis [104, 311, 329, 401].

  13. 13.

    Several assumptions are hardwired into these numbers. For the resistivity, it is assumed that currents are carried by the electrons, and that the conductivity is limited by electron-neutral collisions. For the drag coefficient we assume that the neutral gas is predominantly molecular hydrogen, and that the ions are moderately massive \(m_i \simeq 30{-}40 m_\mathrm{H}\). It would be prudent to consult Blaes and Balbus [68], and references therein, should one encounter situations where these assumptions might fail.

  14. 14.

    The numerical implementation of the Hall effect in simulation codes remains challenging, and the presence of large-scale fields in the saturated state suggests that local simulations may not be adequate to describe the outcome. Observationally important issues such as the level of fluid turbulence that accompanies the predominantly large-scale transport by Maxwell stresses remain to be fully understood.

  15. 15.

    It is not obvious that the inner disk is resupplied by gas, or, to put it more formally, that the disk attains a steady-state. Out to \({\sim } 10 \ \mathrm{AU}\) the viscous time scale is short enough that the disk will plausibly adjust to a steady state (provided only that a steady state is possible, see Sect. 1.6), but no such argument works out to 100 AU. Ultimately the question of whether gas at 100 AU ever reaches the star will need to be settled by observations as well as by theory.

  16. 16.

    This may seem to require fine tuning, but in fact the ordering of time scales in a geometrically thin disk always allows for such a choice [338].

  17. 17.

    Cosmic rays in the original model, though this is an unimportant distinction.

  18. 18.

    In compact object accretion, this is described as the “propeller” regime of accretion [189].

  19. 19.

    Quoting from his paper, “should it be possible for a toroid of higher density to occur in the Solar nebula, the growing planetesimals would be drawn toward it from the inside as well as from the outside ...”.

  20. 20.

    For a derivation of the steady Kida solution, see e.g. the appendix of Chavanis [88].

  21. 21.

    In more detail, however, the grain population within the disk will affect the absorption of high energy photons and hence the local mass loss rate [160].

References

  1. Adams, F.C., Hollenbach, D., Laughlin, G., Gorti, U.: Photoevaporation of circumstellar disks due to external far-ultraviolet radiation in stellar aggregates. ApJ 611, 360–379 (2004). https://doi.org/10.1086/421989

    Article  ADS  Google Scholar 

  2. Adams, F.C., Lada, C.J., Shu, F.H.: Spectral evolution of young stellar objects. ApJ 312, 788–806 (1987). https://doi.org/10.1086/164924

    Article  ADS  Google Scholar 

  3. Alencar, S.H.P., Teixeira, P.S., Guimarães, M.M., McGinnis, P.T., Gameiro, J.F., Bouvier, J., Aigrain, S., Flaccomio, E., Favata, F.: Accretion dynamics and disk evolution in NGC 2264: a study based on CoRoT photometric observations. A&A 519, A88 (2010). https://doi.org/10.1051/0004-6361/201014184

    Article  ADS  Google Scholar 

  4. Alexander, R., Pascucci, I., Andrews, S., Armitage, P., Cieza, L.: The Dispersal of Protoplanetary Disks. Protostars and Planets VI, pp. 475–496 (2014). https://doi.org/10.2458/azu_uapress_9780816531240-ch021

  5. Alexander, R.D., Armitage, P.J.: Dust dynamics during protoplanetary disc clearing. MNRAS 375, 500–512 (2007). https://doi.org/10.1111/j.1365-2966.2006.11341.x

    Article  ADS  Google Scholar 

  6. Alexander, R.D., Clarke, C.J., Pringle, J.E.: Constraints on the ionizing flux emitted by T Tauri stars. MNRAS 358, 283–290 (2005). https://doi.org/10.1111/j.1365-2966.2005.08786.x

    Article  ADS  Google Scholar 

  7. Alexander, R.D., Clarke, C.J., Pringle, J.E.: Photoevaporation of protoplanetary discs—I. Hydrodynamic models. MNRAS 369, 216–228 (2006). https://doi.org/10.1111/j.1365-2966.2006.10293.x

    Article  ADS  Google Scholar 

  8. ALMA Partnership, Brogan, C.L., Pérez, L.M., Hunter, T.R., Dent, W.R.F., Hales, A.S., Hills, R.E., Corder, S., Fomalont, E.B., Vlahakis, C., Asaki, Y., Barkats, D., Hirota, A., Hodge, J.A., Impellizzeri, C.M.V., Kneissl, R., Liuzzo, E., Lucas, R., Marcelino, N., Matsushita, S., Nakanishi, K., Phillips, N., Richards, A.M.S., Toledo, I., Aladro, R., Broguiere, D., Cortes, J.R., Cortes, P.C., Espada, D., Galarza, F., Garcia-Appadoo, D., Guzman-Ramirez, L., Humphreys, E.M., Jung, T., Kameno, S., Laing, R.A., Leon, S., Marconi, G., Mignano, A., Nikolic, B., Nyman, L.A., Radiszcz, M., Remijan, A., Rodón, J.A., Sawada, T., Takahashi, S., Tilanus, R.P.J., Vila Vilaro, B., Watson, L.C., Wiklind, T., Akiyama, E., Chapillon, E., de Gregorio-Monsalvo, I., Di Francesco, J., Gueth, F., Kawamura, A., Lee, C.F., Nguyen Luong, Q., Mangum, J., Pietu, V., Sanhueza, P., Saigo, K., Takakuwa, S., Ubach, C., van Kempen, T., Wootten, A., Castro-Carrizo, A., Francke, H., Gallardo, J., Garcia, J., Gonzalez, S., Hill, T., Kaminski, T., Kurono, Y., Liu, H.Y., Lopez, C., Morales, F., Plarre, K., Schieven, G., Testi, L., Videla, L., Villard, E., Andreani, P., Hibbard, J.E., Tatematsu, K.: The 2014 ALMA long baseline campaign: first results from high angular resolution observations toward the HL Tau region. ApJ,  808, L3 (2015). https://doi.org/10.1088/2041-8205/808/1/L3

  9. Andrews, S.M., Williams, J.P.: Circumstellar dust disks in Taurus-Auriga: the submillimeter perspective. ApJ 631, 1134–1160 (2005). https://doi.org/10.1086/432712

    Article  ADS  Google Scholar 

  10. Andrews, S.M., Wilner, D.J., Espaillat, C., Hughes, A.M., Dullemond, C.P., McClure, M.K., Qi, C., Brown, J.M.: Resolved images of large cavities in protoplanetary transition disks. ApJ 732, 42 (2011). https://doi.org/10.1088/0004-637X/732/1/42

    Article  ADS  Google Scholar 

  11. Andrews, S.M., Wilner, D.J., Hughes, A.M., Qi, C., Dullemond, C.P.: Protoplanetary disk structures in Ophiuchus. ApJ 700, 1502–1523 (2009). https://doi.org/10.1088/0004-637X/700/2/1502

    Article  ADS  Google Scholar 

  12. Andrews, S.M., Wilner, D.J., Hughes, A.M., Qi, C., Rosenfeld, K.A., Öberg, K.I., Birnstiel, T., Espaillat, C., Cieza, L.A., Williams, J.P., Lin, S.Y., Ho, P.T.P.: The TW Hya disk at 870 \(\upmu \)m: comparison of CO and dust radial structures. ApJ 744, 162 (2012). https://doi.org/10.1088/0004-637X/744/2/162

    Article  ADS  Google Scholar 

  13. Andrews, S.M., Wilner, D.J., Zhu, Z., Birnstiel, T., Carpenter, J.M., Pérez, L.M., Bai, X.N., Öberg, K.I., Hughes, A.M., Isella, A., Ricci, L.: Ringed substructure and a gap at 1 au in the nearest protoplanetary disk. ApJ 820, L40 (2016). https://doi.org/10.3847/2041-8205/820/2/L40

    Article  ADS  Google Scholar 

  14. Armitage, P.J.: Magnetic cycles and photometric variability of T Tauri stars. MNRAS 274, 1242–1248 (1995)

    ADS  Google Scholar 

  15. Armitage, P.J.: Turbulence and angular momentum transport in a global accretion disk simulation. ApJ 501, L189–L192 (1998). https://doi.org/10.1086/311463

    Article  ADS  Google Scholar 

  16. Armitage, P.J.: Magnetic activity in accretion disc boundary layers. MNRAS 330, 895–900 (2002). https://doi.org/10.1046/j.1365-8711.2002.05152.x

    Article  ADS  Google Scholar 

  17. Armitage, P.J.: Lecture notes on the formation and early evolution of planetary systems. ArXiv Astrophysics e-prints (2007)

    Google Scholar 

  18. Armitage, P.J.: Astrophysics of Planet Formation, 294 pp. Cambridge University Press, Cambridge, UK (2010).  https://doi.org/10.1017/CBO9780511802225. ISBN 978-0-521-88745-8 (hardback)

  19. Armitage, P.J.: Dynamics of protoplanetary disks. ARA&A 49, 195–236 (2011). https://doi.org/10.1146/annurev-astro-081710-102521

  20. Armitage, P.J.: A trap for planet formation. Science 340, 1179–1180 (2013). https://doi.org/10.1126/science.1239404

    Article  ADS  Google Scholar 

  21. Armitage, P.J.: EXor outbursts from disk amplification of stellar magnetic cycles. ApJ 833, L15 (2016). https://doi.org/10.3847/2041-8213/833/2/L15

    Article  ADS  Google Scholar 

  22. Armitage, P.J., Eisner, J.A., Simon, J.B.: Prompt planetesimal formation beyond the snow line. ApJ 828, L2 (2016). https://doi.org/10.3847/2041-8205/828/1/L2

    Article  ADS  Google Scholar 

  23. Armitage, P.J., Livio, M., Pringle, J.E.: Episodic accretion in magnetically layered protoplanetary discs. MNRAS 324, 705–711 (2001). https://doi.org/10.1046/j.1365-8711.2001.04356.x

    Article  ADS  Google Scholar 

  24. Armitage, P.J., Simon, J.B., Martin, R.G.: Two timescale dispersal of magnetized protoplanetary disks. ApJ 778, L14 (2013). https://doi.org/10.1088/2041-8205/778/1/L14

    Article  ADS  Google Scholar 

  25. Artymowicz, P., Lubow, S.H.: Mass flow through gaps in circumbinary disks. ApJ 467, L77 (1996). https://doi.org/10.1086/310200

    Article  ADS  Google Scholar 

  26. Audard, M., Ábrahám, P., Dunham, M.M., Green, J.D., Grosso, N., Hamaguchi, K., Kastner, J.H., Kóspál, Á., Lodato, G., Romanova, M.M., Skinner, S.L., Vorobyov, E.I., Zhu, Z.: Episodic Accretion in Young Stars. Protostars and Planets VI, pp. 387–410 (2014)

    Google Scholar 

  27. Bae, J., Hartmann, L., Zhu, Z., Gammie, C.: The long-term evolution of photoevaporating protoplanetary disks. ApJ 774, 57 (2013). https://doi.org/10.1088/0004-637X/774/1/57

    Article  ADS  Google Scholar 

  28. Bae, J., Hartmann, L., Zhu, Z., Gammie, C.: Variable accretion outbursts in protostellar evolution. ApJ 764, 141 (2013). https://doi.org/10.1088/0004-637X/764/2/141

    Article  ADS  Google Scholar 

  29. Bae, J., Hartmann, L., Zhu, Z., Nelson, R.P.: Accretion outbursts in self-gravitating protoplanetary disks. ApJ 795, 61 (2014). https://doi.org/10.1088/0004-637X/795/1/61

    Article  ADS  Google Scholar 

  30. Baehr, H., Klahr, H., Kratter, K.M.: The fragmentation criteria in local vertically stratified self-gravitating disk simulations. ApJ 848, 40 (2017). https://doi.org/10.3847/1538-4357/aa8a66

    Article  ADS  Google Scholar 

  31. Bai, X.N.: Magnetorotational-instability-driven accretion in protoplanetary disks. ApJ 739, 50 (2011). https://doi.org/10.1088/0004-637X/739/1/50

    Article  ADS  Google Scholar 

  32. Bai, X.N.: Hall-effect-controlled gas dynamics in protoplanetary disks. I. Wind solutions at the inner disk. ApJ 791, 137 (2014). https://doi.org/10.1088/0004-637X/791/2/137

  33. Bai, X.N.: Hall effect controlled gas dynamics in protoplanetary disks. II. Full 3D simulations toward the outer disk. ApJ 798, 84 (2015). https://doi.org/10.1088/0004-637X/798/2/84

  34. Bai, X.N.: Global simulations of the inner regions of protoplanetary disks with comprehensive disk microphysics. ApJ 845, 75 (2017). https://doi.org/10.3847/1538-4357/aa7dda

    Article  ADS  Google Scholar 

  35. Bai, X.N., Goodman, J.: Heat and dust in active layers of protostellar disks. ApJ 701, 737–755 (2009). https://doi.org/10.1088/0004-637X/701/1/737

    Article  ADS  Google Scholar 

  36. Bai, X.N., Stone, J.M.: Dynamics of solids in the midplane of protoplanetary disks: implications for planetesimal formation. ApJ 722, 1437–1459 (2010). https://doi.org/10.1088/0004-637X/722/2/1437

    Article  ADS  Google Scholar 

  37. Bai, X.N., Stone, J.M.: The effect of the radial pressure gradient in protoplanetary disks on planetesimal formation. ApJ 722, L220–L223 (2010). https://doi.org/10.1088/2041-8205/722/2/L220

    Article  ADS  Google Scholar 

  38. Bai, X.N., Stone, J.M.: Effect of ambipolar diffusion on the nonlinear evolution of magnetorotational instability in weakly ionized disks. ApJ 736, 144 (2011). https://doi.org/10.1088/0004-637X/736/2/144

    Article  ADS  Google Scholar 

  39. Bai, X.N., Stone, J.M.: Wind-driven accretion in protoplanetary disks. I. Suppression of the magnetorotational instability and launching of the magnetocentrifugal wind. ApJ  769, 76 (2013). https://doi.org/10.1088/0004-637X/769/1/76

  40. Bai, X.N., Stone, J.M.: Magnetic flux concentration and zonal flows in magnetorotational instability turbulence. ApJ 796, 31 (2014). https://doi.org/10.1088/0004-637X/796/1/31

    Article  ADS  Google Scholar 

  41. Bai, X.N., Ye, J., Goodman, J., Yuan, F.: Magneto-thermal disk winds from protoplanetary disks. ApJ 818, 152 (2016). https://doi.org/10.3847/0004-637X/818/2/152

    Article  ADS  Google Scholar 

  42. Bakes, E.L.O., Tielens, A.G.G.M.: The photoelectric heating mechanism for very small graphitic grains and polycyclic aromatic hydrocarbons. ApJ 427, 822–838 (1994). https://doi.org/10.1086/174188

    Article  ADS  Google Scholar 

  43. Balbus, S.A.: Magnetohydrodynamics of Protostellar Disks, pp. 237–282 (2011)

    Google Scholar 

  44. Balbus, S.A., Hawley, J.F.: A powerful local shear instability in weakly magnetized disks. I—Linear analysis. II—Nonlinear evolution. ApJ 376, 214–233 (1991). https://doi.org/10.1086/170270

  45. Balbus, S.A., Hawley, J.F.: Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod. Phys. 70, 1–53 (1998). https://doi.org/10.1103/RevModPhys.70.1

  46. Balbus, S.A., Hawley, J.F., Stone, J.M.: Nonlinear stability, hydrodynamical turbulence, and transport in disks. ApJ 467, 76 (1996). https://doi.org/10.1086/177585

  47. Balbus, S.A., Papaloizou, J.C.B.: On the dynamical foundations of \(\alpha \) disks. ApJ 521, 650–658 (1999). https://doi.org/10.1086/307594

    Article  ADS  Google Scholar 

  48. Balbus, S.A., Terquem, C.: Linear analysis of the Hall effect in protostellar disks. ApJ 552, 235–247 (2001). https://doi.org/10.1086/320452

    Article  ADS  Google Scholar 

  49. Bally, J., O’Dell, C.R., McCaughrean, M.J.: Disks, microjets, windblown bubbles, and outflows in the Orion Nebula. AJ 119, 2919–2959 (2000). https://doi.org/10.1086/301385

    Article  ADS  Google Scholar 

  50. Bally, J., Scoville, N.Z.: Structure and evolution of molecular clouds near H II regions. II—The disk constrained H II region, S106. ApJ 255, 497–509 (1982). https://doi.org/10.1086/159850

  51. Barge, P., Sommeria, J.: Did planet formation begin inside persistent gaseous vortices? A&A 295, L1–L4 (1995)

    ADS  Google Scholar 

  52. Barker, A.J., Ogilvie, G.I.: Hydrodynamic instability in eccentric astrophysical discs. MNRAS 445, 2637–2654 (2014). https://doi.org/10.1093/mnras/stu1939

    Article  ADS  Google Scholar 

  53. Barranco, J.A., Marcus, P.S.: Three-dimensional vortices in stratified protoplanetary disks. ApJ 623, 1157–1170 (2005). https://doi.org/10.1086/428639

    Article  ADS  Google Scholar 

  54. Baruteau, C., Meru, F., Paardekooper, S.J.: Rapid inward migration of planets formed by gravitational instability. MNRAS 416, 1971–1982 (2011). https://doi.org/10.1111/j.1365-2966.2011.19172.x

    Article  ADS  Google Scholar 

  55. Bastian, N., Covey, K.R., Meyer, M.R.: A universal stellar initial mass function? A critical look at variations. ARA&A 48, 339–389 (2010). https://doi.org/10.1146/annurev-astro-082708-101642

    Article  ADS  Google Scholar 

  56. Beckwith, S.V.W., Sargent, A.I.: Particle emissivity in circumstellar disks. ApJ 381, 250–258 (1991). https://doi.org/10.1086/170646

    Article  ADS  Google Scholar 

  57. Begelman, M.C., McKee, C.F., Shields, G.A.: Compton heated winds and coronae above accretion disks. I Dynamics. ApJ 271, 70–88 (1983). https://doi.org/10.1086/161178

    Article  ADS  Google Scholar 

  58. Bell, K.R., Cassen, P.M., Klahr, H.H., Henning, T.: The structure and appearance of protostellar accretion disks: limits on disk flaring. ApJ 486, 372–387 (1997)

    Article  ADS  Google Scholar 

  59. Bell, K.R., Lin, D.N.C.: Using FU Orionis outbursts to constrain self-regulated protostellar disk models. ApJ 427, 987–1004 (1994). https://doi.org/10.1086/174206

    Article  ADS  Google Scholar 

  60. Belyaev, M.A., Rafikov, R.R., Stone, J.M.: Angular momentum transport by acoustic modes generated in the boundary layer. I. Hydrodynamical theory and simulations. ApJ 770, 67 (2013). https://doi.org/10.1088/0004-637X/770/1/67

    Article  ADS  Google Scholar 

  61. Belyaev, M.A., Rafikov, R.R., Stone, J.M.: Angular momentum transport by acoustic modes generated in the boundary layer. II. Magnetohydrodynamic simulations. ApJ 770, 68 (2013). https://doi.org/10.1088/0004-637X/770/1/68

    Article  ADS  Google Scholar 

  62. Bergin, E.A., Cleeves, L.I., Gorti, U., Zhang, K., Blake, G.A., Green, J.D., Andrews, S.M., Evans II, N.J., Henning, T., Öberg, K., Pontoppidan, K., Qi, C., Salyk, C., van Dishoeck, E.F.: An old disk still capable of forming a planetary system. Nature 493, 644–646 (2013). https://doi.org/10.1038/nature11805

    Article  ADS  Google Scholar 

  63. Besla, G., Wu, Y.: Formation of Narrow dust rings in circumstellar debris disks. ApJ 655, 528–540 (2007). https://doi.org/10.1086/509495

    Article  ADS  Google Scholar 

  64. Béthune, W., Lesur, G., Ferreira, J.: Global simulations of protoplanetary disks with net magnetic flux. I. Non-ideal MHD case. A&A 600, A75 (2017). https://doi.org/10.1051/0004-6361/201630056

    Article  ADS  Google Scholar 

  65. Birnstiel, T., Klahr, H., Ercolano, B.: A simple model for the evolution of the dust population in protoplanetary disks. A&A 539, A148 (2012). https://doi.org/10.1051/0004-6361/201118136

    Article  ADS  MATH  Google Scholar 

  66. Bisschop, S.E., Fraser, H.J., Öberg, K.I., van Dishoeck, E.F., Schlemmer, S.: Desorption rates and sticking coefficients for CO and N\(_{2}\) interstellar ices. A&A 449, 1297–1309 (2006). https://doi.org/10.1051/0004-6361:20054051

    Article  ADS  Google Scholar 

  67. Bjorkman, J.E., Wood, K.: Radiative equilibrium and temperature correction in Monte Carlo radiation transfer. ApJ 554, 615–623 (2001). https://doi.org/10.1086/321336

    Article  ADS  Google Scholar 

  68. Blaes, O.M., Balbus, S.A.: Local shear instabilities in weakly ionized, weakly magnetized disks. ApJ 421, 163–177 (1994). https://doi.org/10.1086/173634

    Article  ADS  Google Scholar 

  69. Blandford, R.D., Payne, D.G.: Hydromagnetic flows from accretion discs and the production of radio jets. MNRAS 199, 883–903 (1982)

    Article  ADS  Google Scholar 

  70. Blum, J., Wurm, G.: The growth mechanisms of macroscopic bodies in protoplanetary disks. ARA&A 46, 21–56 (2008). https://doi.org/10.1146/annurev.astro.46.060407.145152

    Article  ADS  Google Scholar 

  71. Bollard, J., Connelly, J.N., Whitehouse, M.J., Pringle, E.A., Bonal, L., Jørgensen, J.K., Nordlund, Å., Moynier, F., Bizzarro, M.: Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. Sci. Adv. 3, e1700,407 (2017). https://doi.org/10.1126/sciadv.1700407

  72. Bonnell, I., Bastien, P.: A binary origin for FU Orionis stars. ApJ 401, L31–L34 (1992). https://doi.org/10.1086/186663

    Article  ADS  Google Scholar 

  73. Bouvier, J., Alencar, S.H.P., Harries, T.J., Johns-Krull, C.M., Romanova, M.M.: Magnetospheric Accretion in Classical T Tauri Stars. Protostars and Planets V, pp. 479–494 (2007)

    Google Scholar 

  74. Bouvier, J., Cabrit, S., Fernandez, M., Martin, E.L., Matthews, J.M.: Coyotes-I—the photometric variability and rotational evolution of T-Tauri stars. A&A 272, 176 (1993)

    ADS  Google Scholar 

  75. Bouvier, J., Matt, S.P., Mohanty, S., Scholz, A., Stassun, K.G., Zanni, C.: Angular Momentum Evolution of Young Low-Mass Stars and Brown Dwarfs: Observations and Theory. Protostars and Planets VI, pp. 433–450 (2014)

    Google Scholar 

  76. Brauer, F., Henning, T., Dullemond, C.P.: Planetesimal formation near the snow line in MRI-driven turbulent protoplanetary disks. A&A 487, L1–L4 (2008). https://doi.org/10.1051/0004-6361:200809780

    Article  ADS  Google Scholar 

  77. Burke, J.R., Hollenbach, D.J.: The gas-grain interaction in the interstellar medium—thermal accommodation and trapping. ApJ 265, 223–234 (1983). https://doi.org/10.1086/160667

    Article  ADS  Google Scholar 

  78. Calvet, N., D’Alessio, P., Watson, D.M., Franco-Hernández, R., Furlan, E., Green, J., Sutter, P.M., Forrest, W.J., Hartmann, L., Uchida, K.I., Keller, L.D., Sargent, B., Najita, J., Herter, T.L., Barry, D.J., Hall, P.: Disks in transition in the Taurus population: Spitzer IRS spectra of GM Aurigae and DM Tauri. ApJ 630, L185–L188 (2005). https://doi.org/10.1086/491652

    Article  ADS  Google Scholar 

  79. Cannizzo, J.K.: The accretion disk limit cycle model: toward an understanding of the long-term behavior of SS Cygni. ApJ 419, 318 (1993). https://doi.org/10.1086/173486

    Article  ADS  Google Scholar 

  80. Cao, X., Spruit, H.C.: Instability of an accretion disk with a magnetically driven wind. A&A 385, 289–300 (2002). https://doi.org/10.1051/0004-6361:20011818

    Article  ADS  Google Scholar 

  81. Carrera, D., Johansen, A., Davies, M.B.: How to form planetesimals from mm-sized chondrules and chondrule aggregates. A&A 579, A43 (2015). https://doi.org/10.1051/0004-6361/201425120

    Article  ADS  Google Scholar 

  82. Casassus, S., Marino, S., Pérez, S., Roman, P., Dunhill, A., Armitage, P.J., Cuadra, J., Wootten, A., van der Plas, G., Cieza, L., Moral, V., Christiaens, V., Montesinos, M.: Accretion kinematics through the warped transition disk in HD142527 from resolved CO(6–5) observations. ApJ 811, 92 (2015). https://doi.org/10.1088/0004-637X/811/2/92

    Article  ADS  Google Scholar 

  83. Casassus, S., van der Plas, G., M, S.P., Dent, W.R.F., Fomalont, E., Hagelberg, J., Hales, A., Jordán, A., Mawet, D., Ménard, F., Wootten, A., Wilner, D., Hughes, A.M., Schreiber, M.R., Girard, J.H., Ercolano, B., Canovas, H., Román, P.E., Salinas, V.: Flows of gas through a protoplanetary gap. Nature  493, 191–194 (2013). https://doi.org/10.1038/nature11769

  84. Cha, S.H., Nayakshin, S.: A numerical simulation of a ‘Super-Earth’ core delivery from 100 to 8 AU. MNRAS 415, 3319–3334 (2011). https://doi.org/10.1111/j.1365-2966.2011.18953.x

    Article  ADS  Google Scholar 

  85. Chandrasekhar, S.: Hydrodynamic and hydromagnetic stability (1961)

    Google Scholar 

  86. Chang, P., Oishi, J.S.: On the stability of dust-laden protoplanetary vortices. ApJ 721, 1593–1602 (2010). https://doi.org/10.1088/0004-637X/721/2/1593

    Article  ADS  Google Scholar 

  87. Chauvin, G., Vigan, A., Bonnefoy, M., Desidera, S., Bonavita, M., Mesa, D., Boccaletti, A., Buenzli, E., Carson, J., Delorme, P., Hagelberg, J., Montagnier, G., Mordasini, C., Quanz, S.P., Segransan, D., Thalmann, C., Beuzit, J.L., Biller, B., Covino, E., Feldt, M., Girard, J., Gratton, R., Henning, T., Kasper, M., Lagrange, A.M., Messina, S., Meyer, M., Mouillet, D., Moutou, C., Reggiani, M., Schlieder, J.E., Zurlo, A.: The VLT/NaCo large program to probe the occurrence of exoplanets and brown dwarfs at wide orbits. II. Survey description, results, and performances. A&A 573, A127 (2015). https://doi.org/10.1051/0004-6361/201423564

  88. Chavanis, P.H.: Trapping of dust by coherent vortices in the solar nebula. A&A 356, 1089–1111 (2000)

    ADS  Google Scholar 

  89. Chiang, E., Youdin, A.N.: Forming planetesimals in solar and extrasolar nebulae. Annu. Rev. Earth Planet. Sci. 38, 493–522 (2010). https://doi.org/10.1146/annurev-earth-040809-152513

    Article  ADS  Google Scholar 

  90. Chiang, E.I., Goldreich, P.: Spectral energy distributions of T Tauri stars with passive circumstellar disks. ApJ 490, 368–376 (1997)

    Article  ADS  Google Scholar 

  91. Ciesla, F.J., Cuzzi, J.N.: The evolution of the water distribution in a viscous protoplanetary disk. Icarus 181, 178–204 (2006). https://doi.org/10.1016/j.icarus.2005.11.009

    Article  ADS  Google Scholar 

  92. Clarke, C.J.: The photoevaporation of discs around young stars in massive clusters. MNRAS 376, 1350–1356 (2007). https://doi.org/10.1111/j.1365-2966.2007.11547.x

    Article  ADS  Google Scholar 

  93. Clarke, C.J.: Pseudo-viscous modelling of self-gravitating discs and the formation of low mass ratio binaries. MNRAS 396, 1066–1074 (2009). https://doi.org/10.1111/j.1365-2966.2009.14774.x

    Article  ADS  Google Scholar 

  94. Clarke, C.J., Armitage, P.J., Smith, K.W., Pringle, J.E.: Magnetically modulated accretion in T Tauri stars. MNRAS 273, 639–642 (1995)

    Article  ADS  Google Scholar 

  95. Clarke, C.J., Gendrin, A., Sotomayor, M.: The dispersal of circumstellar discs: the role of the ultraviolet switch. MNRAS 328, 485–491 (2001). https://doi.org/10.1046/j.1365-8711.2001.04891.x

    Article  ADS  Google Scholar 

  96. Clarke, C.J., Pringle, J.E.: The diffusion of contaminant through an accretion disc. MNRAS 235, 365–373 (1988)

    Article  ADS  Google Scholar 

  97. Clarke, C.J., Syer, D.: Low-mass companions to T Tauri stars: a mechanism for rapid-rise FU Orionis outbursts. MNRAS 278, L23–L27 (1996)

    Article  ADS  Google Scholar 

  98. Cleeves, L.I., Bergin, E.A., Qi, C., Adams, F.C., Öberg, K.I.: Constraining the X-ray and cosmic-ray ionization chemistry of the TW Hya protoplanetary disk: evidence for a sub-interstellar cosmic-ray rate. ApJ 799, 204 (2015). https://doi.org/10.1088/0004-637X/799/2/204

    Article  ADS  Google Scholar 

  99. Cody, A.M., Stauffer, J., Baglin, A., Micela, G., Rebull, L.M., Flaccomio, E., Morales-Calderón, M., Aigrain, S., Bouvier, J., Hillenbrand, L.A., Gutermuth, R., Song, I., Turner, N., Alencar, S.H.P., Zwintz, K., Plavchan, P., Carpenter, J., Findeisen, K., Carey, S., Terebey, S., Hartmann, L., Calvet, N., Teixeira, P., Vrba, F.J., Wolk, S., Covey, K., Poppenhaeger, K., Günther, H.M., Forbrich, J., Whitney, B., Affer, L., Herbst, W., Hora, J., Barrado, D., Holtzman, J., Marchis, F., Wood, K., Medeiros Guimarães, M., Lillo Box, J., Gillen, E., McQuillan, A., Espaillat, C., Allen, L., D’Alessio, P., Favata, F.: CSI 2264: simultaneous optical and infrared light curves of young disk-bearing stars in NGC 2264 with CoRoT and Spitzer—evidence for multiple origins of variability. AJ 147, 82 (2014). https://doi.org/10.1088/0004-6256/147/4/82

  100. Coleman, M.S.B., Kotko, I., Blaes, O., Lasota, J.P., Hirose, S.: Dwarf nova outbursts with magnetorotational turbulence. MNRAS 462, 3710–3726 (2016). https://doi.org/10.1093/mnras/stw1908

    Article  ADS  Google Scholar 

  101. Connolly, H.C., Jones, R.H.: Chondrules: the canonical and noncanonical views. J. Geophys. Res. (Planets) 121, 1885–1899 (2016). https://doi.org/10.1002/2016JE005113

    Article  ADS  Google Scholar 

  102. Cossins, P., Lodato, G., Clarke, C.: The effects of opacity on gravitational stability in protoplanetary discs. MNRAS 401, 2587–2598 (2010). https://doi.org/10.1111/j.1365-2966.2009.15835.x

    Article  ADS  Google Scholar 

  103. Cossins, P., Lodato, G., Clarke, C.J.: Characterizing the gravitational instability in cooling accretion discs. MNRAS 393, 1157–1173 (2009). https://doi.org/10.1111/j.1365-2966.2008.14275.x

    Article  ADS  Google Scholar 

  104. Curry, C., Pudritz, R.E.: On the global stability of magnetized accretion disks. II. Vertical and Azimuthal magnetic fields. ApJ 453, 697 (1995). https://doi.org/10.1086/176431

  105. D’Angelo, C.R., Spruit, H.C.: Episodic accretion on to strongly magnetic stars. MNRAS 406, 1208–1219 (2010). https://doi.org/10.1111/j.1365-2966.2010.16749.x

    Article  ADS  Google Scholar 

  106. D’Angelo, C.R., Spruit, H.C.: Accretion discs trapped near corotation. MNRAS 420, 416–429 (2012). https://doi.org/10.1111/j.1365-2966.2011.20046.x

    Article  ADS  Google Scholar 

  107. Davis, S.W., Stone, J.M., Pessah, M.E.: Sustained magnetorotational turbulence in local simulations of stratified disks with zero net magnetic flux. ApJ 713, 52–65 (2010). https://doi.org/10.1088/0004-637X/713/1/52

    Article  ADS  Google Scholar 

  108. de Val-Borro, M., Artymowicz, P., D’Angelo, G., Peplinski, A.: Vortex generation in protoplanetary disks with an embedded giant planet. A&A 471, 1043–1055 (2007). https://doi.org/10.1051/0004-6361:20077169

    Article  ADS  Google Scholar 

  109. Deng, H., Mayer, L., Meru, F.: Convergence of the critical cooling rate for protoplanetary disk fragmentation achieved: the key role of numerical dissipation of angular momentum. ApJ 847, 43 (2017). https://doi.org/10.3847/1538-4357/aa872b

    Article  ADS  Google Scholar 

  110. Desch, S.J.: Linear analysis of the magnetorotational instability, including ambipolar diffusion, with application to protoplanetary disks. ApJ 608, 509–525 (2004). https://doi.org/10.1086/392527

    Article  ADS  Google Scholar 

  111. Dittrich, K., Klahr, H., Johansen, A.: Gravoturbulent planetesimal formation: the positive effect of long-lived zonal flows. ApJ 763, 117 (2013). https://doi.org/10.1088/0004-637X/763/2/117

    Article  ADS  Google Scholar 

  112. D’Orazio, D.J., Haiman, Z., MacFadyen, A.: Accretion into the central cavity of a circumbinary disc. MNRAS 436, 2997–3020 (2013). https://doi.org/10.1093/mnras/stt1787

    Article  ADS  Google Scholar 

  113. Draine, B.T.: Photoelectric heating of interstellar gas. ApJs 36, 595–619 (1978). https://doi.org/10.1086/190513

    Article  ADS  Google Scholar 

  114. Draine, B.T.: On the submillimeter opacity of protoplanetary disks. ApJ 636, 1114–1120 (2006). https://doi.org/10.1086/498130

    Article  ADS  Google Scholar 

  115. Draine, B.T., Roberge, W.G., Dalgarno, A.: Magnetohydrodynamic shock waves in molecular clouds. ApJ 264, 485–507 (1983). https://doi.org/10.1086/160617

    Article  ADS  Google Scholar 

  116. Draine, B.T., Sutin, B.: Collisional charging of interstellar grains. ApJ 320, 803–817 (1987). https://doi.org/10.1086/165596

    Article  ADS  Google Scholar 

  117. Dubrulle, B., Morfill, G., Sterzik, M.: The dust subdisk in the protoplanetary nebula. Icarus 114, 237–246 (1995). https://doi.org/10.1006/icar.1995.1058

    Article  ADS  Google Scholar 

  118. Dutrey, A., Semenov, D., Chapillon, E., Gorti, U., Guilloteau, S., Hersant, F., Hogerheijde, M., Hughes, M., Meeus, G., Nomura, H., Piétu, V., Qi, C., Wakelam, V.: Physical and Chemical Structure of Planet-Forming Disks Probed by Millimeter Observations and Modeling. Protostars and Planets VI, pp. 317–338 (2014)

    Google Scholar 

  119. Eckhardt, B., Schneider, T.M., Hof, B., Westerweel, J.: Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 39, 447–468 (2007). https://doi.org/10.1146/annurev.fluid.39.050905.110308

    Article  ADS  MathSciNet  MATH  Google Scholar 

  120. Edlund, E.M., Ji, H.: Nonlinear stability of laboratory quasi-Keplerian flows. Phys. Rev. E 89(2), 021004 (2014). https://doi.org/10.1103/PhysRevE.89.021004

    Article  ADS  Google Scholar 

  121. Eisner, J.A., Hillenbrand, L.A., Carpenter, J.M., Wolf, S.: Constraining the evolutionary stage of Class I protostars: multiwavelength observations and modeling. ApJ 635, 396–421 (2005). https://doi.org/10.1086/497161

    Article  ADS  Google Scholar 

  122. Ercolano, B., Barlow, M.J., Storey, P.J.: The dusty MOCASSIN: fully self-consistent 3D photoionization and dust radiative transfer models. MNRAS 362, 1038–1046 (2005). https://doi.org/10.1111/j.1365-2966.2005.09381.x

    Article  ADS  Google Scholar 

  123. Ercolano, B., Glassgold, A.E.: X-ray ionization rates in protoplanetary discs. MNRAS 436, 3446–3450 (2013). https://doi.org/10.1093/mnras/stt1826

    Article  ADS  Google Scholar 

  124. Espaillat, C., Muzerolle, J., Najita, J., Andrews, S., Zhu, Z., Calvet, N., Kraus, S., Hashimoto, J., Kraus, A., D’Alessio, P.: An Observational Perspective of Transitional Disks. Protostars and Planets VI, pp. 497–520 (2014)

    Google Scholar 

  125. Evans II, N.J., Dunham, M.M., Jørgensen, J.K., Enoch, M.L., Merín, B., van Dishoeck, E.F., Alcalá, J.M., Myers, P.C., Stapelfeldt, K.R., Huard, T.L., Allen, L.E., Harvey, P.M., van Kempen, T., Blake, G.A., Koerner, D.W., Mundy, L.G., Padgett, D.L., Sargent, A.I.: The Spitzer c2d legacy results: star-formation rates and efficiencies; evolution and lifetimes. ApJs 181, 321–350 (2009). https://doi.org/10.1088/0067-0049/181/2/321

    Article  ADS  Google Scholar 

  126. Faure, J., Fromang, S., Latter, H., Meheut, H.: Vortex cycles at the inner edges of dead zones in protoplanetary disks. A&A 573, A132 (2015). https://doi.org/10.1051/0004-6361/201424162

    Article  ADS  Google Scholar 

  127. Fedele, D., Carney, M., Hogerheijde, M.R., Walsh, C., Miotello, A., Klaassen, P., Bruderer, S., Henning, T., van Dishoeck, E.F.: ALMA unveils rings and gaps in the protoplanetary system \(<\)ASTROBJ\(>\)HD 169142\(</\)ASTROBJ\(>\): signatures of two giant protoplanets. A&A 600, A72 (2017). https://doi.org/10.1051/0004-6361/201629860

  128. Federrath, C., Banerjee, S.: The density structure and star formation rate of non-isothermal polytropic turbulence. MNRAS 448, 3297–3313 (2015). https://doi.org/10.1093/mnras/stv180

    Article  ADS  Google Scholar 

  129. Flaherty, K.M., Hughes, A.M., Rose, S.C., Simon, J.B., Qi, C., Andrews, S.M., Kóspál, Á., Wilner, D.J., Chiang, E., Armitage, P.J., Bai, X.N.: A three-dimensional view of turbulence: constraints on turbulent motions in the HD 163296 protoplanetary disk using DCO\(^{+}\). ApJ  843, 150 (2017). https://doi.org/10.3847/1538-4357/aa79f9

  130. Flaherty, K.M., Hughes, A.M., Rosenfeld, K.A., Andrews, S.M., Chiang, E., Simon, J.B., Kerzner, S., Wilner, D.J.: Weak turbulence in the HD 163296 protoplanetary disk revealed by ALMA CO observations. ApJ 813, 99 (2015). https://doi.org/10.1088/0004-637X/813/2/99

    Article  ADS  Google Scholar 

  131. Fleming, T., Stone, J.M.: Local magnetohydrodynamic models of layered accretion disks. ApJ 585, 908–920 (2003). https://doi.org/10.1086/345848

    Article  ADS  Google Scholar 

  132. Flock, M., Ruge, J.P., Dzyurkevich, N., Henning, T., Klahr, H., Wolf, S.: Gaps, rings, and non-axisymmetric structures in protoplanetary disks. From simulations to ALMA observations. A&A 574, A68 (2015). https://doi.org/10.1051/0004-6361/201424693

    Article  ADS  Google Scholar 

  133. Follette, K.B., Rameau, J., Dong, R., Pueyo, L., Close, L.M., Duchêne, G., Fung, J., Leonard, C., Macintosh, B., Males, J.R., Marois, C., Millar-Blanchaer, M.A., Morzinski, K.M., Mullen, W., Perrin, M., Spiro, E., Wang, J., Ammons, S.M., Bailey, V.P., Barman, T., Bulger, J., Chilcote, J., Cotten, T., De Rosa, R.J., Doyon, R., Fitzgerald, M.P., Goodsell, S.J., Graham, J.R., Greenbaum, A.Z., Hibon, P., Hung, L.W., Ingraham, P., Kalas, P., Konopacky, Q., Larkin, J.E., Maire, J., Marchis, F., Metchev, S., Nielsen, E.L., Oppenheimer, R., Palmer, D., Patience, J., Poyneer, L., Rajan, A., Rantakyrö, F.T., Savransky, D., Schneider, A.C., Sivaramakrishnan, A., Song, I., Soummer, R., Thomas, S., Vega, D., Wallace, J.K., Ward-Duong, K., Wiktorowicz, S., Wolff, S.: Complex spiral structure in the HD 100546 transitional disk as revealed by GPI and MagAO. AJ 153, 264 (2017). https://doi.org/10.3847/1538-3881/aa6d85

    Article  ADS  Google Scholar 

  134. Font, A.S., McCarthy, I.G., Johnstone, D., Ballantyne, D.R.: Photoevaporation of circumstellar disks around young stars. ApJ 607, 890–903 (2004). https://doi.org/10.1086/383518

    Article  ADS  Google Scholar 

  135. Forgan, D., Rice, K.: Stellar encounters in the context of outburst phenomena. MNRAS 402, 1349–1356 (2010). https://doi.org/10.1111/j.1365-2966.2009.15974.x

    Article  ADS  Google Scholar 

  136. Forgan, D., Rice, K., Cossins, P., Lodato, G.: The nature of angular momentum transport in radiative self-gravitating protostellar discs. MNRAS 410, 994–1006 (2011). https://doi.org/10.1111/j.1365-2966.2010.17500.x

    Article  ADS  Google Scholar 

  137. France, K., Schindhelm, E., Bergin, E.A., Roueff, E., Abgrall, H.: High-resolution ultraviolet radiation fields of classical T Tauri stars. ApJ 784, 127 (2014). https://doi.org/10.1088/0004-637X/784/2/127

    Article  ADS  Google Scholar 

  138. France, K., Schindhelm, E., Herczeg, G.J., Brown, A., Abgrall, H., Alexander, R.D., Bergin, E.A., Brown, J.M., Linsky, J.L., Roueff, E., Yang, H.: A Hubble Space telescope survey of H\(_{2}\) emission in the circumstellar environments of young stars. ApJ 756, 171 (2012). https://doi.org/10.1088/0004-637X/756/2/171

    Article  ADS  Google Scholar 

  139. Frank, J., King, A., Raine, D.J.: Accretion Power in Astrophysics, 3rd ed. (2002)

    Google Scholar 

  140. Fricke, K.: Instabilität stationärer Rotation in Sternen. Zeitschrift für Astrophysik 68, 317 (1968)

    ADS  Google Scholar 

  141. Fromang, S.: MRI-driven angular momentum transport in protoplanetary disks. In: Hennebelle, P., Charbonnel, P. (eds.) EAS Publications Series, vol. 62, pp. 95–142 (2013). https://doi.org/10.1051/eas/1362004

  142. Fromang, S., Latter, H., Lesur, G., Ogilvie, G.I.: Local outflows from turbulent accretion disks. A&A 552, A71 (2013). https://doi.org/10.1051/0004-6361/201220016

    Article  ADS  Google Scholar 

  143. Fromang, S., Papaloizou, J.: Dust settling in local simulations of turbulent protoplanetary disks. A&A 452, 751–762 (2006). https://doi.org/10.1051/0004-6361:20054612

    Article  ADS  Google Scholar 

  144. Fu, R.R., Weiss, B.P., Lima, E.A., Harrison, R.J., Bai, X.N., Desch, S.J., Ebel, D.S., Suavet, C., Wang, H., Glenn, D., Le Sage, D., Kasama, T., Walsworth, R.L., Kuan, A.T.: Solar nebula magnetic fields recorded in the semarkona meteorite. Science (2014). https://doi.org/10.1126/science.1258022. http://www.sciencemag.org/content/early/2014/11/12/science.1258022.abstract

  145. Fu, W., Li, H., Lubow, S., Li, S., Liang, E.: Effects of dust feedback on vortices in protoplanetary disks. ApJ 795, L39 (2014). https://doi.org/10.1088/2041-8205/795/2/L39

    Article  ADS  Google Scholar 

  146. Galicher, R., Marois, C., Macintosh, B., Zuckerman, B., Barman, T., Konopacky, Q., Song, I., Patience, J., Lafrenière, D., Doyon, R., Nielsen, E.L.: The international deep planet survey. II. The frequency of directly imaged giant exoplanets with stellar mass. A&A  594, A63 (2016). https://doi.org/10.1051/0004-6361/201527828

  147. Galvagni, M., Hayfield, T., Boley, A., Mayer, L., Roškar, R., Saha, P.: The collapse of protoplanetary clumps formed through disc instability: 3D simulations of the pre-dissociation phase. MNRAS 427, 1725–1740 (2012). https://doi.org/10.1111/j.1365-2966.2012.22096.x

    Article  ADS  Google Scholar 

  148. Gammie, C.F.: Layered accretion in T Tauri disks. ApJ 457, 355 (1996). https://doi.org/10.1086/176735

    Article  ADS  Google Scholar 

  149. Gammie, C.F.: Instabilities in circumstellar discs. In: Sellwood, J.A., Goodman, J. (eds.) Astrophysical Discs—An EC Summer School. Astronomical Society of the Pacific Conference Series, vol. 160, p. 122 (1999)

    Google Scholar 

  150. Gammie, C.F.: Nonlinear outcome of gravitational instability in cooling, gaseous disks. ApJ 553, 174–183 (2001). https://doi.org/10.1086/320631

    Article  ADS  Google Scholar 

  151. Garaud, P., Lin, D.N.C.: The effect of internal dissipation and surface irradiation on the structure of disks and the location of the snow line around Sun-like stars. ApJ 654, 606–624 (2007). https://doi.org/10.1086/509041

    Article  ADS  Google Scholar 

  152. Garufi, A., Quanz, S.P., Schmid, H.M., Mulders, G.D., Avenhaus, H., Boccaletti, A., Ginski, C., Langlois, M., Stolker, T., Augereau, J.C., Benisty, M., Lopez, B., Dominik, C., Gratton, R., Henning, T., Janson, M., Ménard, F., Meyer, M.R., Pinte, C., Sissa, E., Vigan, A., Zurlo, A., Bazzon, A., Buenzli, E., Bonnefoy, M., Brandner, W., Chauvin, G., Cheetham, A., Cudel, M., Desidera, S., Feldt, M., Galicher, R., Kasper, M., Lagrange, A.M., Lannier, J., Maire, A.L., Mesa, D., Mouillet, D., Peretti, S., Perrot, C., Salter, G., Wildi, F.: The SPHERE view of the planet-forming disk around HD 100546. A&A 588, A8 (2016). https://doi.org/10.1051/0004-6361/201527940

    Article  ADS  Google Scholar 

  153. Gibbons, P.G., Mamatsashvili, G.R., Rice, W.K.M.: Planetesimal formation in self-gravitating discs—the effects of particle self-gravity and back-reaction. MNRAS 442, 361–371 (2014). https://doi.org/10.1093/mnras/stu809

    Article  ADS  Google Scholar 

  154. Godon, P., Livio, M.: The formation and role of vortices in protoplanetary disks. ApJ 537, 396–404 (2000). https://doi.org/10.1086/309019

    Article  ADS  Google Scholar 

  155. Goldreich, P., Goodman, J., Narayan, R.: The stability of accretion tori. I—Long-wavelength modes of slender tori. MNRAS 221, 339–364 (1986)

    Google Scholar 

  156. Goldreich, P., Schubert, G.: Differential rotation in stars. ApJ 150, 571 (1967). https://doi.org/10.1086/149360

    Article  ADS  Google Scholar 

  157. Goodman, A.A., Benson, P.J., Fuller, G.A., Myers, P.C.: Dense cores in dark clouds. VIII—Velocity gradients. ApJ 406, 528–547 (1993). https://doi.org/10.1086/172465

    Article  ADS  Google Scholar 

  158. Gorti, U., Dullemond, C.P., Hollenbach, D.: Time evolution of viscous circumstellar disks due to photoevaporation by far-ultraviolet, extreme-ultraviolet, and X-ray radiation from the central star. ApJ 705, 1237–1251 (2009). https://doi.org/10.1088/0004-637X/705/2/1237

    Article  ADS  Google Scholar 

  159. Gorti, U., Hollenbach, D.: Photoevaporation of circumstellar disks by far-ultraviolet, extreme-ultraviolet and X-ray radiation from the central star. ApJ 690, 1539–1552 (2009). https://doi.org/10.1088/0004-637X/690/2/1539

    Article  ADS  Google Scholar 

  160. Gorti, U., Hollenbach, D., Dullemond, C.P.: The impact of dust evolution and photoevaporation on disk dispersal. ApJ 804, 29 (2015). https://doi.org/10.1088/0004-637X/804/1/29

    Article  ADS  Google Scholar 

  161. Grady, C.A., Muto, T., Hashimoto, J., Fukagawa, M., Currie, T., Biller, B., Thalmann, C., Sitko, M.L., Russell, R., Wisniewski, J., Dong, R., Kwon, J., Sai, S., Hornbeck, J., Schneider, G., Hines, D., Moro Martín, A., Feldt, M., Henning, T., Pott, J.U., Bonnefoy, M., Bouwman, J., Lacour, S., Mueller, A., Juhász, A., Crida, A., Chauvin, G., Andrews, S., Wilner, D., Kraus, A., Dahm, S., Robitaille, T., Jang-Condell, H., Abe, L., Akiyama, E., Brandner, W., Brandt, T., Carson, J., Egner, S., Follette, K.B., Goto, M., Guyon, O., Hayano, Y., Hayashi, M., Hayashi, S., Hodapp, K., Ishii, M., Iye, M., Janson, M., Kandori, R., Knapp, G., Kudo, T., Kusakabe, N., Kuzuhara, M., Mayama, S., McElwain, M., Matsuo, T., Miyama, S., Morino, J.I., Nishimura, T., Pyo, T.S., Serabyn, G., Suto, H., Suzuki, R., Takami, M., Takato, N., Terada, H., Tomono, D., Turner, E., Watanabe, M., Yamada, T., Takami, H., Usuda, T., Tamura, M.: Spiral arms in the asymmetrically illuminated disk of MWC 758 and constraints on giant planets. ApJ 762, 48 (2013). https://doi.org/10.1088/0004-637X/762/1/48

    Article  ADS  Google Scholar 

  162. Gressel, O., Turner, N.J., Nelson, R.P., McNally, C.P.: Global simulations of protoplanetary disks with ohmic resistivity and ambipolar diffusion. ApJ 801, 84 (2015). https://doi.org/10.1088/0004-637X/801/2/84

    Article  ADS  Google Scholar 

  163. Güdel, M., Briggs, K.R., Arzner, K., Audard, M., Bouvier, J., Feigelson, E.D., Franciosini, E., Glauser, A., Grosso, N., Micela, G., Monin, J.L., Montmerle, T., Padgett, D.L., Palla, F., Pillitteri, I., Rebull, L., Scelsi, L., Silva, B., Skinner, S.L., Stelzer, B., Telleschi, A.: The XMM-Newton extended survey of the Taurus molecular cloud (XEST). A&A 468, 353–377 (2007). https://doi.org/10.1051/0004-6361:20065724

    Article  ADS  Google Scholar 

  164. Guilet, J., Ogilvie, G.I.: Transport of magnetic flux and the vertical structure of accretion discs—I. Uniform diffusion coefficients. MNRAS 424, 2097–2117 (2012). https://doi.org/10.1111/j.1365-2966.2012.21361.x

    Article  ADS  Google Scholar 

  165. Guilet, J., Ogilvie, G.I.: Global evolution of the magnetic field in a thin disc and its consequences for protoplanetary systems. MNRAS 441, 852–868 (2014). https://doi.org/10.1093/mnras/stu532

    Article  ADS  Google Scholar 

  166. Gullbring, E., Calvet, N., Muzerolle, J., Hartmann, L.: The structure and emission of the accretion shock in T Tauri stars. II. The ultraviolet-continuum emission. ApJ 544, 927–932 (2000). https://doi.org/10.1086/317253

    Article  ADS  Google Scholar 

  167. Gullbring, E., Hartmann, L., Briceño, C., Calvet, N.: Disk accretion rates for T Tauri stars. ApJ 492, 323–341 (1998). https://doi.org/10.1086/305032

    Article  ADS  Google Scholar 

  168. Hōshi, R.: Accretion model for outbursts of dwarf nova. Prog. Theor. Phys. 61, 1307–1319 (1979). https://doi.org/10.1143/PTP.61.1307

    Article  ADS  Google Scholar 

  169. Haghighipour, N., Boss, A.P.: On pressure gradients and rapid migration of solids in a nonuniform solar nebula. ApJ 583, 996–1003 (2003). https://doi.org/10.1086/345472

    Article  ADS  Google Scholar 

  170. Haisch Jr., K.E., Lada, E.A., Lada, C.J.: Disk frequencies and lifetimes in young clusters. ApJ 553, L153–L156 (2001). https://doi.org/10.1086/320685

    Article  ADS  Google Scholar 

  171. Hartmann, L., Calvet, N., Gullbring, E., D’Alessio, P.: Accretion and the evolution of T Tauri disks. ApJ 495, 385–400 (1998). https://doi.org/10.1086/305277

    Article  ADS  Google Scholar 

  172. Hartmann, L., Kenyon, S.J.: The FU Orionis phenomenon. ARA&A 34, 207–240 (1996). https://doi.org/10.1146/annurev.astro.34.1.207

  173. Hawley, J.F., Gammie, C.F., Balbus, S.A.: Local three-dimensional magnetohydrodynamic simulations of accretion disks. ApJ 440, 742 (1995). https://doi.org/10.1086/175311

    Article  ADS  Google Scholar 

  174. Hawley, J.F., Stone, J.M.: Nonlinear evolution of the magnetorotational instability in ion-neutral disks. ApJ 501, 758–771 (1998). https://doi.org/10.1086/305849

    Article  ADS  Google Scholar 

  175. Hayashi, C.: Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Suppl. 70, 35–53 (1981). https://doi.org/10.1143/PTPS.70.35

    Article  ADS  Google Scholar 

  176. Haynes, D.R., Tro, N.J., George, S.M.: Condensation and evaporation of H\({}_2\)O on ice surfaces. J. Phys. Chem. 96, 8502–8509 (1992)

    Article  ADS  Google Scholar 

  177. Henning, T., Semenov, D.: Chemistry in protoplanetary disks. Chem. Rev. 113, 9016–9042 (2013). https://doi.org/10.1021/cr400128p

    Article  Google Scholar 

  178. Herbig, G.H.: Eruptive phenomena in early stellar evolution. ApJ 217, 693–715 (1977). https://doi.org/10.1086/155615

    Article  ADS  Google Scholar 

  179. Herbig, G.H.: History and spectroscopy of EXor candidates. AJ 135, 637–648 (2008). https://doi.org/10.1088/0004-6256/135/2/637

    Article  ADS  Google Scholar 

  180. Herczeg, G.J., Hillenbrand, L.A.: UV excess measures of accretion onto young very low mass stars and brown dwarfs. ApJ 681, 594–625 (2008). https://doi.org/10.1086/586728

    Article  ADS  Google Scholar 

  181. Hernández, J., Hartmann, L., Megeath, T., Gutermuth, R., Muzerolle, J., Calvet, N., Vivas, A.K., Briceño, C., Allen, L., Stauffer, J., Young, E., Fazio, G.: A Spitzer space telescope study of disks in the young \(\sigma \) Orionis cluster. ApJ 662, 1067–1081 (2007). https://doi.org/10.1086/513735

    Article  ADS  Google Scholar 

  182. Hillenbrand, L.A., Findeisen, K.P.: A simple calculation in service of constraining the rate of FU Orionis outburst events from photometric monitoring surveys. ApJ 808, 68 (2015). https://doi.org/10.1088/0004-637X/808/1/68

    Article  ADS  Google Scholar 

  183. Hirose, S., Blaes, O., Krolik, J.H., Coleman, M.S.B., Sano, T.: Convection causes enhanced magnetic turbulence in accretion disks in outburst. ApJ 787, 1 (2014). https://doi.org/10.1088/0004-637X/787/1/1

    Article  ADS  Google Scholar 

  184. Hirose, S., Turner, N.J.: Heating and cooling protostellar disks. ApJ 732, L30 (2011). https://doi.org/10.1088/2041-8205/732/2/L30

    Article  ADS  Google Scholar 

  185. Hogerheijde, M.R., Bergin, E.A., Brinch, C., Cleeves, L.I., Fogel, J.K.J., Blake, G.A., Dominik, C., Lis, D.C., Melnick, G., Neufeld, D., Panić, O., Pearson, J.C., Kristensen, L., Yıldız, U.A., van Dishoeck, E.F.: Detection of the water reservoir in a forming planetary system. Science 334, 338 (2011). https://doi.org/10.1126/science.1208931

    Article  ADS  Google Scholar 

  186. Hollenbach, D., Johnstone, D., Lizano, S., Shu, F.: Photoevaporation of disks around massive stars and application to ultracompact H II regions. ApJ 428, 654–669 (1994). https://doi.org/10.1086/174276

    Article  ADS  Google Scholar 

  187. Hopkins, P.F.: A new class of accurate, mesh-free hydrodynamic simulation methods. MNRAS 450, 53–110 (2015). https://doi.org/10.1093/mnras/stv195

    Article  ADS  Google Scholar 

  188. Ilgner, M., Nelson, R.P.: On the ionisation fraction in protoplanetary disks. I. Comparing different reaction networks. A&A 445, 205–222 (2006). https://doi.org/10.1051/0004-6361:20053678

    Article  ADS  Google Scholar 

  189. Illarionov, A.F., Sunyaev, R.A.: Why the number of galactic X-ray stars is so small? A&A 39, 185 (1975)

    ADS  Google Scholar 

  190. Inaba, S., Barge, P.: Dusty vortices in protoplanetary disks. ApJ 649, 415–427 (2006). https://doi.org/10.1086/506427

    Article  ADS  Google Scholar 

  191. Ingleby, L., Calvet, N., Hernández, J., Briceño, C., Espaillat, C., Miller, J., Bergin, E., Hartmann, L.: Evolution of X-ray and far-ultraviolet disk-dispersing radiation fields. AJ 141, 127 (2011). https://doi.org/10.1088/0004-6256/141/4/127

    Article  ADS  Google Scholar 

  192. Inutsuka, S.I., Sano, T.: Self-sustained ionization and vanishing dead zones in protoplanetary disks. ApJ  628, L155–L158 (2005). https://doi.org/10.1086/432796

  193. Isella, A., Guidi, G., Testi, L., Liu, S., Li, H., Li, S., Weaver, E., Boehler, Y., Carperter, J.M., De Gregorio-Monsalvo, I., Manara, C.F., Natta, A., Pérez, L.M., Ricci, L., Sargent, A., Tazzari, M., Turner, N.: Ringed structures of the HD 163296 protoplanetary disk revealed by ALMA. Phys. Rev. Lett. 117(25), 251101 (2016). https://doi.org/10.1103/PhysRevLett.117.251101

  194. Isella, A., Pérez, L.M., Carpenter, J.M., Ricci, L., Andrews, S., Rosenfeld, K.: An Azimuthal asymmetry in the LkH\(\alpha \) 330 disk. ApJ 775, 30 (2013). https://doi.org/10.1088/0004-637X/775/1/30

    Article  ADS  Google Scholar 

  195. Jacquet, E., Balbus, S., Latter, H.: On linear dust-gas streaming instabilities in protoplanetary discs. MNRAS 415, 3591–3598 (2011). https://doi.org/10.1111/j.1365-2966.2011.18971.x

    Article  ADS  Google Scholar 

  196. Jin, L.: Damping of the shear instability in magnetized disks by ohmic diffusion. ApJ 457, 798 (1996). https://doi.org/10.1086/176774

    Article  ADS  Google Scholar 

  197. Johansen, A., Blum, J., Tanaka, H., Ormel, C., Bizzarro, M., Rickman, H.: The Multifaceted Planetesimal Formation Process. Protostars and Planets VI, pp. 547–570 (2014)

    Google Scholar 

  198. Johansen, A., Klahr, H., Henning, T.: High-resolution simulations of planetesimal formation in turbulent protoplanetary discs. A&A 529, A62 (2011). https://doi.org/10.1051/0004-6361/201015979

    Article  ADS  Google Scholar 

  199. Johansen, A., Mac Low, M.M., Lacerda, P., Bizzarro, M.: Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Sci. Adv. 1, 1500109 (2015). https://doi.org/10.1126/sciadv.1500109

    Article  ADS  Google Scholar 

  200. Johansen, A., Oishi, J.S., Mac Low, M.M., Klahr, H., Henning, T., Youdin, A.: Rapid planetesimal formation in turbulent circumstellar disks. Nature 448, 1022–1025 (2007). https://doi.org/10.1038/nature06086

    Article  ADS  Google Scholar 

  201. Johansen, A., Youdin, A.: Protoplanetary disk turbulence driven by the streaming instability: nonlinear saturation and particle concentration. ApJ 662, 627–641 (2007). https://doi.org/10.1086/516730

    Article  ADS  Google Scholar 

  202. Johansen, A., Youdin, A., Klahr, H.: Zonal flows and long-lived axisymmetric pressure bumps in magnetorotational turbulence. ApJ 697, 1269–1289 (2009). https://doi.org/10.1088/0004-637X/697/2/1269

    Article  ADS  Google Scholar 

  203. Johansen, A., Youdin, A., Mac Low, M.M.: Particle clumping and planetesimal formation depend strongly on metallicity. ApJ 704, L75–L79 (2009). https://doi.org/10.1088/0004-637X/704/2/L75

    Article  ADS  Google Scholar 

  204. Johnson, B.M., Gammie, C.F.: Nonlinear outcome of gravitational instability in disks with realistic cooling. ApJ 597, 131–141 (2003). https://doi.org/10.1086/378392

    Article  ADS  Google Scholar 

  205. Johnson, B.M., Gammie, C.F.: Vortices in thin, compressible, unmagnetized disks. ApJ 635, 149–156 (2005). https://doi.org/10.1086/497358

    Article  ADS  Google Scholar 

  206. Johnstone, C.P., Jardine, M., Gregory, S.G., Donati, J.F., Hussain, G.: Classical T Tauri stars: magnetic fields, coronae and star-disc interactions. MNRAS 437, 3202–3220 (2014). https://doi.org/10.1093/mnras/stt2107

    Article  ADS  Google Scholar 

  207. Joy, A.H.: T Tauri variable stars. ApJ 102, 168 (1945). https://doi.org/10.1086/144749

    Article  ADS  Google Scholar 

  208. Kama, M., Bruderer, S., van Dishoeck, E.F., Hogerheijde, M., Folsom, C.P., Miotello, A., Fedele, D., Belloche, A., Güsten, R., Wyrowski, F.: Volatile-carbon locking and release in protoplanetary disks. A study of TW Hya and HD 100546. A&A  592, A83 (2016). https://doi.org/10.1051/0004-6361/201526991

  209. Kamp, I., Dullemond, C.P.: The gas temperature in the surface layers of protoplanetary disks. ApJ 615, 991–999 (2004). https://doi.org/10.1086/424703

    Article  ADS  Google Scholar 

  210. Kamp, I., van Zadelhoff, G.J.: On the gas temperature in circumstellar disks around A stars. A&A 373, 641–656 (2001). https://doi.org/10.1051/0004-6361:20010629

    Article  ADS  Google Scholar 

  211. Kenyon, S.J., Hartmann, L.: Spectral energy distributions of T Tauri stars—disk flaring and limits on accretion. ApJ 323, 714–733 (1987). https://doi.org/10.1086/165866

    Article  ADS  Google Scholar 

  212. Kerswell, R.R.: Elliptical instability. Annu. Rev. Fluid Mech. 34, 83–113 (2002). https://doi.org/10.1146/annurev.fluid.34.081701.171829

    Article  ADS  MathSciNet  MATH  Google Scholar 

  213. Kida, S.: Motion of an elliptic vortex in a uniform shear flow. J. Phys. Soc. Jpn. 50, 3517–3520 (1981). https://doi.org/10.1143/JPSJ.50.3517

    Article  ADS  Google Scholar 

  214. Kim, K.H., Watson, D.M., Manoj, P., Forrest, W.J., Furlan, E., Najita, J., Sargent, B., Hernández, J., Calvet, N., Adame, L., Espaillat, C., Megeath, S.T., Muzerolle, J., McClure, M.K.: The Spitzer infrared spectrograph survey of protoplanetary disks in Orion A. I. Disk properties. ApJs 226, 8 (2016). https://doi.org/10.3847/0067-0049/226/1/8

    Article  ADS  Google Scholar 

  215. King, A.R., Pringle, J.E., Livio, M.: Accretion disc viscosity: how big is alpha? MNRAS 376, 1740–1746 (2007). https://doi.org/10.1111/j.1365-2966.2007.11556.x

    Article  ADS  Google Scholar 

  216. Klahr, H.H., Bodenheimer, P.: Turbulence in accretion disks: vorticity generation and angular momentum transport via the global baroclinic instability. ApJ 582, 869–892 (2003). https://doi.org/10.1086/344743

    Article  ADS  Google Scholar 

  217. Kley, W., Lin, D.N.C.: The structure of the boundary layer in protostellar disks. ApJ 461, 933 (1996). https://doi.org/10.1086/177115

    Article  ADS  Google Scholar 

  218. Kley, W., Nelson, R.P.: Planet-disk interaction and orbital evolution. ARA&A 50, 211–249 (2012). https://doi.org/10.1146/annurev-astro-081811-125523

  219. Koenigl, A.: Disk accretion onto magnetic T Tauri stars. ApJ 370, L39–L43 (1991). https://doi.org/10.1086/185972

    Article  ADS  Google Scholar 

  220. Koller, J., Li, H., Lin, D.N.C.: Vortices in the co-orbital region of an embedded protoplanet. ApJ 596, L91–L94 (2003). https://doi.org/10.1086/379032

    Article  ADS  Google Scholar 

  221. Königl, A., Salmeron, R.: The Effects of Large-Scale Magnetic Fields on Disk Formation and Evolution, pp. 283–352 (2011)

    Google Scholar 

  222. Kounkel, M., Hartmann, L., Loinard, L., Ortiz-León, G.N., Mioduszewski, A.J., Rodríguez, L.F., Dzib, S.A., Torres, R.M., Pech, G., Galli, P.A.B., Rivera, J.L., Boden, A.F., Evans II, N.J., Briceño, C., Tobin, J.J.: The Goulds Belt Distances Survey (GOBELINS) II. Distances and structure toward the Orion molecular clouds. ApJ  834, 142 (2017). https://doi.org/10.3847/1538-4357/834/2/142

  223. Kraichnan, R.H.: Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 1417–1423 (1967). https://doi.org/10.1063/1.1762301

    Article  ADS  MathSciNet  Google Scholar 

  224. Krasnopolsky, R., Li, Z.Y., Shang, H.: Disk formation in magnetized clouds enabled by the Hall effect. ApJ 733, 54 (2011). https://doi.org/10.1088/0004-637X/733/1/54

    Article  ADS  Google Scholar 

  225. Kratter, K., Lodato, G.: Gravitational instabilities in circumstellar disks. ARA&A 54, 271–311 (2016). https://doi.org/10.1146/annurev-astro-081915-023307

  226. Kratter, K.M., Matzner, C.D., Krumholz, M.R., Klein, R.I.: On the role of disks in the formation of stellar systems: a numerical parameter study of rapid accretion. ApJ 708, 1585–1597 (2010). https://doi.org/10.1088/0004-637X/708/2/1585

    Article  ADS  Google Scholar 

  227. Kratter, K.M., Murray-Clay, R.A., Youdin, A.N.: The runts of the litter: why planets formed through gravitational instability can only be failed binary stars. ApJ 710, 1375–1386 (2010). https://doi.org/10.1088/0004-637X/710/2/1375

    Article  ADS  Google Scholar 

  228. Kretke, K.A., Lin, D.N.C.: Grain retention and formation of planetesimals near the snow line in MRI-driven turbulent protoplanetary disks. ApJ 664, L55–L58 (2007). https://doi.org/10.1086/520718

    Article  ADS  Google Scholar 

  229. Kuiper, G.P.: On the origin of the solar system. Proc. Natl. Acad. Sci. 37, 1–14 (1951). https://doi.org/10.1073/pnas.37.1.1

    Article  ADS  Google Scholar 

  230. Kunz, M.W.: On the linear stability of weakly ionized, magnetized planar shear flows. MNRAS 385, 1494–1510 (2008). https://doi.org/10.1111/j.1365-2966.2008.12928.x

    Article  ADS  Google Scholar 

  231. Kunz, M.W., Balbus, S.A.: Ambipolar diffusion in the magnetorotational instability. MNRAS 348, 355–360 (2004). https://doi.org/10.1111/j.1365-2966.2004.07383.x

    Article  ADS  Google Scholar 

  232. Kunz, M.W., Lesur, G.: Magnetic self-organization in Hall-dominated magnetorotational turbulence. MNRAS 434, 2295–2312 (2013). https://doi.org/10.1093/mnras/stt1171

    Article  ADS  Google Scholar 

  233. Kurosawa, R., Romanova, M.M.: Spectral variability of classical T Tauri stars accreting in an unstable regime. MNRAS 431, 2673–2689 (2013). https://doi.org/10.1093/mnras/stt365

    Article  ADS  Google Scholar 

  234. Lada, C.J., Wilking, B.A.: The nature of the embedded population in the Rho Ophiuchi dark cloud—mid-infrared observations. ApJ 287, 610–621 (1984). https://doi.org/10.1086/162719

    Article  ADS  Google Scholar 

  235. Lai, D.: Magnetically driven warping, precession, and resonances in accretion disks. ApJ 524, 1030–1047 (1999). https://doi.org/10.1086/307850

    Article  ADS  Google Scholar 

  236. Larwood, J.D., Nelson, R.P., Papaloizou, J.C.B., Terquem, C.: The tidally induced warping, precession and truncation of accretion discs in binary systems: three-dimensional simulations. MNRAS 282, 597–613 (1996)

    Article  ADS  Google Scholar 

  237. Lasota, J.P.: The disc instability model of dwarf novae and low-mass X-ray binary transients. New Ast. Rev. 45, 449–508 (2001). https://doi.org/10.1016/S1387-6473(01)00112-9

    Article  ADS  Google Scholar 

  238. Latter, H.N., Papaloizou, J.: Local models of astrophysical discs. MNRAS 472, 1432–1446 (2017). https://doi.org/10.1093/mnras/stx2038

    Article  ADS  Google Scholar 

  239. Lecar, M., Podolak, M., Sasselov, D., Chiang, E.: On the location of the snow line in a protoplanetary disk. ApJ 640, 1115–1118 (2006). https://doi.org/10.1086/500287

    Article  ADS  Google Scholar 

  240. Lesur, G., Kunz, M.W., Fromang, S.: Thanatology in protoplanetary discs. The combined influence of ohmic, Hall, and ambipolar diffusion on dead zones. A&A  566, A56 (2014). https://doi.org/10.1051/0004-6361/201423660

  241. Lesur, G., Longaretti, P.Y.: On the relevance of subcritical hydrodynamic turbulence to accretion disk transport. A&A 444, 25–44 (2005). https://doi.org/10.1051/0004-6361:20053683

    Article  ADS  MATH  Google Scholar 

  242. Lesur, G., Ogilvie, G.I.: On the angular momentum transport due to vertical convection in accretion discs. MNRAS 404, L64–L68 (2010). https://doi.org/10.1111/j.1745-3933.2010.00836.x

    Article  ADS  Google Scholar 

  243. Lesur, G., Papaloizou, J.C.B.: On the stability of elliptical vortices in accretion discs. A&A 498, 1–12 (2009). https://doi.org/10.1051/0004-6361/200811577

    Article  ADS  MATH  Google Scholar 

  244. Lesur, G., Papaloizou, J.C.B.: The subcritical baroclinic instability in local accretion disc models. A&A 513, A60 (2010). https://doi.org/10.1051/0004-6361/200913594

    Article  ADS  MATH  Google Scholar 

  245. Lesur, G.R.J., Latter, H.: On the survival of zombie vortices in protoplanetary discs. MNRAS 462, 4549–4554 (2016). https://doi.org/10.1093/mnras/stw2172

    Article  ADS  Google Scholar 

  246. Levin, Y.: Starbursts near supermassive black holes: young stars in the Galactic Centre, and gravitational waves in LISA band. MNRAS 374, 515–524 (2007). https://doi.org/10.1111/j.1365-2966.2006.11155.x

    Article  ADS  Google Scholar 

  247. Li, H., Colgate, S.A., Wendroff, B., Liska, R.: Rossby wave instability of thin accretion disks. III. Nonlinear simulations. ApJ 551, 874–896 (2001). https://doi.org/10.1086/320241

    Article  ADS  Google Scholar 

  248. Li, H., Finn, J.M., Lovelace, R.V.E., Colgate, S.A.: Rossby wave instability of thin accretion disks. II. Detailed linear theory. ApJ 533, 1023–1034 (2000). https://doi.org/10.1086/308693

    Article  ADS  Google Scholar 

  249. Li, Z.Y., Banerjee, R., Pudritz, R.E., Jørgensen, J.K., Shang, H., Krasnopolsky, R., Maury, A.: The Earliest Stages of Star and Planet Formation: Core Collapse, and the Formation of Disks and Outflows. Protostars and Planets VI, pp. 173–194 (2014)

    Google Scholar 

  250. Liffman, K.: The gravitational radius of an irradiated disk. Publ. Aston. Soc. Aust. 20, 337–339 (2003). https://doi.org/10.1071/AS03019

    Article  ADS  Google Scholar 

  251. Lin, M.K.: Non-barotropic linear Rossby wave instability in three-dimensional disks. ApJ 765, 84 (2013). https://doi.org/10.1088/0004-637X/765/2/84

    Article  ADS  Google Scholar 

  252. Lin, M.K., Youdin, A.N.: Cooling requirements for the vertical shear instability in protoplanetary disks. ApJ 811, 17 (2015). https://doi.org/10.1088/0004-637X/811/1/17

    Article  ADS  Google Scholar 

  253. Lodato, G., Clarke, C.J.: Massive planets in FU Orionis discs: implications for thermal instability models. MNRAS 353, 841–852 (2004). https://doi.org/10.1111/j.1365-2966.2004.08112.x

    Article  ADS  Google Scholar 

  254. Lodato, G., Pringle, J.E.: Warp diffusion in accretion discs: a numerical investigation. MNRAS 381, 1287–1300 (2007). https://doi.org/10.1111/j.1365-2966.2007.12332.x

    Article  ADS  Google Scholar 

  255. Lodato, G., Rice, W.K.M.: Testing the locality of transport in self-gravitating accretion discs. MNRAS 351, 630–642 (2004). https://doi.org/10.1111/j.1365-2966.2004.07811.x

    Article  ADS  Google Scholar 

  256. Lodato, G., Rice, W.K.M.: Testing the locality of transport in self-gravitating accretion discs—II. The massive disc case. MNRAS 358, 1489–1500 (2005). https://doi.org/10.1111/j.1365-2966.2005.08875.x

    Article  ADS  Google Scholar 

  257. Lodders, K.: Solar system abundances and condensation temperatures of the elements. ApJ 591, 1220–1247 (2003). https://doi.org/10.1086/375492

    Article  ADS  Google Scholar 

  258. Loomis, R.A., Öberg, K.I., Andrews, S.M., MacGregor, M.A.: A multi-ringed, modestly inclined protoplanetary disk around AA Tau. ApJ 840, 23 (2017). https://doi.org/10.3847/1538-4357/aa6c63

    Article  ADS  Google Scholar 

  259. Lovelace, R.V.E., Li, H., Colgate, S.A., Nelson, A.F.: Rossby wave instability of Keplerian accretion disks. ApJ 513, 805–810 (1999). https://doi.org/10.1086/306900

    Article  ADS  Google Scholar 

  260. Lovelace, R.V.E., Rothstein, D.M., Bisnovatyi-Kogan, G.S.: Advection/diffusion of large-scale B field in accretion disks. ApJ 701, 885–890 (2009). https://doi.org/10.1088/0004-637X/701/2/885

    Article  ADS  Google Scholar 

  261. Lubow, S.H., Martin, R.G., Nixon, C.: Tidal torques on misaligned disks in binary systems. ApJ 800, 96 (2015). https://doi.org/10.1088/0004-637X/800/2/96

    Article  ADS  Google Scholar 

  262. Lubow, S.H., Ogilvie, G.I.: On the tilting of protostellar disks by resonant tidal effects. ApJ 538, 326–340 (2000). https://doi.org/10.1086/309101

    Article  ADS  Google Scholar 

  263. Lubow, S.H., Papaloizou, J.C.B., Pringle, J.E.: Magnetic field dragging in accretion discs. MNRAS 267, 235–240 (1994)

    Article  ADS  Google Scholar 

  264. Lubow, S.H., Papaloizou, J.C.B., Pringle, J.E.: On the stability of magnetic wind-driven accretion discs. MNRAS 268, 1010 (1994)

    Article  ADS  Google Scholar 

  265. Luhman, K.L., Allen, P.R., Espaillat, C., Hartmann, L., Calvet, N.: The disk population of the Taurus star-forming region. ApJs 186, 111–174 (2010). https://doi.org/10.1088/0067-0049/186/1/111

    Article  ADS  Google Scholar 

  266. Lynden-Bell, D.: On why discs generate magnetic towers and collimate jets. MNRAS 341, 1360–1372 (2003). https://doi.org/10.1046/j.1365-8711.2003.06506.x

    Article  ADS  Google Scholar 

  267. Lynden-Bell, D., Pringle, J.E.: The evolution of viscous discs and the origin of the nebular variables. MNRAS 168, 603–637 (1974)

    Article  ADS  Google Scholar 

  268. Lyra, W., Johansen, A., Klahr, H., Piskunov, N.: Embryos grown in the dead zone. Assembling the first protoplanetary cores in low mass self-gravitating circumstellar disks of gas and solids. A&A  491, L41–L44 (2008). https://doi.org/10.1051/0004-6361:200810626

  269. Lyra, W., Johansen, A., Zsom, A., Klahr, H., Piskunov, N.: Planet formation bursts at the borders of the dead zone in 2D numerical simulations of circumstellar disks. A&A 497, 869–888 (2009). https://doi.org/10.1051/0004-6361/200811265

    Article  ADS  Google Scholar 

  270. Lyra, W., Kuchner, M.: Formation of sharp eccentric rings in debris disks with gas but without planets. Nature 499, 184–187 (2013). https://doi.org/10.1038/nature12281

    Article  ADS  Google Scholar 

  271. Lyra, W., Mac Low, M.M.: Rossby wave instability at dead zone boundaries in three-dimensional resistive magnetohydrodynamical global models of protoplanetary disks. ApJ 756, 62 (2012). https://doi.org/10.1088/0004-637X/756/1/62

    Article  ADS  Google Scholar 

  272. Lyra, W., Turner, N.J., McNally, C.P.: Rossby wave instability does not require sharp resistivity gradients. A&A 574, A10 (2015). https://doi.org/10.1051/0004-6361/201424919

    Article  ADS  Google Scholar 

  273. Malygin, M.G., Klahr, H., Semenov, D., Henning, T., Dullemond, C.P.: Efficiency of thermal relaxation by radiative processes in protoplanetary discs: constraints on hydrodynamic turbulence. A&A 605, A30 (2017). https://doi.org/10.1051/0004-6361/201629933

    Article  ADS  Google Scholar 

  274. Manara, C.F., Fedele, D., Herczeg, G.J., Teixeira, P.S.: X-Shooter study of accretion in Chamaeleon I. A&A 585, A136 (2016). https://doi.org/10.1051/0004-6361/201527224

    Article  ADS  Google Scholar 

  275. Manara, C.F., Testi, L., Natta, A., Rosotti, G., Benisty, M., Ercolano, B., Ricci, L.: Gas content of transitional disks: a VLT/X-Shooter study of accretion and winds. A&A 568, A18 (2014). https://doi.org/10.1051/0004-6361/201323318

    Article  ADS  Google Scholar 

  276. Marcus, P.S., Pei, S., Jiang, C.H., Barranco, J.A., Hassanzadeh, P., Lecoanet, D.: Zombie vortex instability. I. A purely hydrodynamic instability to resurrect the dead zones of protoplanetary disks. ApJ  808, 87 (2015). https://doi.org/10.1088/0004-637X/808/1/87

  277. Marcus, P.S., Pei, S., Jiang, C.H., Hassanzadeh, P.: Three-dimensional vortices generated by self-replication in stably stratified rotating shear flows. Phys. Rev. Lett. 111(8), 084501 (2013). https://doi.org/10.1103/PhysRevLett.111.084501

  278. Marley, M.S., Fortney, J.J., Hubickyj, O., Bodenheimer, P., Lissauer, J.J.: On the luminosity of young Jupiters. ApJ 655, 541–549 (2007). https://doi.org/10.1086/509759

    Article  ADS  Google Scholar 

  279. Marois, C., Macintosh, B., Barman, T., Zuckerman, B., Song, I., Patience, J., Lafrenière, D., Doyon, R.: Direct imaging of multiple planets orbiting the star HR 8799. Science 322, 1348 (2008). https://doi.org/10.1126/science.1166585

    Article  ADS  Google Scholar 

  280. Marois, C., Zuckerman, B., Konopacky, Q.M., Macintosh, B., Barman, T.: Images of a fourth planet orbiting HR 8799. Nature 468, 1080–1083 (2010). https://doi.org/10.1038/nature09684

    Article  ADS  Google Scholar 

  281. Martin, R.G., Livio, M.: On the evolution of the snow line in protoplanetary discs. MNRAS 425, L6–L9 (2012). https://doi.org/10.1111/j.1745-3933.2012.01290.x

    Article  ADS  Google Scholar 

  282. Martin, R.G., Lubow, S.H.: The gravo-magneto limit cycle in accretion disks. ApJ 740, L6 (2011). https://doi.org/10.1088/2041-8205/740/1/L6

    Article  ADS  Google Scholar 

  283. Martin, R.G., Lubow, S.H.: Tidal truncation of circumplanetary discs. MNRAS 413, 1447–1461 (2011). https://doi.org/10.1111/j.1365-2966.2011.18228.x

    Article  ADS  Google Scholar 

  284. Martin, R.G., Lubow, S.H.: The gravo-magneto disc instability with a viscous dead zone. MNRAS 437, 682–689 (2014). https://doi.org/10.1093/mnras/stt1917

    Article  ADS  Google Scholar 

  285. Maslowe, S.A.: Critical layers in shear flows. Ann. Rev. Fluid Mech. 18, 405–432 (1986). https://doi.org/10.1146/annurev.fl.18.010186.002201

    Article  ADS  MathSciNet  MATH  Google Scholar 

  286. Matzner, C.D., Levin, Y.: Protostellar disks: formation, fragmentation, and the brown dwarf desert. ApJ 628, 817–831 (2005). https://doi.org/10.1086/430813

    Article  ADS  Google Scholar 

  287. McClure, M.K., Bergin, E.A., Cleeves, L.I., van Dishoeck, E.F., Blake, G.A., Evans II, N.J., Green, J.D., Henning, T., Öberg, K.I., Pontoppidan, K.M., Salyk, C.: Mass measurements in protoplanetary disks from hydrogen deuteride. ApJ 831, 167 (2016). https://doi.org/10.3847/0004-637X/831/2/167

    Article  ADS  Google Scholar 

  288. Meheut, H., Casse, F., Varniere, P., Tagger, M.: Rossby wave instability and three-dimensional vortices in accretion disks. A&A 516, A31 (2010). https://doi.org/10.1051/0004-6361/201014000

    Article  ADS  MATH  Google Scholar 

  289. Meru, F., Bate, M.R.: Non-convergence of the critical cooling time-scale for fragmentation of self-gravitating discs. MNRAS 411, L1–L5 (2011). https://doi.org/10.1111/j.1745-3933.2010.00978.x

    Article  ADS  Google Scholar 

  290. Meyer, F., Meyer-Hofmeister, E.: On the elusive cause of cataclysmic variable outbursts. A&A 104, L10 (1981)

    ADS  Google Scholar 

  291. Michael, S., Durisen, R.H., Boley, A.C.: Migration of gas giant planets in gravitationally unstable disks. ApJ 737, L42 (2011). https://doi.org/10.1088/2041-8205/737/2/L42

    Article  ADS  Google Scholar 

  292. Min, M., Dullemond, C.P., Kama, M., Dominik, C.: The thermal structure and the location of the snow line in the protosolar nebula: axisymmetric models with full 3-D radiative transfer. Icarus 212, 416–426 (2011). https://doi.org/10.1016/j.icarus.2010.12.002

    Article  ADS  Google Scholar 

  293. Miranda, R., Lai, D.: Tidal truncation of inclined circumstellar and circumbinary discs in young stellar binaries. MNRAS 452, 2396–2409 (2015). https://doi.org/10.1093/mnras/stv1450

    Article  ADS  Google Scholar 

  294. Molyarova, T., Akimkin, V., Semenov, D., Henning, T., Vasyunin, A., Wiebe, D.: Gas mass tracers in protoplanetary disks: CO is still the best. ArXiv e-prints (2017)

    Google Scholar 

  295. Momose, M., Morita, A., Fukagawa, M., Muto, T., Takeuchi, T., Hashimoto, J., Honda, M., Kudo, T., Okamoto, Y.K., Kanagawa, K.D., Tanaka, H., Grady, C.A., Sitko, M.L., Akiyama, E., Currie, T., Follette, K.B., Mayama, S., Kusakabe, N., Abe, L., Brandner, W., Brandt, T.D., Carson, J.C., Egner, S., Feldt, M., Goto, M., Guyon, O., Hayano, Y., Hayashi, M., Hayashi, S.S., Henning, T., Hodapp, K.W., Ishii, M., Iye, M., Janson, M., Kandori, R., Knapp, G.R., Kuzuhara, M., Kwon, J., Matsuo, T., McElwain, M.W., Miyama, S., Morino, J.I., Moro-Martin, A., Nishimura, T., Pyo, T.S., Serabyn, E., Suenaga, T., Suto, H., Suzuki, R., Takahashi, Y.H., Takami, M., Takato, N., Terada, H., Thalmann, C., Tomono, D., Turner, E.L., Watanabe, M., Wisniewski, J., Yamada, T., Takami, H., Usuda, T., Tamura, M.: Detailed structure of the outer disk around HD 169142 with polarized light in H-band. PASJ 67, 83 (2015). https://doi.org/10.1093/pasj/psv051

    Article  ADS  Google Scholar 

  296. Morbidelli, A., Chambers, J., Lunine, J.I., Petit, J.M., Robert, F., Valsecchi, G.B., Cyr, K.E.: Source regions and time scales for the delivery of water to Earth. Meteor. Planet. Sci. 35, 1309–1320 (2000). https://doi.org/10.1111/j.1945-5100.2000.tb01518.x

    Article  ADS  Google Scholar 

  297. Morfill, G.E.: Some cosmochemical consequences of a turbulent protoplanetary cloud. Icarus 53, 41–54 (1983). https://doi.org/10.1016/0019-1035(83)90019-2

    Article  ADS  Google Scholar 

  298. Muranushi, T., Okuzumi, S., Inutsuka, S.I.: Interdependence of electric discharge and magnetorotational instability in protoplanetary disks. ApJ  760, 56 (2012). https://doi.org/10.1088/0004-637X/760/1/56

  299. Muzerolle, J., Hillenbrand, L., Calvet, N., Briceño, C., Hartmann, L.: Accretion in young stellar/substellar objects. ApJ 592, 266–281 (2003). https://doi.org/10.1086/375704

    Article  ADS  Google Scholar 

  300. Nakagawa, Y., Sekiya, M., Hayashi, C.: Settling and growth of dust particles in a laminar phase of a low-mass solar nebula. Icarus 67, 375–390 (1986). https://doi.org/10.1016/0019-1035(86)90121-1

    Article  ADS  Google Scholar 

  301. Nayakshin, S., Lodato, G.: Fu Ori outbursts and the planet-disc mass exchange. MNRAS 426, 70–90 (2012). https://doi.org/10.1111/j.1365-2966.2012.21612.x

    Article  ADS  Google Scholar 

  302. Nelson, R.P., Gressel, O., Umurhan, O.M.: Linear and non-linear evolution of the vertical shear instability in accretion discs. MNRAS 435, 2610–2632 (2013). https://doi.org/10.1093/mnras/stt1475

    Article  ADS  Google Scholar 

  303. Nesvorný, D., Youdin, A.N., Richardson, D.C.: Formation of Kuiper belt binaries by gravitational collapse. AJ 140, 785–793 (2010). https://doi.org/10.1088/0004-6256/140/3/785

    Article  ADS  Google Scholar 

  304. Nixon, C., King, A.: Warp propagation in astrophysical discs. In: Haardt, F., Gorini, V., Moschella, U., Treves, Colpi, A.M. (eds.) Lecture Notes in Physics, vol. 905, p. 45. Springer, Berlin. (2016). https://doi.org/10.1007/978-3-319-19416-52

  305. Nixon, C.J., Pringle, J.E.: The observable effects of tidally induced warps in protostellar discs. MNRAS 403, 1887–1893 (2010). https://doi.org/10.1111/j.1365-2966.2010.16331.x

    Article  ADS  Google Scholar 

  306. O’dell, C.R., Wen, Z., Hu, X.: Discovery of new objects in the Orion nebula on HST images—shocks, compact sources, and protoplanetary disks. ApJ  410, 696–700 (1993). https://doi.org/10.1086/172786

  307. Ogilvie, G.I.: The non-linear fluid dynamics of a warped accretion disc. MNRAS 304, 557–578 (1999). https://doi.org/10.1046/j.1365-8711.1999.02340.x

    Article  ADS  Google Scholar 

  308. Ogilvie, G.I.: Non-linear fluid dynamics of eccentric discs. MNRAS 325, 231–248 (2001). https://doi.org/10.1046/j.1365-8711.2001.04416.x

    Article  ADS  Google Scholar 

  309. Ogilvie, G.I., Latter, H.N.: Local and global dynamics of warped astrophysical discs. MNRAS 433, 2403–2419 (2013). https://doi.org/10.1093/mnras/stt916

    Article  ADS  Google Scholar 

  310. Ogilvie, G.I., Livio, M.: Launching of jets and the vertical structure of accretion disks. ApJ 553, 158–173 (2001). https://doi.org/10.1086/320637

    Article  ADS  Google Scholar 

  311. Ogilvie, G.I., Pringle, J.E.: The non-axisymmetric instability of a cylindrical shear flow containing an azimuthal magnetic field. MNRAS 279, 152–164 (1996)

    Article  ADS  Google Scholar 

  312. Olofsson, J., Augereau, J.C., van Dishoeck, E.F., Merín, B., Grosso, N., Ménard, F., Blake, G.A., Monin, J.L.: C2D Spitzer-IRS spectra of disks around T Tauri stars. V. Spectral decomposition. A&A  520, A39 (2010). https://doi.org/10.1051/0004-6361/200913909

  313. Oppenheimer, M., Dalgarno, A.: The fractional ionization in dense interstellar clouds. ApJ 192, 29–32 (1974). https://doi.org/10.1086/153030

    Article  ADS  Google Scholar 

  314. Ormel, C.W., Cuzzi, J.N.: Closed-form expressions for particle relative velocities induced by turbulence. A&A 466, 413–420 (2007). https://doi.org/10.1051/0004-6361:20066899

    Article  ADS  MATH  Google Scholar 

  315. Owen, J.E., Armitage, P.J.: Importance of thermal diffusion in the gravomagnetic limit cycle. MNRAS 445, 2800–2809 (2014). https://doi.org/10.1093/mnras/stu1928

    Article  ADS  Google Scholar 

  316. Owen, J.E., Clarke, C.J., Ercolano, B.: On the theory of disc photoevaporation. MNRAS 422, 1880–1901 (2012). https://doi.org/10.1111/j.1365-2966.2011.20337.x

    Article  ADS  Google Scholar 

  317. Owen, J.E., Ercolano, B., Clarke, C.J., Alexander, R.D.: Radiation-hydrodynamic models of X-ray and EUV photoevaporating protoplanetary discs. MNRAS 401, 1415–1428 (2010). https://doi.org/10.1111/j.1365-2966.2009.15771.x

    Article  ADS  Google Scholar 

  318. Owen, J.E., Hudoba de Badyn, M., Clarke, C.J., Robins, L.: Characterizing thermal sweeping: a rapid disc dispersal mechanism. MNRAS  436, 1430–1438 (2013). https://doi.org/10.1093/mnras/stt1663

  319. Paardekooper, S.J.: Numerical convergence in self-gravitating shearing sheet simulations and the stochastic nature of disc fragmentation. MNRAS 421, 3286–3299 (2012). https://doi.org/10.1111/j.1365-2966.2012.20553.x

    Article  ADS  Google Scholar 

  320. Paardekooper, S.J., Mellema, G.: Planets opening dust gaps in gas disks. A&A 425, L9–L12 (2004). https://doi.org/10.1051/0004-6361:200400053

    Article  ADS  Google Scholar 

  321. Paczynski, B.: A model of accretion disks in close binaries. ApJ 216, 822–826 (1977). https://doi.org/10.1086/155526

    Article  ADS  Google Scholar 

  322. Paczynski, B.: A model of selfgravitating accretion disk. Acta Astron. 28, 91–109 (1978)

    ADS  Google Scholar 

  323. Papaloizou, J., Pringle, J.E.: Tidal torques on accretion discs in close binary systems. MNRAS 181, 441–454 (1977)

    Article  ADS  Google Scholar 

  324. Papaloizou, J.C.B., Pringle, J.E.: The time-dependence of non-planar accretion discs. MNRAS 202, 1181–1194 (1983)

    Article  ADS  Google Scholar 

  325. Papaloizou, J.C.B., Pringle, J.E.: The dynamical stability of differentially rotating discs with constant specific angular momentum. MNRAS 208, 721–750 (1984)

    Article  ADS  Google Scholar 

  326. Pascucci, I., Ricci, L., Gorti, U., Hollenbach, D., Hendler, N.P., Brooks, K.J., Contreras, Y.: Low extreme-ultraviolet luminosities impinging on protoplanetary disks. ApJ 795, 1 (2014). https://doi.org/10.1088/0004-637X/795/1/1

    Article  ADS  Google Scholar 

  327. Pérez, L.M., Carpenter, J.M., Andrews, S.M., Ricci, L., Isella, A., Linz, H., Sargent, A.I., Wilner, D.J., Henning, T., Deller, A.T., Chandler, C.J., Dullemond, C.P., Lazio, J., Menten, K.M., Corder, S.A., Storm, S., Testi, L., Tazzari, M., Kwon, W., Calvet, N., Greaves, J.S., Harris, R.J., Mundy, L.G.: Spiral density waves in a young protoplanetary disk. Science 353, 1519–1521 (2016). https://doi.org/10.1126/science.aaf8296

    Article  ADS  MathSciNet  MATH  Google Scholar 

  328. Perez-Becker, D., Chiang, E.: Surface layer accretion in conventional and transitional disks driven by far-ultraviolet ionization. ApJ 735, 8 (2011). https://doi.org/10.1088/0004-637X/735/1/8

    Article  ADS  Google Scholar 

  329. Pessah, M.E., Psaltis, D.: The stability of magnetized rotating plasmas with superthermal fields. ApJ 628, 879–901 (2005). https://doi.org/10.1086/430940

    Article  ADS  Google Scholar 

  330. Petersen, M.R., Julien, K., Stewart, G.R.: Baroclinic vorticity production in protoplanetary disks. I. Vortex formation. ApJ 658, 1236–1251 (2007). https://doi.org/10.1086/511513

    Article  ADS  Google Scholar 

  331. Petersen, M.R., Stewart, G.R., Julien, K.: Baroclinic vorticity production in protoplanetary disks. II. Vortex growth and longevity. ApJ 658, 1252–1263 (2007). https://doi.org/10.1086/511523

    Article  ADS  Google Scholar 

  332. Pfalzner, S.: Encounter-driven accretion in young stellar cluster—a connection to FUors? A&A 492, 735–741 (2008). https://doi.org/10.1051/0004-6361:200810879

    Article  ADS  Google Scholar 

  333. Pinilla, P., Birnstiel, T., Ricci, L., Dullemond, C.P., Uribe, A.L., Testi, L., Natta, A.: Trapping dust particles in the outer regions of protoplanetary disks. A&A 538, A114 (2012). https://doi.org/10.1051/0004-6361/201118204

    Article  ADS  Google Scholar 

  334. Podio, L., Kamp, I., Codella, C., Cabrit, S., Nisini, B., Dougados, C., Sandell, G., Williams, J.P., Testi, L., Thi, W.F., Woitke, P., Meijerink, R., Spaans, M., Aresu, G., Ménard, F., Pinte, C.: Water vapor in the protoplanetary disk of DG Tau. ApJ 766, L5 (2013). https://doi.org/10.1088/2041-8205/766/1/L5

    Article  ADS  Google Scholar 

  335. Popham, R., Narayan, R., Hartmann, L., Kenyon, S.: Boundary layers in pre-main-sequence accretion disks. ApJ 415, L127 (1993). https://doi.org/10.1086/187049

    Article  ADS  Google Scholar 

  336. Preibisch, T., Kim, Y.C., Favata, F., Feigelson, E.D., Flaccomio, E., Getman, K., Micela, G., Sciortino, S., Stassun, K., Stelzer, B., Zinnecker, H.: The origin of T Tauri X-ray emission: new insights from the Chandra Orion Ultradeep Project. ApJs 160, 401–422 (2005). https://doi.org/10.1086/432891

    Article  ADS  Google Scholar 

  337. Pringle, J.E.: Soft X-ray emission from dwarf novae. MNRAS 178, 195–202 (1977)

    Article  ADS  Google Scholar 

  338. Pringle, J.E.: Accretion discs in astrophysics. ARA&A 19, 137–162 (1981). https://doi.org/10.1146/annurev.aa.19.090181.001033

  339. Pringle, J.E.: The properties of external accretion discs. MNRAS 248, 754–759 (1991)

    Article  ADS  Google Scholar 

  340. Pringle, J.E.: A simple approach to the evolution of twisted accretion discs. MNRAS 258, 811–818 (1992)

    Article  ADS  Google Scholar 

  341. Pringle, J.E., King, A.: Astrophysical Flows (2007)

    Google Scholar 

  342. Qi, C., Öberg, K.I., Wilner, D.J., D’Alessio, P., Bergin, E., Andrews, S.M., Blake, G.A., Hogerheijde, M.R., van Dishoeck, E.F.: Imaging of the CO snow line in a solar nebula analog. Science 341, 630–632 (2013). https://doi.org/10.1126/science.1239560

    Article  ADS  Google Scholar 

  343. Raettig, N., Klahr, H., Lyra, W.: Particle trapping and streaming instability in vortices in protoplanetary disks. ApJ 804, 35 (2015). https://doi.org/10.1088/0004-637X/804/1/35

    Article  ADS  Google Scholar 

  344. Raettig, N., Lyra, W., Klahr, H.: A parameter study for baroclinic vortex amplification. ApJ 765, 115 (2013). https://doi.org/10.1088/0004-637X/765/2/115

    Article  ADS  Google Scholar 

  345. Rafikov, R.R.: Properties of gravitoturbulent accretion disks. ApJ 704, 281–291 (2009). https://doi.org/10.1088/0004-637X/704/1/281

    Article  ADS  Google Scholar 

  346. Rafikov, R.R.: Viscosity prescription for gravitationally unstable accretion disks. ApJ 804, 62 (2015). https://doi.org/10.1088/0004-637X/804/1/62

    Article  ADS  Google Scholar 

  347. Railton, A.D., Papaloizou, J.C.B.: On the local stability of vortices in differentially rotating discs. MNRAS 445, 4409–4426 (2014). https://doi.org/10.1093/mnras/stu2060

    Article  ADS  Google Scholar 

  348. Rebusco, P., Umurhan, O.M., Kluźniak, W., Regev, O.: Global transient dynamics of three-dimensional hydrodynamical disturbances in a thin viscous accretion disk. Phys. Fluids 21(7), 076,601 (2009). https://doi.org/10.1063/1.3167411

  349. Reipurth, B., Clarke, C.J., Boss, A.P., Goodwin, S.P., Rodríguez, L.F., Stassun, K.G., Tokovinin, A., Zinnecker, H.: Multiplicity in Early Stellar Evolution. Protostars and Planets VI, pp. 267–290 (2014)

    Google Scholar 

  350. Ricci, L., Testi, L., Natta, A., Neri, R., Cabrit, S., Herczeg, G.J.: Dust properties of protoplanetary disks in the Taurus-Auriga star forming region from millimeter wavelengths. A&A 512, A15 (2010). https://doi.org/10.1051/0004-6361/200913403

    Article  ADS  Google Scholar 

  351. Rice, W.K.M., Armitage, P.J., Bate, M.R., Bonnell, I.A.: The effect of cooling on the global stability of self-gravitating protoplanetary discs. MNRAS 339, 1025–1030 (2003). https://doi.org/10.1046/j.1365-8711.2003.06253.x

    Article  ADS  Google Scholar 

  352. Rice, W.K.M., Armitage, P.J., Mamatsashvili, G.R., Lodato, G., Clarke, C.J.: Stability of self-gravitating discs under irradiation. MNRAS 418, 1356–1362 (2011). https://doi.org/10.1111/j.1365-2966.2011.19586.x

    Article  ADS  Google Scholar 

  353. Rice, W.K.M., Armitage, P.J., Wood, K., Lodato, G.: Dust filtration at gap edges: implications for the spectral energy distributions of discs with embedded planets. MNRAS 373, 1619–1626 (2006). https://doi.org/10.1111/j.1365-2966.2006.11113.x

    Article  ADS  Google Scholar 

  354. Rice, W.K.M., Lodato, G., Armitage, P.J.: Investigating fragmentation conditions in self-gravitating accretion discs. MNRAS 364, L56–L60 (2005). https://doi.org/10.1111/j.1745-3933.2005.00105.x

    Article  ADS  Google Scholar 

  355. Rice, W.K.M., Lodato, G., Pringle, J.E., Armitage, P.J., Bonnell, I.A.: Accelerated planetesimal growth in self-gravitating protoplanetary discs. MNRAS 355, 543–552 (2004). https://doi.org/10.1111/j.1365-2966.2004.08339.x

    Article  ADS  Google Scholar 

  356. Richling, S., Yorke, H.W.: Photoevaporation of protostellar disks. II. The importance of UV dust properties and ionizing flux. A&A 327, 317–324 (1997)

    Google Scholar 

  357. Rigliaco, E., Natta, A., Testi, L., Randich, S., Alcalà, J.M., Covino, E., Stelzer, B.: X-shooter spectroscopy of young stellar objects. I. Mass accretion rates of low-mass T Tauri stars in \(\sigma \) Orionis. A&A  548, A56 (2012). https://doi.org/10.1051/0004-6361/201219832

  358. Robitaille, T.P.: HYPERION: an open-source parallelized three-dimensional dust continuum radiative transfer code. A&A 536, A79 (2011). https://doi.org/10.1051/0004-6361/201117150

    Article  ADS  Google Scholar 

  359. Rodmann, J., Henning, T., Chandler, C.J., Mundy, L.G., Wilner, D.J.: Large dust particles in disks around T Tauri stars. A&A 446, 211–221 (2006). https://doi.org/10.1051/0004-6361:20054038

    Article  ADS  Google Scholar 

  360. Romanova, M.M., Ustyugova, G.V., Koldoba, A.V., Lovelace, R.V.E.: MRI-driven accretion on to magnetized stars: global 3D MHD simulations of magnetospheric and boundary layer regimes. MNRAS 421, 63–77 (2012). https://doi.org/10.1111/j.1365-2966.2011.20055.x

    Article  ADS  Google Scholar 

  361. Ros, K., Johansen, A.: Ice condensation as a planet formation mechanism. A&A 552, A137 (2013). https://doi.org/10.1051/0004-6361/201220536

    Article  ADS  Google Scholar 

  362. Rosenfeld, K.A., Andrews, S.M., Hughes, A.M., Wilner, D.J., Qi, C.: A spatially resolved vertical temperature gradient in the HD 163296 disk. ApJ 774, 16 (2013). https://doi.org/10.1088/0004-637X/774/1/16

    Article  ADS  Google Scholar 

  363. Ruden, S.P.: Evolution of photoevaporating protoplanetary disks. ApJ 605, 880–891 (2004). https://doi.org/10.1086/382524

    Article  ADS  Google Scholar 

  364. Rybicki, G.B., Lightman, A.P.: Radiative processes in astrophysics (1979)

    Google Scholar 

  365. Salinas, V.N., Hogerheijde, M.R., Bergin, E.A., Cleeves, L.I., Brinch, C., Blake, G.A., Lis, D.C., Melnick, G.J., Panić, O., Pearson, J.C., Kristensen, L., Yıldız, U.A., van Dishoeck, E.F.: First detection of gas-phase ammonia in a planet-forming disk. NH\(_{3}\), N\(_{2}\)H\(^{+}\), and H\(_{2}\)O in the disk around TW Hydrae. A&A  591, A122 (2016). https://doi.org/10.1051/0004-6361/201628172

  366. Sano, T., Inutsuka, S.I.: Saturation and thermalization of the magnetorotational instability: recurrent channel flows and reconnections. ApJ 561, L179–L182 (2001). https://doi.org/10.1086/324763

  367. Sano, T., Stone, J.M.: The effect of the Hall term on the nonlinear evolution of the magnetorotational instability. I. Local axisymmetric simulations. ApJ 570, 314–328 (2002). https://doi.org/10.1086/339504

    Article  ADS  Google Scholar 

  368. Sano, T., Stone, J.M.: The effect of the Hall term on the nonlinear evolution of the magnetorotational instability. II. Saturation level and critical magnetic Reynolds number. ApJ  577, 534–553 (2002). https://doi.org/10.1086/342172

  369. Schäfer, U., Yang, C.C., Johansen, A.: Initial mass function of planetesimals formed by the streaming instability. A&A 597, A69 (2017). https://doi.org/10.1051/0004-6361/201629561

    Article  ADS  Google Scholar 

  370. Shakura, N.I., Sunyaev, R.A.: Black holes in binary systems. Observational appearance. A&A 24, 337–355 (1973)

    ADS  Google Scholar 

  371. Shen, Y., Stone, J.M., Gardiner, T.A.: Three-dimensional compressible hydrodynamic simulations of vortices in disks. ApJ 653, 513–524 (2006). https://doi.org/10.1086/508980

    Article  ADS  Google Scholar 

  372. Shu, F., Najita, J., Ostriker, E., Wilkin, F., Ruden, S., Lizano, S.: Magnetocentrifugally driven flows from young stars and disks. 1: A generalized model. ApJ  429, 781–796 (1994). https://doi.org/10.1086/174363

  373. Simon, J.B., Armitage, P.J.: Efficiency of particle trapping in the outer regions of protoplanetary disks. ApJ 784, 15 (2014). https://doi.org/10.1088/0004-637X/784/1/15

    Article  ADS  Google Scholar 

  374. Simon, J.B., Armitage, P.J., Li, R., Youdin, A.N.: The mass and size distribution of planetesimals formed by the streaming instability. I. The role of self-gravity. ApJ 822, 55 (2016). https://doi.org/10.3847/0004-637X/822/1/55

    Article  ADS  Google Scholar 

  375. Simon, J.B., Armitage, P.J., Youdin, A.N., Li, R.: Evidence for universality in the initial planetesimal mass function. ApJ 847, L12 (2017). https://doi.org/10.3847/2041-8213/aa8c79

    Article  ADS  Google Scholar 

  376. Simon, J.B., Bai, X.N., Armitage, P.J., Stone, J.M., Beckwith, K.: Turbulence in the outer regions of protoplanetary disks. II. Strong accretion driven by a vertical magnetic field. ApJ 775, 73 (2013). https://doi.org/10.1088/0004-637X/775/1/73

  377. Simon, J.B., Bai, X.N., Stone, J.M., Armitage, P.J., Beckwith, K.: Turbulence in the outer regions of protoplanetary disks. I. Weak accretion with no vertical magnetic flux. ApJ 764, 66 (2013). https://doi.org/10.1088/0004-637X/764/1/66

  378. Simon, J.B., Beckwith, K., Armitage, P.J.: Emergent mesoscale phenomena in magnetized accretion disc turbulence. MNRAS 422, 2685–2700 (2012). https://doi.org/10.1111/j.1365-2966.2012.20835.x

    Article  ADS  Google Scholar 

  379. Simon, J.B., Hawley, J.F.: Viscous and resistive effects on the magnetorotational instability with a net toroidal field. ApJ 707, 833–843 (2009). https://doi.org/10.1088/0004-637X/707/1/833

    Article  ADS  Google Scholar 

  380. Simon, J.B., Hughes, A.M., Flaherty, K.M., Bai, X.N., Armitage, P.J.: Signatures of MRI-driven turbulence in protoplanetary disks: predictions for ALMA observations. ApJ 808, 180 (2015). https://doi.org/10.1088/0004-637X/808/2/180

    Article  ADS  Google Scholar 

  381. Simon, J.B., Lesur, G., Kunz, M.W., Armitage, P.J.: Magnetically driven accretion in protoplanetary discs. MNRAS 454, 1117–1131 (2015). https://doi.org/10.1093/mnras/stv2070

    Article  ADS  Google Scholar 

  382. Smak, J.: Eruptive binaries. XI—Disk-radius variations in U GEM. Acta Astron. 34, 93–96 (1984)

    Google Scholar 

  383. Soderblom, D.R., Hillenbrand, L.A., Jeffries, R.D., Mamajek, E.E., Naylor, T.: Ages of Young Stars. Protostars and Planets VI, pp. 219–241 (2014)

    Google Scholar 

  384. Spruit, H.C.: Magnetohydrodynamic jets and winds from accretion disks. In: Wijers, R.A.M.J., Davies, M.B., Tout, C.A. (eds.) NATO Advanced Science Institutes (ASI) Series C, vol. 477, pp. 249–286 (1996)

    Google Scholar 

  385. Steiman-Cameron, T.Y., Durisen, R.H., Boley, A.C., Michael, S., McConnell, C.R.: Convergence studies of mass transport in disks with gravitational instabilities. II. The radiative cooling case. ApJ 768, 192 (2013). https://doi.org/10.1088/0004-637X/768/2/192

    Article  ADS  Google Scholar 

  386. Steinacker, J., Baes, M., Gordon, K.D.: Three-dimensional dust radiative transfer*. ARA&A 51, 63–104 (2013). https://doi.org/10.1146/annurev-astro-082812-141042

    Article  ADS  Google Scholar 

  387. Stepinski, T.F.: Generation of dynamo magnetic fields in the primordial solar nebula. Icarus 97, 130–141 (1992). https://doi.org/10.1016/0019-1035(92)90062-C

    Article  ADS  Google Scholar 

  388. Stevenson, D.J., Lunine, J.I.: Rapid formation of Jupiter by diffuse redistribution of water vapor in the solar nebula. Icarus 75, 146–155 (1988). https://doi.org/10.1016/0019-1035(88)90133-9

    Article  ADS  Google Scholar 

  389. Stoll, M.H.R., Kley, W.: Vertical shear instability in accretion disc models with radiation transport. A&A 572, A77 (2014). https://doi.org/10.1051/0004-6361/201424114

    Article  ADS  Google Scholar 

  390. Strom, K.M., Strom, S.E., Edwards, S., Cabrit, S., Skrutskie, M.F.: Circumstellar material associated with solar-type pre-main-sequence stars—a possible constraint on the timescale for planet building. AJ 97, 1451–1470 (1989). https://doi.org/10.1086/115085

    Article  ADS  Google Scholar 

  391. Supulver, K.D., Lin, D.N.C.: Formation of Icy planetesimals in a turbulent solar nebula. Icarus 146, 525–540 (2000). https://doi.org/10.1006/icar.2000.6418

    Article  ADS  Google Scholar 

  392. Suzuki, T.K., Inutsuka, S.I.: disk winds driven by magnetorotational instability and dispersal of protoplanetary disks. ApJ 691, L49–L54 (2009). https://doi.org/10.1088/0004-637X/691/1/L49

  393. Suzuki, T.K., Muto, T., Inutsuka, S.I.: Protoplanetary disk winds via magnetorotational instability: formation of an inner hole and a crucial assist for planet formation. ApJ 718, 1289–1304 (2010). https://doi.org/10.1088/0004-637X/718/2/1289

  394. Suzuki, T.K., Ogihara, M., Morbidelli, A., Crida, A., Guillot, T.: Evolution of protoplanetary discs with magnetically driven disc winds. A&A 596, A74 (2016). https://doi.org/10.1051/0004-6361/201628955

    Article  ADS  Google Scholar 

  395. Takeuchi, T., Lin, D.N.C.: Radial flow of dust particles in accretion disks. ApJ 581, 1344–1355 (2002). https://doi.org/10.1086/344437

    Article  ADS  Google Scholar 

  396. Takeuchi, T., Okuzumi, S.: Radial transport of large-scale magnetic fields in accretion disks. II. Relaxation to steady states. ApJ 797, 132 (2014). https://doi.org/10.1088/0004-637X/797/2/132

    Article  ADS  Google Scholar 

  397. Tanaka, K.E.I., Nakamoto, T., Omukai, K.: Photoevaporation of circumstellar disks revisited: the dust-free case. ApJ 773, 155 (2013). https://doi.org/10.1088/0004-637X/773/2/155

    Article  ADS  Google Scholar 

  398. Tanga, P., Babiano, A., Dubrulle, B., Provenzale, A.: Forming planetesimals in vortices. Icarus 121, 158–170 (1996). https://doi.org/10.1006/icar.1996.0076

    Article  ADS  Google Scholar 

  399. Tazzari, M., Testi, L., Ercolano, B., Natta, A., Isella, A., Chandler, C.J., Pérez, L.M., Andrews, S., Wilner, D.J., Ricci, L., Henning, T., Linz, H., Kwon, W., Corder, S.A., Dullemond, C.P., Carpenter, J.M., Sargent, A.I., Mundy, L., Storm, S., Calvet, N., Greaves, J.A., Lazio, J., Deller, A.T.: Multiwavelength analysis for interferometric (sub-)mm observations of protoplanetary disks. Radial constraints on the dust properties and the disk structure. A&A 588, A53 (2016). https://doi.org/10.1051/0004-6361/201527423

  400. Teague, R., Guilloteau, S., Semenov, D., Henning, T., Dutrey, A., Piétu, V., Birnstiel, T., Chapillon, E., Hollenbach, D., Gorti, U.: Measuring turbulence in TW Hydrae with ALMA: methods and limitations. A&A 592, A49 (2016). https://doi.org/10.1051/0004-6361/201628550

    Article  ADS  Google Scholar 

  401. Terquem, C., Papaloizou, J.C.B.: On the stability of an accretion disc containing a toroidal magnetic field. MNRAS 279, 767–784 (1996)

    Article  ADS  Google Scholar 

  402. Throop, H.B., Bally, J.: Can photoevaporation trigger planetesimal formation? ApJ 623, L149–L152 (2005). https://doi.org/10.1086/430272

    Article  ADS  Google Scholar 

  403. Throop, H.B., Bally, J.: Tail-end Bondi-Hoyle accretion in young star clusters: implications for disks, planets, and stars. AJ 135, 2380–2397 (2008). https://doi.org/10.1088/0004-6256/135/6/2380

    Article  ADS  Google Scholar 

  404. Tobin, J.J., Kratter, K.M., Persson, M.V., Looney, L.W., Dunham, M.M., Segura-Cox, D., Li, Z.Y., Chandler, C.J., Sadavoy, S.I., Harris, R.J., Melis, C., Pérez, L.M.: A triple protostar system formed via fragmentation of a gravitationally unstable disk. Nature 538, 483–486 (2016). https://doi.org/10.1038/nature20094

    Article  ADS  Google Scholar 

  405. Toomre, A.: On the gravitational stability of a disk of stars. ApJ 139, 1217–1238 (1964). https://doi.org/10.1086/147861

    Article  ADS  Google Scholar 

  406. Torres, R.M., Loinard, L., Mioduszewski, A.J., Boden, A.F., Franco-Hernández, R., Vlemmings, W.H.T., Rodríguez, L.F.: VLBA determination of the distance to nearby star-forming regions. V. Dynamical mass, distance, and radio structure of V773 Tau A. ApJ 747, 18 (2012). https://doi.org/10.1088/0004-637X/747/1/18

  407. Tout, C.A., Pringle, J.E.: Accretion disc viscosity—a simple model for a magnetic dynamo. MNRAS 259, 604–612 (1992)

    Article  ADS  Google Scholar 

  408. Trapman, L., Miotello, A., Kama, M., van Dishoeck, E.F., Bruderer, S.: Far-infrared HD emission as a measure of protoplanetary disk mass. A&A 605, A69 (2017). https://doi.org/10.1051/0004-6361/201630308

    Article  ADS  Google Scholar 

  409. Tsukamoto, Y., Iwasaki, K., Okuzumi, S., Machida, M.N., Inutsuka, S.: Bimodality of circumstellar disk evolution induced by Hall current. ArXiv e-prints (2015)

    Google Scholar 

  410. Tsukamoto, Y., Takahashi, S.Z., Machida, M.N., Inutsuka, S.: Effects of radiative transfer on the structure of self-gravitating discs, their fragmentation and the evolution of the fragments. MNRAS 446, 1175–1190 (2015). https://doi.org/10.1093/mnras/stu2160

    Article  ADS  Google Scholar 

  411. Turner, N.J., Benisty, M., Dullemond, C.P., Hirose, S.: Herbig stars’ near-infrared excess: an origin in the protostellar disk’s magnetically supported atmosphere. ApJ 780, 42 (2014). https://doi.org/10.1088/0004-637X/780/1/42

    Article  ADS  Google Scholar 

  412. Turner, N.J., Drake, J.F.: Energetic protons, radionuclides, and magnetic activity in protostellar disks. ApJ 703, 2152–2159 (2009). https://doi.org/10.1088/0004-637X/703/2/2152

    Article  ADS  Google Scholar 

  413. Turner, N.J., Sano, T.: Dead zone accretion flows in protostellar disks. ApJ 679, L131–L134 (2008). https://doi.org/10.1086/589540

    Article  ADS  Google Scholar 

  414. Turner, N.J., Sano, T., Dziourkevitch, N.: Turbulent mixing and the dead zone in protostellar disks. ApJ 659, 729–737 (2007). https://doi.org/10.1086/512007

    Article  ADS  Google Scholar 

  415. Umebayashi, T., Nakano, T.: Effects of radionuclides on the ionization state of protoplanetary disks and dense cloud cores. ApJ 690, 69–81 (2009). https://doi.org/10.1088/0004-637X/690/1/69

    Article  ADS  Google Scholar 

  416. Umurhan, O.M.: Potential vorticity dynamics in the framework of disk shallow-water theory. I. The Rossby wave instability. A&A 521, A25 (2010). https://doi.org/10.1051/0004-6361/201015210

    Article  ADS  MATH  Google Scholar 

  417. Urpin, V., Brandenburg, A.: Magnetic and vertical shear instabilities in accretion discs. MNRAS 294, 399 (1998). https://doi.org/10.1046/j.1365-8711.1998.01118.x

    Article  ADS  Google Scholar 

  418. Uyama, T., Hashimoto, J., Kuzuhara, M., Mayama, S., Akiyama, E., Currie, T., Livingston, J., Kudo, T., Kusakabe, N., Abe, L., Brandner, W., Brandt, T.D., Carson, J.C., Egner, S., Feldt, M., Goto, M., Grady, C.A., Guyon, O., Hayano, Y., Hayashi, M., Hayashi, S.S., Henning, T., Hodapp, K.W., Ishii, M., Iye, M., Janson, M., Kandori, R., Knapp, G.R., Kwon, J., Matsuo, T., Mcelwain, M.W., Miyama, S., Morino, J.I., Moro-Martin, A., Nishimura, T., Pyo, T.S., Serabyn, E., Suenaga, T., Suto, H., Suzuki, R., Takahashi, Y.H., Takami, M., Takato, N., Terada, H., Thalmann, C., Turner, E.L., Watanabe, M., Wisniewski, J., Yamada, T., Takami, H., Usuda, T., Tamura, M.: The SEEDS high-contrast imaging survey of exoplanets around young stellar objects. AJ 153, 106 (2017). https://doi.org/10.3847/1538-3881/153/3/106

    Article  ADS  Google Scholar 

  419. van Boekel, R., Henning, T., Menu, J., de Boer, J., Langlois, M., Müller, A., Avenhaus, H., Boccaletti, A., Schmid, H.M., Thalmann, C., Benisty, M., Dominik, C., Ginski, C., Girard, J.H., Gisler, D., Lobo Gomes, A., Menard, F., Min, M., Pavlov, A., Pohl, A., Quanz, S.P., Rabou, P., Roelfsema, R., Sauvage, J.F., Teague, R., Wildi, F., Zurlo, A.: Three radial gaps in the disk of TW Hydrae imaged with SPHERE. ApJ 837, 132 (2017). https://doi.org/10.3847/1538-4357/aa5d68

    Article  ADS  Google Scholar 

  420. van der Marel, N., van Dishoeck, E.F., Bruderer, S., Birnstiel, T., Pinilla, P., Dullemond, C.P., van Kempen, T.A., Schmalzl, M., Brown, J.M., Herczeg, G.J., Mathews, G.S., Geers, V.: A major asymmetric dust trap in a transition disk. Science 340, 1199–1202 (2013). https://doi.org/10.1126/science.1236770

    Article  ADS  Google Scholar 

  421. Varnière, P., Tagger, M.: Reviving dead zones in accretion disks by Rossby vortices at their boundaries. A&A 446, L13–L16 (2006). https://doi.org/10.1051/0004-6361:200500226

    Article  ADS  Google Scholar 

  422. Velikhov, E.: Stability of an ideally conducting liquid flowing between rotating cylinders in a magnetic field. Zhur. Eksptl?. i Teoret. Fiz. 36 (1959)

    Google Scholar 

  423. Vorobyov, E.I., Basu, S.: The origin of episodic accretion bursts in the early stages of star formation. ApJ 633, L137–L140 (2005). https://doi.org/10.1086/498303

    Article  ADS  Google Scholar 

  424. Wang, L., Goodman, J.: Hydrodynamic photoevaporation of protoplanetary disks with consistent thermochemistry. ApJ 847, 11 (2017). https://doi.org/10.3847/1538-4357/aa8726

    Article  ADS  Google Scholar 

  425. Ward, W.R.: Particle filtering by a planetary gap. In: Lunar and Planetary Science Conference. Lunar and Planetary Inst. Technical Report, vol. 40, p. 1477 (2009)

    Google Scholar 

  426. Wardle, M.: The Balbus-Hawley instability in weakly ionized discs. MNRAS 307, 849–856 (1999). https://doi.org/10.1046/j.1365-8711.1999.02670.x

    Article  ADS  Google Scholar 

  427. Waters, T.R., Proga, D.: Parker winds revisited: an extension to disc winds. MNRAS 426, 2239–2265 (2012). https://doi.org/10.1111/j.1365-2966.2012.21823.x

    Article  ADS  Google Scholar 

  428. Weidenschilling, S.J.: Aerodynamics of solid bodies in the solar nebula. MNRAS 180, 57–70 (1977)

    Article  ADS  Google Scholar 

  429. Weidenschilling, S.J.: The distribution of mass in the planetary system and solar nebula. Ap&SS 51, 153–158 (1977). https://doi.org/10.1007/BF00642464

    Article  ADS  Google Scholar 

  430. Weingartner, J.C., Draine, B.T.: Photoelectric emission from interstellar dust: grain charging and gas heating. ApJs 134, 263–281 (2001). https://doi.org/10.1086/320852

    Article  ADS  Google Scholar 

  431. Whipple, F.L.: On certain aerodynamic processes for asteroids and comets. In: Elvius, A. (ed.) From Plasma to Planet, p. 211 (1972)

    Google Scholar 

  432. Williams, J.P., Best, W.M.J.: A parametric modeling approach to measuring the gas masses of circumstellar disks. ApJ 788, 59 (2014). https://doi.org/10.1088/0004-637X/788/1/59

    Article  ADS  Google Scholar 

  433. Williams, J.P., Cieza, L.A.: Protoplanetary disks and their evolution. ARA&A 49, 67–117 (2011). https://doi.org/10.1146/annurev-astro-081710-102548

  434. Yang, C.C., Johansen, A.: On the feeding zone of planetesimal formation by the streaming instability. ApJ 792, 86 (2014). https://doi.org/10.1088/0004-637X/792/2/86

    Article  ADS  Google Scholar 

  435. Yang, C.C., Johansen, A., Carrera, D.: Concentrating small particles in protoplanetary disks through the streaming instability. A&A 606, A80 (2017). https://doi.org/10.1051/0004-6361/201630106

    Article  ADS  Google Scholar 

  436. Youdin, A.N., Chiang, E.I.: Particle pileups and planetesimal formation. ApJ 601, 1109–1119 (2004). https://doi.org/10.1086/379368

    Article  ADS  Google Scholar 

  437. Youdin, A.N., Goodman, J.: Streaming instabilities in protoplanetary disks. ApJ 620, 459–469 (2005). https://doi.org/10.1086/426895

    Article  ADS  Google Scholar 

  438. Youdin, A.N., Lithwick, Y.: Particle stirring in turbulent gas disks: including orbital oscillations. Icarus 192, 588–604 (2007). https://doi.org/10.1016/j.icarus.2007.07.012

    Article  ADS  Google Scholar 

  439. Youdin, A.N., Shu, F.H.: Planetesimal formation by gravitational instability. ApJ 580, 494–505 (2002). https://doi.org/10.1086/343109

    Article  ADS  Google Scholar 

  440. Zhang, K., Blake, G.A., Bergin, E.A.: Evidence of fast pebble growth near condensation fronts in the HL Tau protoplanetary disk. ApJ 806, L7 (2015). https://doi.org/10.1088/2041-8205/806/1/L7

    Article  ADS  Google Scholar 

  441. Zhu, Z., Hartmann, L., Calvet, N., Hernandez, J., Muzerolle, J., Tannirkulam, A.K.: The hot inner disk of FU Orionis. ApJ 669, 483–492 (2007). https://doi.org/10.1086/521345

    Article  ADS  Google Scholar 

  442. Zhu, Z., Hartmann, L., Gammie, C.: Long-term evolution of protostellar and protoplanetary disks. II. Layered accretion with infall. ApJ 713, 1143–1158 (2010). https://doi.org/10.1088/0004-637X/713/2/1143

    Article  ADS  Google Scholar 

  443. Zhu, Z., Hartmann, L., Gammie, C., McKinney, J.C.: Two-dimensional simulations of FU Orionis disk outbursts. ApJ 701, 620–634 (2009). https://doi.org/10.1088/0004-637X/701/1/620

    Article  ADS  Google Scholar 

  444. Zhu, Z., Hartmann, L., Gammie, C.F., Book, L.G., Simon, J.B., Engelhard, E.: Long-term evolution of protostellar and protoplanetary disks. I. Outbursts. ApJ 713, 1134–1142 (2010). https://doi.org/10.1088/0004-637X/713/2/1134

    Article  ADS  Google Scholar 

  445. Zhu, Z., Nelson, R.P., Dong, R., Espaillat, C., Hartmann, L.: Dust filtration by planet-induced gap edges: implications for transitional disks. ApJ 755, 6 (2012). https://doi.org/10.1088/0004-637X/755/1/6

    Article  ADS  Google Scholar 

  446. Zhu, Z., Stone, J.M.: Dust trapping by vortices in transitional disks: evidence for non-ideal magnetohydrodynamic effects in protoplanetary disks. ApJ 795, 53 (2014). https://doi.org/10.1088/0004-637X/795/1/53

    Article  ADS  Google Scholar 

  447. Zhu, Z., Stone, J.M., Bai, X.N.: Dust transport in MRI turbulent disks: ideal and non-ideal MHD with ambipolar diffusion. ApJ 801, 81 (2015). https://doi.org/10.1088/0004-637X/801/2/81

    Article  ADS  Google Scholar 

  448. Zhu, Z., Stone, J.M., Rafikov, R.R., Bai, X.N.: Particle concentration at planet-induced gap edges and vortices. I. Inviscid three-dimensional hydro disks. ApJ 785, 122 (2014). https://doi.org/10.1088/0004-637X/785/2/122

    Article  ADS  Google Scholar 

  449. Zweibel, E.G.: Ambipolar diffusion. In: Astrophysics and Space Science Library, vol. 407, 285 (2015)

    Google Scholar 

Download references

Acknowledgements

My work on protoplanetary disk physics and planet formation has been supported by the National Science Foundation, by NASA under the Origins of Solar Systems, Exoplanet Research and Astrophysics Theory programs, and by the Space Telescope Science Institute. I acknowledge the hospitality of the IIB at the University of Liverpool, where much of this chapter was written, and thank Kaitlin Kratter for an informal review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip J. Armitage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Armitage, P.J. (2019). Physical Processes in Protoplanetary Disks. In: Audard, M., Meyer, M., Alibert, Y. (eds) From Protoplanetary Disks to Planet Formation. Saas-Fee Advanced Course, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58687-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-58687-7_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58686-0

  • Online ISBN: 978-3-662-58687-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics