Skip to main content

Die Rolle von Dimethylether (DME) als Schlüsselbaustein synthetischer Kraftstoffe aus erneuerbaren Rohstoffen

  • Chapter
  • First Online:
Zukünftige Kraftstoffe

Part of the book series: ATZ/MTZ-Fachbuch ((ATZMTZ))

Zusammenfassung

Zur Herstellung alternativer Kraftstoffe aus erneuerbaren Rohstoffen steht eine Reihe von Verfahren zur Verfügung und mehrere solcher Kraftstoffe haben sich schon lange am Markt etabliert [1]. Bedeutende Beispiele für diese Biokraftstoffe der ersten Generation sind Ethanol, das fermentativ aus Stärke bzw. Zuckern gewonnen wird [2], Biodiesel, aus der Umesterung von Fettsäureestern mit Methanol (Fatty Acid Methyl Esters, FAME) [3], oder hydrierte Pflanzenöle (Hydrogenated Vegetable Oils, HVO) [4]. Durch den Einsatz solcher Kraftstoffe können, im Vergleich zu konventionellen Kraftstoffen aus fossilen Quellen, CO2-Emissionen deutlich reduziert werden. Voraussetzung ist eine nachhaltige Produktion über die ganze Prozesskette hinweg, von den Einsatzstoffen bis hin zum Kraftstoff. Dies impliziert nicht nur die Verwendung erneuerbarer Rohstoffe, die nicht in Konkurrenz zu etablierten Märkten, z. B. zum Nahrungsmittelsektor stehen, sondern auch den Einsatz regenerativer Energien.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Dinjus E, Arnold U, Dahmen N, Höfer R, Wach W (2009) Green fuels – sustainable solutions for transportation. In: Höfer Rainer (Hrsg) Sustainable solutions for modern economies, Bd 4. RSC green chemistry series. RSC Publishing, Cambridge, S 125–163

    Chapter  Google Scholar 

  2. Roehr M (Hrsg) (2001) The biotechnology of ethanol. Wiley-VCH, Weinheim

    Google Scholar 

  3. Hill K, Höfer R (2009) Natural fats and oils. In: Höfer Rainer (Hrsg) Sustainable solutions for modern economies, Bd 4. RSC green chemistry series. RSC Publishing, Cambridge, S 167–237

    Chapter  Google Scholar 

  4. Lapuerta M, Villajos M, Agudelo JR, Boehman AL (2011) Key properties and blending strategies of hydrotreated vegetable oil as biofuel for diesel engines. Fuel Process Technol 92:2406–2411. https://doi.org/10.1016/j.fuproc.2011.09.003

    Article  Google Scholar 

  5. Niethammer B, Wodarz S, Betz M, Haltenort P, Oestreich D, Hackbarth K, Arnold U, Otto T, Sauer J (2018) Alternative liquid fuels from renewable resources. Chem Ing Tech 90:99–112. https://doi.org/10.1002/cite.201700117

    Article  Google Scholar 

  6. Wender I (1996) Reactions of synthesis gas. Fuel Process Technol 48:189–297. https://doi.org/10.1016/s0378-3820(96)01048-x

    Article  Google Scholar 

  7. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098. https://doi.org/10.1021/cr068360d

    Article  Google Scholar 

  8. Rauch R, Hrbek J, Hofbauer H (2014) Biomass gasification for synthesis gas production and applications of the syngas. WIREs Energy Environ 3:343–362. https://doi.org/10.1002/wene.97

    Article  Google Scholar 

  9. Asinger F (1986) Methanol – chemie- und Energierohstoff. Springer, Berlin

    Book  Google Scholar 

  10. Olah GA, Goeppert A, Surya Prakash GK (2006) Beyond oil and gas: the methanol economy. Wiley-VCH, Weinheim

    Google Scholar 

  11. Chang CD (1983) Hydrocarbons from methanol. Catal Rev Sci Eng 25:1–118. https://doi.org/10.1080/01614948308078874

    Article  Google Scholar 

  12. Stöcker M (1999) Methanol-to-hydrocarbons: catalytic materials and their behavior. Microporous Mesoporous Mater 29:3–48. https://doi.org/10.1016/s1387-1811(98)00319-9

    Article  Google Scholar 

  13. Keil FJ (1999) Methanol-to-hydrocarbons: process technology. Microporous Mesoporous Mater 29:49–66. https://doi.org/10.1016/s1387-1811(98)00320-5

    Article  Google Scholar 

  14. Radtke KR, Heinritz-Adrian M, Marsico C (2006) New wave of coal-to-liquids. VGB PowerTech 86:78–84

    Google Scholar 

  15. Olsbye U, Svelle S, Bjørgen M, Beato P, Janssens TVW, Joensen F, Bordiga S, Lillerud KP (2012) Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angew Chem Int Ed 51:5810–5831. https://doi.org/10.1002/anie.201103657

    Article  Google Scholar 

  16. Stangeland K, Kalai D, Li H, Yu Z (2017) CO2 methanation: the effect of catalysts and reaction conditions. Energy Procedia 105:2022–2027. https://doi.org/10.1016/j.egypro.2017.03.577

    Article  Google Scholar 

  17. Götz M, Lefebvre J, Mörs F, McDaniel Koch A, Graf F, Bajohr S, Reimert R, Kolb T (2016) Renewable power-to-gas: a technological and economic review. Renew Energ 85:1371–1390. https://doi.org/10.1016/j.renene.2015.07.066

    Article  Google Scholar 

  18. Wenzel M, Dharanipragada NVRA, Galvita VV, Poelman H, Marin GB, Rihko-Struckmann L, Sundmacher K (2017) CO production from CO2 via reverse water–gas shift reaction performed in a chemical looping mode: Kinetics on modified iron oxide. J CO2 Util 17:60–68. https://doi.org/10.1016/j.jcou.2016.10.015

    Article  Google Scholar 

  19. Arora S, Prasad R (2016) An overview on dry reforming of methane: strategies to reduce carbonaceous deactivation of catalysts. RSC Adv 6:108668–108688. https://doi.org/10.1039/c6ra20450c

    Article  Google Scholar 

  20. Dietrich R-U, Albrecht FG, Maier S, König DH, Estelmann S, Adelung S, Bealu Z, Seitz A (2018) Cost calculations for three different approaches of biofuel production using biomass, electricity and CO2. Biomass Bioenergy 111:165–173. https://doi.org/10.1016/j.biombioe.2017.07.006

    Article  Google Scholar 

  21. Stiefel M, Ahmad R, Arnold U, Döring M (2011) Direct synthesis of dimethyl ether from carbon-monoxide-rich synthesis gas: influence of dehydration catalysts and operating conditions. Fuel Process Technol 92:1466–1474. https://doi.org/10.1016/j.fuproc.2011.03.007

    Article  Google Scholar 

  22. Dahmen N, Dinjus E, Kolb T, Arnold U, Leibold H, Stahl R (2012) State of the art of the Bioliq® process for synthetic biofuels production. Environ Prog Sustain Energy 31:176–181. https://doi.org/10.1002/ep.10624

    Article  Google Scholar 

  23. Ahmad R, Schrempp D, Behrens S, Sauer J, Döring M, Arnold U (2014) Zeolite-based bifunctional catalysts for the single step synthesis of dimethyl ether from CO-rich synthesis gas. Fuel Process Technol 121:38–46. https://doi.org/10.1016/j.fuproc.2014.01.006

    Article  Google Scholar 

  24. Catizzone E, Bonura G, Migliori M, Frusteri F, Giordano G (2018) CO2 recycling to dimethyl ether: state-of-the-art and perspectives. Molecules 23:31. https://doi.org/10.3390/molecules23010031

    Article  Google Scholar 

  25. Semelsberger TA, Borup RL, Greene HL (2006) Dimethyl ether (DME) as an alternative fuel. J Power Sources 156(2):497–511. https://doi.org/10.1016/j.jpowsour.2005.05.082

    Article  Google Scholar 

  26. Müller M, Hübsch U (2012) Ullmann’s Encyclopedia of industrial Chemistry (online release), dimethyl ether chapter. Wiley-VCH, Weinheim. https://doi.org/10.1002/14356007.a08_541

  27. Becker P, Arnold U, Döring M (2009) Development of catalysts for the selective synthesis of light olefins from Dimethyl Ether. In: Ernst S, Buzzoni R, Leitner W, Lercher JA, Lichtscheidl J, Nees F, Santacesaria E (Hrsg) Preprints of the DGMK-conference production and use of light olefins. DGMK, Dresden, S 127–133

    Google Scholar 

  28. Zimmermann M, Otto TN, Powietzka B, Neumann-Walter D (2015) Umsetzung von dimethylether zu Kraftstoffen mit hierarchischen Zeolithkatalysatoren. Chem Ing Tech 87(12):1748–1759. https://doi.org/10.1002/cite.201500042

    Article  Google Scholar 

  29. Japan DME Forum (2007) DME handbook. Japan DME Forum, Tokyo

    Google Scholar 

  30. Sun J, Yang G, Yoneyama Y, Tsubaki N (2014) Catalysis chemistry of dimethyl ether synthesis. ACS Catal 4:3346–3356. https://doi.org/10.1021/cs500967

    Article  Google Scholar 

  31. Dahmen N, Abeln J, Eberhard M, Kolb T, Leibold H, Sauer J, Stapf D, Zimmerlin B (2017) The bioliq process for producing synthetic transportation fuels. WIREs Energy Environ 6:1–10. https://doi.org/10.1002/wene.236

    Article  Google Scholar 

  32. Salsing H, Ochoterena R, Denbratt I (2009) Performance of a heavy duty DME engine – the influence of nozzle parameters on combustion and spray development. SAE International, Technical Paper 2009-01-0841, 7176–7191. https://doi.org/10.4271/2009-01-084

  33. Fischer SL (2001) Biomass-derived liquid cooking fuels for household use in rural China: potential for reducing health costs and mitigating greenhouse gas emissions. Energy Sustain Dev 5:23–30. https://doi.org/10.1016/s09730826(09)60017-x

    Article  Google Scholar 

  34. Hansen JB, Voss B, Joensen F, Sigurðardóttir ID (1995) Large scale manufacture of dimethyl ether – a new alternative diesel fuel from natural gas. SAE Int 104:70–79. https://doi.org/10.1007/978-3-540-76694-0233

    Article  Google Scholar 

  35. Matsumoto R, Ozawa M, Terada S, Iio T (2007) Low NOx combustion of DME by means of flue gas recirculation. In: Cen K, Chi Y, Wang F (Hrsg) Challenges of power engineering and environment. Springer, Berlin, S 1247–1251

    Chapter  Google Scholar 

  36. Liang K-C, Yeh F-M, Wu C-G, Lee H-M (2015) Gasoline production by dehydration of dimethyl ether with NH4-ZSM-5 catalyst. Energy Procedia 75:554–559. https://doi.org/10.1016/j.egypro.2015.07.452

    Article  Google Scholar 

  37. Kolesnichenko NV, Kitaev LE, Bukina ZM, Markova NA, Yushchenko VV, Yashina OV, Lin GI, Rozovskii AY (2007) Synthesis of gasoline from syngas via dimethyl ether. Kinet Catal 48:789–793. https://doi.org/10.1134/s0023158407060043

    Article  Google Scholar 

  38. Hazari N, Iglesia E, Labinger JA, Simonetti DA (2012) Selective homogeneous and heterogeneous catalytic conversion of methanol/dimethyl ether to triptane. Acc Chem Res 45(4):653–662. https://doi.org/10.1021/ar2002528

    Article  Google Scholar 

  39. Behl M, Schaidle JA, Christensen E, Hensley JE (2015) Synthetic middle-distillate-range hydrocarbons via catalytic dimerization of branched C6–C8 olefins derived from renewable dimethyl ether. Energy Fuels 29(9):6078–6087. https://doi.org/10.1021/acs.energyfuels.5b01175

    Article  Google Scholar 

  40. Ströfer E, Blagov S, Hasse H, Schelling H (2006) Verfahren zur Herstellung von Polyoxymethylendialkylethern aus Trioxan und Dialkylether, World Patent No. 2006/134081

    Google Scholar 

  41. Arnold U, Lautenschütz L, Oestreich D, Sauer J (2015) Production of oxygenate fuels from biomass-derived synthesis gas. DGMK Tagungsbericht. Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle e. V., Hamburg, S 127–136

    Google Scholar 

  42. Zhang X, Kumar A, Arnold U, Sauer J (2014) Biomass-derived oxymethylene ethers as diesel additives: a thermodynamic analysis. Energy Procedia 61:1921–1924. https://doi.org/10.1016/j.egypro.2014.12.242

    Article  Google Scholar 

  43. Ott J, Gronemann V, Pontzen F, Fiedler E, Grossmann G, Kersebohm DB, Weiss G, Witte C (2012) Ullmann’s Encyclopedia of industrial chemistry (online release), methanol chapter. Wiley-VCH, Weinheim. https://doi.org/10.1002/14356007.a16_465.pub3

  44. Behrens M, Studt F, Kasatkin I, Kühl S, Hävecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep B-L, Tovar M, Fischer RW, Nørskov JK, Schlögl R (2012) The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336:893–897. https://doi.org/10.1126/science.1219831

    Article  Google Scholar 

  45. Sung DM, Kim YH, Park ED, Yie JE (2010) Correlation between acidity and catalytic activity for the methanol dehydration over various aluminum oxides. Res Chem Intermed 36:653–660. https://doi.org/10.1007/s11164-010-0201-y

    Article  Google Scholar 

  46. Azizi Z, Rezaeimanesh M, Tohidian T, Rahimpour MR (2014) Dimethyl ether: a review of technologies and production challenges. Chem Eng Prog 82:150–172. https://doi.org/10.1016/j.cep.2014.06.007

    Article  Google Scholar 

  47. Ahmad R, Hellinger M, Buchholz M, Sezen H, Gharnati L, Wöll C, Sauer J, Döring M, Grunwaldt J-D, Arnold U (2014) Flame-made Cu/ZnO/Al2O3 catalyst for dimethyl ether production. Catal Commun 43:52–56. https://doi.org/10.1016/j.catcom.2013.08.020

    Article  Google Scholar 

  48. U.S.E.P. Agency, Inventory of U.S. Greenhause gas emissions and sinks 1990–2015. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2015. Zugegriffen: 2. Juli 2018

  49. An X, Zuo Y-Z, Zhang Q, Wang D-Z, Wang J-F (2008) Dimethyl ether synthesis from CO2 hydrogenation on a CuO−ZnO−Al2O3−ZrO2/HZSM-5 bifunctional catalyst. Ind Eng Chem Res 47:6547–6554. https://doi.org/10.1021/ie800777t

    Article  Google Scholar 

  50. Moradi GR, Yaripour F, Vale-Sheyda P (2010) Catalytic dehydration of methanol to dimethyl ether over mordenite catalysts. Fuel Process Technol 91:461–468. https://doi.org/10.1016/j.fuproc.2009.12.005

    Article  Google Scholar 

  51. Lange J-P (2001) Methanol synthesis: a short review of technology improvements. Catal Today 64:3–8. https://doi.org/10.1016/s0920-5861(00)00503-4

    Article  Google Scholar 

  52. Kolboe S, Dahl IM (1995) Methanol conversion to Hydrocarbons. Use of isotopes for mechanism studies (Hrsg: Beyer HK, Karge HG, Kiricsi I, Nagy JB). Stud Surf Sci Catal 94:427–434. https://doi.org/10.1016/s0167-2991(06)81251-6

  53. Grunwaldt JD, Molenbroek AM, Topsøe NY, Topsøe H, Clausen BS (2000) In situ investigations of structural changes in Cu/ZnO catalysts. J Catal 194:452–460. https://doi.org/10.1006/jcat.2000.2930

    Article  Google Scholar 

  54. Lunkenbein T, Schumann J, Behrens M, Schlögl R, Willinger MG (2015) Formation of a ZnO overlayer in industrial Cu/ZnO/Al2O3 catalysts induced by strong metal–support interactions, Angew. Chem Int 54:4544–4548. https://doi.org/10.1002/anie.201411581

    Article  Google Scholar 

  55. Zhang H, Li W, Xiao W (2012) Studies on deactivation of the catalyst in direct dimethyl ether synthesis. Int J Chem React Eng 10:1–18. https://doi.org/10.1515/1542-6580.3027

    Article  Google Scholar 

  56. Ateka A, Pérez-Uriarte P, Gamero M, Ereña J, Aguayo AT, Bilbao J (2017) A comparative thermodynamic study on the CO2 conversion in the synthesis of methanol and of DME. Energy 120:796–804. https://doi.org/10.1016/j.energy.2016.11.129

    Article  Google Scholar 

  57. Ereña J, Sierra I, Aguayo AT, Ateka A, Olazar M, Bilbao J (2011) Kinetic modelling of dimethyl ether synthesis from (H2+CO2) by considering catalyst deactivation. Chem Eng J 174:660–667. https://doi.org/10.1016/j.cej.2011.09.067

    Article  Google Scholar 

  58. D.M.E.F. Japan (2011) DME handbook supplement. Japan DME Forum, Tokyo

    Google Scholar 

  59. Kim IH, Kim S, Cho W, Yoon ES (2010) Simulation of commercial dimethyl ether production plant (Hrsg: Pierucci S, Ferraris GB). Comput Aided Chem Eng 28:799–804. https://doi.org/10.1016/s1570-7946(10)28134-8

  60. Gogate MR (2018) The direct dimethyl ether (DME) synthesis process from syngas I. Process feasibility and chemical synergy in one-step LPDMEtm process. Petrol Sci Technol 36(8):547–554. https://doi.org/10.1080/10916466.2018.1428628

    Article  Google Scholar 

  61. Lu W-Z, Teng L-H, Xiao W-D (2003) Theoretical analysis of fluidized-bed reactor for dimethyl ether synthesis from syngas. Int J Chem React Eng 1:1–10. https://doi.org/10.2202/1542-6580.1086

    Article  Google Scholar 

  62. Vakili R, Eslamloueyan R (2012) Optimal design of an industrial scale dual-type reactor for direct dimethyl ether (DME) production from syngas. Chem Eng Process: Process Intensif 62:78–88. https://doi.org/10.1016/j.cep.2012.09.005

    Article  Google Scholar 

  63. Hayer F, Bakhtiary-Davijany H, Myrstad R, Holmen A, Pfeifer P, Venvik HJ (2011) Synthesis of dimethyl ether from syngas in a microchannel reactor – simulation and experimental study. Chem Eng J 167:610–615. https://doi.org/10.1016/j.cej.2010.09.080

    Article  Google Scholar 

  64. Diban N, Urtiaga AM, Ortiz I, Ereña J, Bilbao J, Aguayo AT (2013) Influence of the membrane properties on the catalytic production of dimethyl ether with in situ water removal for the successful capture of CO2. Chem Eng J 234:140–148. https://doi.org/10.1016/j.cej.2010.09.080

    Article  Google Scholar 

  65. Arcoumanis C, Bae C, Crookes R, Kinoshita E (2008) The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines: a review. Fuel 87:1014–1030. https://doi.org/10.1016/j.fuel.2007.06.007

    Article  Google Scholar 

  66. Fleisch TH, Basu A, Sills RA (2012) Introduction and advancement of a new clean global fuel: the status of DME developments in China and beyond. J Nat Gas Sci Eng 9:94–107. https://doi.org/10.1016/j.jngse.2012.05.012

    Article  Google Scholar 

  67. Park SH, Lee CS (2014) Applicability of dimethyl ether (DME) in a compression ignition engine as an alternative fuel. Energy Convers Manage 86:848–863. https://doi.org/10.1016/j.enconman.2014.06.051

    Article  Google Scholar 

  68. Thomas G, Feng B, Veeraragavan A, Cleary MJ, Drinnan N (2014) Emissions from DME combustion in diesel engines and their implications on meeting future emission norms: a review. Fuel Process Technol 119:286–304. https://doi.org/10.1016/j.fuproc.2013.10.018

    Article  Google Scholar 

  69. Patten J, McWha T (2015) Dimethyl ether fuel literature review, National Research Council Canada (NRC). Automotive and surface transportation, June 18, 2015. https://doi.org/10.4224/23000192

  70. Grope N, Schröder O, Krahl J, Müller-Langer J, Schröder J, Mattheß E (2018) Survey on advanced fuels for advanced engines, project report funded by IEA bioenergy Task 39, commercializing conventional and advanced liquid biofuels from biomass

    Google Scholar 

  71. www.biodme.eu. Zugegriffen: 2. Juli 2018

  72. http://www.tuvpt.de/index.php?id=foerderung0001000000117. Zugegriffen: 2. Juli 2018

  73. Silalertruksa T, Gheewala HS, Sagisaka M, Yamaguchi K (2013) Life cycle GHG analysis of rice straw bio-DME production and application in Thailand. Appl Energy 112:560–567. https://doi.org/10.1016/j.apenergy.2013.06.028

    Article  Google Scholar 

  74. Sarkar S, Kumar A, Sultana A (2011) Biofuels and biochemicals production from forest biomass in Western Canada. Energy 36(10):6251–6262. https://doi.org/10.1016/j.energy.2011.07.024

    Article  Google Scholar 

  75. Tunå P, Hulteberg C (2014) Woody biomass-based transportation fuels – a comparative techno-economic study. Fuel 117:1020–1026. https://doi.org/10.1016/j.fuel.2013.10.019

    Article  Google Scholar 

  76. Li G, Zhou L, Liu S, Pan K (2007) Experimental study on vapour pressure of dimethyl ether blended in diesel oil, Proc IMechE Part D. J Automob Eng 221(7):889–892. https://doi.org/10.1243/09544070jauto477

    Article  Google Scholar 

  77. Hou J, Wen Z, Liu Y, Jiang Z (2014) Experimental study on the injection characteristics of dimethyl ether-biodiesel blends in a common-rail injection system, Proc IMechE Part D. J Automob Eng 228(3):263–271. https://doi.org/10.1177/0954407013507444

    Article  Google Scholar 

  78. Jamsran N, Lim OT A study on the autoignition characteristics of DME-LPG dual fuel in HCCI engine. In: 10th international conference on heat transfer, fluid mechanics and thermodynamics (HEFAT 2014). http://www.repository.up.ac.za/handle/2263/44749

  79. Painter DS (2015) Oil and geopolitics: the oil crises of the 1970s and the Cold War. Hist Soc Res 4:186–208. https://doi.org/10.12759/hsr.39.2014.4.186-208

    Article  Google Scholar 

  80. Le Bel JA, Greene WH (1880) On the decomposition of alcohols, etc., by zinc chloride at high temperatures. Amer Chem J 2:20–26

    Google Scholar 

  81. Meisel SL, McCullough JP, Lechthaler CH, Weisz PB (1976) Gasoline from methanol in one step. CHEMTECH (United States) 6(2):86–89

    Google Scholar 

  82. Chang CD, Silvestri AJ (1977) The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. J Catal 47:249–259. https://doi.org/10.1016/0021-9517(77)90172-5

    Article  Google Scholar 

  83. Argauer RJ, Landolt GR (1972) Crystallite zeolite ZSM-5 and method of preparing the same, U.S. Patent No. 3,702,886

    Google Scholar 

  84. Chang CD, Silvestri AJ (1987) MTG – origin, evolution, operation. ChemTech 17(10):624–631

    Google Scholar 

  85. Chang CD, Kuo JCW, Lang WH, Jacob SM, Wise JJ, Silvestri AJ (1987) Process studies on the conversion of methanol to gasoline. Ind Eng Chem Process Des Dev 17(3):255–260. https://doi.org/10.1021/i260067a008

    Article  Google Scholar 

  86. Liederman D, Jacob SM, Voltz SE, Wise JJ (1987) Process variable effects in the conversion of methanol to gasoline in a fluid bed reactor. Ind Eng Chem Process Des Dev 17(3):340–346. https://doi.org/10.1021/i260067a022

    Article  Google Scholar 

  87. Penick JE, Lee W, Maziuk J (1982) Development of the methanol-to-gasoline process, chemical reaction engineering – plenary lectures. In: Wei J, Georgakis C (Hrsg) 7th international symposium on chemical reaction engineering in Boston, Massachusetts, Oct. 4–6, American Chemical Society, 1981

    Google Scholar 

  88. Morgan CR, Warner JP, Yurchak S (1981) Gasoline from alcohols. Ind Eng Chem Process Des Dev 20(1):185–190. https://doi.org/10.1021/i300001a028

    Article  Google Scholar 

  89. Allum KG, Williams AR (1988) Operation of the world’s first gas-to-gasoline plant. In Bibby DM, Chang CD, Howe RF, Yurchak S (Hrsg) Methane conversion. Studies in surface science and catalysis, Bd 36. Elsevier, Amsterdam, S 691–711. https://doi.org/10.1016/s0167-2991(09)60566-8

  90. Yurchak S (1988) Development of Mobil’s fixed-bed methanol-to-gasoline (MTG) process. In: Bibby DM, Chang CD, Howe RF, Yurchak S (Hrsg) Methane conversion. Studies in surface science and catalysis, Bd 3. Elsevier, Amsterdam, S 251–272. https://doi.org/10.1016/s0167-2991(09)60521-8

  91. Mokrani T, Scurrell M (2009) Gas conversion to liquid fuels and chemicals: the methanol route-catalysis and process development. Catal Rev Sci Eng 51(1):1–145. https://doi.org/10.1080/01614940802477524

    Article  Google Scholar 

  92. Grimmer HR, Thiagarajan N, Nitschke E (1988) Conversion of methanol to liquid fuels by the fluid bed Mobil process (a commercial concept). In: Bibby DM, Chang CD, Howe RF, Yurchak S (Hrsg) Methane conversion. Studies in surface science and catalysis, Bd 36. Elsevier, Amsterdam, S 273–291. https://doi.org/10.1016/s0167-2991(09)60522-x

  93. Chang CD, Chu CTW, Socha RF (1984) Methanol conversion to olefins over ZSM-5: I. effect of temperature and zeolite SiO2Al2O3. J Catal 86(2):289–296. https://doi.org/10.1016/0021-9517(84)90374-9

    Article  Google Scholar 

  94. Chu CTW, Chang CD (1984) Methanol conversion to olefins over ZSM-5: II. Olefin distribution. J Catal 86(2):297–300. https://doi.org/10.1016/0021-9517(84)90375-0

    Article  Google Scholar 

  95. Chang CD (1984) Methanol conversion to light olefins. Catal Rev Sci Eng 26(3–4):323–345. https://doi.org/10.1080/01614948408064716

    Article  Google Scholar 

  96. Chang CD, Miale JN, Socha RF (1984) Syngas conversion to ethane over metal-zeolite catalysts. J Catal 90(1):84–87. https://doi.org/10.1016/0021-9517(84)90087-3

    Article  Google Scholar 

  97. Schoenfelder H, Hinderer J, Werther J, Keil FJ (1994) Methanol to olefins – prediction of the performance of a circulation fluidized-bed reactor on the basis of kinetic experiments in a fixed-bed reactor. Chem Eng Sci 49(24):5377–5390. https://doi.org/10.1016/0009-2509(94)00332-7

    Article  Google Scholar 

  98. Avidan AA (1988) Gasoline and distillate fuels from methanol. In: Bibby DM, Chang CD, Howe RF, Yurchak S (Hrsg) Methane conversion. Studies in surface science and catalysis, Bd 36. Elsevier, Amsterdam, S 307–323. https://doi.org/10.1016/s0167-2991(09)60524-3

  99. Kaiser SW (1985a) Production of light Olefins, U.S. Patent No. 4,499,327

    Google Scholar 

  100. Kaiser SW (1985b) Production of hydrocarbons with aluminophosphate molecular sieves, U.S. Patent No. 4,524,234

    Google Scholar 

  101. Tabak SA, Krambeck FJ (1985) Shaping process makes fuels. Hydrocarbon Process (United States) 64(9):72–74

    Google Scholar 

  102. Tabak SA, Krambeck FJ, Garwood WE (1986) Conversion of propylene and butylene over ZSM-5 catalyst. AlChE J 32(9):1526–1531. https://doi.org/10.1002/aic.690320913

    Article  Google Scholar 

  103. Topp-Jørgensen J (1988) Topsøe integrated gasoline synthesis – the TIGAS process. In: Bibby DM, Chang CD, Howe RF, Yurchak S (Hrsg) Methane conversion. Studies in surface science and catalysis, Bd 36. Elsevier, Amsterdam, S 293–305. https://doi.org/10.1016/s0167-2991(09)60523-1

  104. Topp-Jørgensen J, Rostrup-Nielsen JR (1986) Integrated process offers lower gas-to-gasoline investment. Oil Gas J (United States) 84(20):68–69

    Google Scholar 

  105. Svelle S, Kolboe S, Swang O, Olsbye U (2005) Methylation of alkenes and methylbenzenes by dimethyl ether or methanol on acidic zeolites. J Phys Chem B 109(26):12874–12878. https://doi.org/10.1021/jp051125z

    Article  Google Scholar 

  106. Gorinm E, Gorin MH (1948) Conversion of dimethyl ether, U.S. Patent No. 2,456,584

    Google Scholar 

  107. Lee S, Gogate MR, Kulik CJ (1992) A novel single-step dimethyl ether (DME) synthesis in a three-phase slurry reactor from CO-rich syngas. Chem Eng Sci 47(13–14):3769–3776. https://doi.org/10.1016/0009-2509(92)85096-t

    Article  Google Scholar 

  108. Lee S, Gogate MR, Kulik CJ (1995) Methanol-to-gasoline vs. DME-to-gasoline II. Process comparison and analysis. Fuel Sci Techn Int 13(8):1039–1057. https://doi.org/10.1080/08843759508947721

    Article  Google Scholar 

  109. Sardesai A, Tartamella T, Gogate MR, Lee S (1995) Design and operation of a fluidized bed reactor mini-plant for gasoline synthesis. Fuel Sci Techn Int 13(8):1059–1080. https://doi.org/10.1080/08843759508947722

    Article  Google Scholar 

  110. Lee S, Gogate MR, Fullerton KL, Kulik CJ (1995) Catalytic process for production of gasoline from synthesis gas, U.S. Patent No. 5,459,166

    Google Scholar 

  111. Sardesai A, Lee S (1998) Hydrocarbon synthesis from dimethyl ether over ZSM-5 catalyst, Papers of the American Chemical Society

    Google Scholar 

  112. Helton T, Hindman M (2014) Methanol to Gasoline – an alternative for liquid fuel production, GTL technology forum 2014, Houston

    Google Scholar 

  113. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing directives 2001/77/EC and 2003/30/EC. Off J EU, 2009, L140, 16

    Google Scholar 

  114. Directive 2012/0288 (COD) of the European Parliament and of the council of 17 October 2012 amending directive 98/70/EC relating to the quality of petrol and diesel fuels and amending directive 2009/28/EC on the promotion of the use of energy from renewable sources. Off J EU, 2012, L 140

    Google Scholar 

  115. Joensen F, Nielsen PEH, Sørensen MDP (2011) Biomass to green gasoline and power. Biomass Conv Bioref 1:85–90. https://doi.org/10.1007/s13399-011-0008-0

    Article  Google Scholar 

  116. Buchanan JS, Brown SH, DeCaul LC, Loveless BT, Vijay R, McCarthy SJ, Daage M, Shekhar M (2017) Production of aromatics from methanol and co-feeds, U.S. Patent No. 9,732,013

    Google Scholar 

  117. Heyward MP, Young D (1985) Catalyst composition for conversion of synthesis gas to hydrocarbons, U.S. Patent No. 4,543,347

    Google Scholar 

  118. Bockhorn H (Hrsg) (1994) Soot formation in combustion. Springer, Berlin

    Google Scholar 

  119. von Stackelberg K, Buonocore J, Bhave PV, Schwartz JA (2013) Public health impacts of secondary particulate formation from aromatic hydrocarbons in gasoline. Environ Health 12(1):19. https://doi.org/10.1186/1476-069x-12-19

    Article  Google Scholar 

  120. Bahreini R, Middlebrook AM, de Gouw JA, Warneke C, Trainer M, Brock CA, Stark H, Brown SS, Dube WP, Gilman JB, Hall K, Holloway JS, Kuster WC, Perring AE, Prevot ASH, Schwarz JP, Spackman JR, Szidat S, Wagner NL, Weber RJ, Zotter P, Parrish D (2012) Gasoline emissions dominate over diesel in formation of secondary organic aerosol mass. Geophys Res Lett 39(6). https://doi.org/10.1029/2011gl050718

  121. Assessing the effect of five gasoline properties on exhaust emissions from light-duty vehicles certified to Tier 2 standards: analysis of data from EPAct Phase 3 (EPAct/V2/E-89), U.S. Environmental protection agency, Document number EPA-420-R-13-002, 2013

    Google Scholar 

  122. Burke SC, Ratcliff M, McCormick R, Rhoads R, Windom B (2017) Distillation-based droplet modeling of non-ideal oxygenated gasoline blends: investigating the role of droplet evaporation on PM emissions. SAE Int J Fuel Lubr 10(1):69–81. https://doi.org/10.4271/2017-01-0581

    Article  Google Scholar 

  123. Hutchings GJ, Johnston P, Lee DF, Warwick A, Williams CD, Wilkinson M (1994) The conversion of methanol and other O-Compounds to hydrocarbons over zeolite β. J Catal 147(1):177–185. https://doi.org/10.1006/jcat.1994.1128

    Article  Google Scholar 

  124. Mikkelsen Ø, Kolboe S (1999) The conversion of methanol to hydrocarbons over zeolite H-beta. Microporous Mesoporous Mater 29(1–2):173–184. https://doi.org/10.1016/s1387-1811(98)00329-1

    Article  Google Scholar 

  125. Tsoncheva T, Dimitrova R (2002) Methanol conversion to hydrocarbons on porous aluminosilicates. Appl Catal A 225(1–2):101–107. https://doi.org/10.1016/s0926-860x(01)00771-2

    Article  Google Scholar 

  126. Bjørgen M, Kolboe S (2002) The conversion of methanol to hydrocarbons over dealuminated zeolite H-beta. Appl Catal A 225(1–2):289–290. https://doi.org/10.1016/s0926-860x(01)00865-1

    Article  Google Scholar 

  127. Ahn JA, Temel B, Iglesia E (2009) Selective homologation routes to 2,2,3-Trimethylbutane on solid acids. Angew Chem Int Ed 48:3814–3816. https://doi.org/10.1002/anie.200900541

    Article  Google Scholar 

  128. Ahn JA, Temel B, Iglesia E (2010) Process for production of triptane and triptene, U.S. Patent No. 7,825,287

    Google Scholar 

  129. Simonetti DA, Ahn JA, Iglesia E (2011) Mechanistic details of acid-catalyzed reactions and their role in the selective synthesis of triptane and isobutene from dimethyl ether. J Catal 277(2):173–195. https://doi.org/10.1016/j.jcat.2010.11.004

    Article  Google Scholar 

  130. Tan ECD, Talmadge M, Dutta A, Hensley J, Snowden-Swan LJ, Humbrid D, Schaidle J, Biddy M (2016) Conceptual process design and economics for the production of high-octane gasoline blendstock via indirect liquefaction of biomass through methanol/dimethyl ether intermediates, biofuels. Bioprod Bioref 10:17–35. https://doi.org/10.1002/bbb.1611

    Article  Google Scholar 

  131. Schaidle JA, Ruddy DA, Habas SE, Pan M, Zhang G, Miller JT, Hensley JE (2015) Conversion of dimethyl ether to 2,2,3-Trimethylbutane over a Cu/BEA catalyst: role of Cu sites in hydrogen incorporation. ACS Catal 5(3):1794–1803. https://doi.org/10.1021/cs501876w

    Article  Google Scholar 

  132. Faberow CA, Cheah S, Kim S, Miller JT, Gallagher JR, Hensley JE, Schaidle JA, Ruddy DA (2017) Exploring low-temperature dehydrogenation at Ionic Cu sites in beta zeolite to enable alkane recycle in dimethyl ether homologation. ACS Catal 7(5):3662–3667. https://doi.org/10.1021/acscatal.6b03582

    Article  Google Scholar 

  133. www.theicct.org/publications/technical-summary-euro-6vi-vehicleemission-standards. Zugegriffen: 2. Juli 2018

  134. https://www.epa.gov/regulations-emissions-vehicles-and-engines/final-rule-control-air-pollution-motor-vehicles-tier-3. Zugegriffen: 2. Juli 2018

  135. www.theicct.org/publications/chinas-stage-6-emission-standard-new-light-duty-vehicles-final-rule. Zugegriffen: 2. Juli 2018

  136. Vertin KD, Ohi JM, Naegeli DW, Childress KH, Hagen GP, McCarthy CI, Cheng AS, Dibble RW Methylal and Methylal-Diesel Blended Fuels for use in compression-ignition engines. SAE Technical Paper 1999-01-1508. https://doi.org/10.4271/1999-01-1508

  137. Lumpp B, Rothe D, Pastötter C, Lämmermann R, Jacob E (2011) Oxymethylenether als Dieselkraftstoffzusätze der Zukunft. MTZ Motortech Z 72(3):198–203. https://doi.org/10.1365/s35146-011-0049-8

    Article  Google Scholar 

  138. Lautenschütz L, Oestreich D, Seidenspinner P, Arnold U, Dinjus E, Sauer J (2016) Physico-chemical properties and fuel characteristics of oxymethylene dialkyl ethers. Fuel 173:129–137. https://doi.org/10.1016/j.fuel.2016.01.060

    Article  Google Scholar 

  139. Deutsch D, Oestreich D, Lautenschütz L, Haltenort P, Arnold U, Sauer J (2017) High purity oligomeric oxymethylene ethers as diesel fuels. Chem Ing Tech 89(4):486–489. https://doi.org/10.1002/cite.201600158

    Article  Google Scholar 

  140. Härtl M, Gaukel K, Pélerin D, Wachtmeister G (2017) Oxymethylenether als potenziell CO2-neutraler Kraftstoff für saubere Dieselmotoren Teil 1: Motorenuntersuchungen. MTZ Motortech Z 78(2):52–59. https://doi.org/10.1007/s35146-016-0170-9

    Article  Google Scholar 

  141. Zhang X, Oyedun AO, Kumar A, Oestreich D, Arnold U, Sauer J (2016) An optimized process design for oxymethylene ether production from woody-biomass-derived syngas. Biomass Bioenergy 90:7–14. https://doi.org/10.1016/j.biombioe.2016.03.032

    Article  Google Scholar 

  142. Mahbub N, Oyedun AO, Kumar A, Oestreich D, Arnold U, Sauer J (2017) A life cycle assessment of oxymethylene ether synthesis from biomass-derived syngas as a diesel additive. J Clean Prod 165:1249–1262. https://doi.org/10.1016/j.jclepro.2017.07.178

    Article  Google Scholar 

  143. Deutz S, Bongartz D, Heuser B, Kätelhön A, Schulze Langenhorst L, Omari A, Walters M, Klankermayer J, Leitner W, Mitsos A, Pischinger S (2018) Cleaner production of cleaner fuels. Wind-to-wheel – environmental assessment of CO2-based oxymethylene ether as a drop-in fuel. Energy Environ Sci 11:331–343. https://doi.org/10.1039/c7ee01657c

    Article  Google Scholar 

  144. Oyedun AO, Kumar A, Oestreich D, Arnold U, Sauer J (2018) The development of the production cost of oxymethylene ethers as diesel additives from biomass, biofuels. Bioprod Biorefin 12:694–710. https://doi.org/10.1002/bbb.1887

    Article  Google Scholar 

  145. Baranowski CJ, Bahmanpour AM, Kröcher O (2017) Catalytic synthesis of polyoxymethylene dimethyl ethers (OME). A review. Appl Catal B-Environ 217:407–420. https://doi.org/10.1016/j.apcatb.2017.06.007

    Article  Google Scholar 

  146. Mitsushma H, Murakami T, (1972) Tadenuma H process for producing formaldehyde, U.S. Patent No. 3,655,771

    Google Scholar 

  147. Lewis RM, Slaugh LH (1984) Conversion of dimethyl ether to formaldehyde, U.S. Patent No. 4,435,602

    Google Scholar 

  148. Lewis RM, Ryan RC, Slaugh LH (1984a) Conversion of dimethyl ether to formaldehyde using Bi-Mo-Cu catalyst, U.S. Patent No. 4,439,624

    Google Scholar 

  149. Lewis RM, Ryan RC, Slaugh LH (1984b) Conversion of dimethyl ether to formaldehyde using Bi-Mo-Fe catalyst, U.S. Patent No. 4,442,307

    Google Scholar 

  150. Liu H, Iglesia E (2002) Selective oxidation of dimethylether to formaldehyde on small molybdenum oxide domains. J Catal 208(1):1–5. https://doi.org/10.1006/jcat.2002.3574

    Article  Google Scholar 

  151. Liu H, Cheung P, Iglesia E (2003) Structure and support effects on the selective oxidation of dimethyl ether to formaldehyde catalyzed by MoOX domains. J Catal 217(1):222–232. https://doi.org/10.1016/s0021-9517(03)00025-3

    Article  Google Scholar 

  152. Liu H, Cheung P, Iglesia E (2003) Zirconia-supported MoOX catalysts for the selective oxidation of dimethyl ether to formaldehyde. Structure, redox properties, and reaction pathways. J Phys Chem B 107(17):4118–4127. https://doi.org/10.1021/jp0221744

    Article  Google Scholar 

  153. Liu H, Cheung P, Iglesia E (2003) Effects of Al2O3 support modifications on MoOX and VOX catalysts for dimethyl ether oxidation to formaldehyde. Phys Chem Chem Phys 5(17):3795–3800. https://doi.org/10.1039/b302776g

    Article  Google Scholar 

  154. Hagen GP, Spangler MJ (1999) Preparation of polyoxymethylene dimethyl ethers by catalytic conversion of dimethyl ether with formaldehyde formed by oxy-dehydrogenation of dimethyl ether, U.S. Patent No. 5,959,156

    Google Scholar 

  155. Hagen GP, Spangler MJ (2000) Preparation of polyoxymethylene dimethyl ethers by catalytic conversion of dimethyl ether with formaldehyde formed by dehydrogenation of dimethyl ether, U.S. Patent No. 6,160,186

    Google Scholar 

  156. Hagen GP, Spangler MJ (2001) Preparation of polyoxymethylene dimethyl ethers by acid-activated catalytic conversion of methanol with formaldehyde formed by oxy-dehydrogenation of dimethyl ether, U.S. Patent No. 6,265,528

    Google Scholar 

  157. Hagen GP, Spangler MJ (2002) Preparation of polyoxymethylene dimethyl ethers by catalytic conversion of formaldehyde formed by oxidation of dimethyl ether, U.S. Patent No. 6,392,102

    Google Scholar 

  158. Hagen GP, Spangler MJ (2003) Preparation of polyoxymethylene dimethyl ethers by catalytic conversion of formaldehyde formed by oxy-dehydrogenation of dimethyl ether, U.S. Patent No. 2003/171534

    Google Scholar 

  159. Zhang Q, Tan Y, Yang C, Han Y (2007) MnCl2 modified H4SiW12O40/SiO2 catalysts for catalytic oxidation of dimethyl ether to dimethoxymethane. J Mol Catal A-Chem 263(1–2):149–155. https://doi.org/10.1016/j.molcata.2006.08.044

    Article  Google Scholar 

  160. Zhang Q, Wang W, Zhang Z, Han Y, Tan Y (2016) Low-temperature oxidation of dimethyl ether to polyoxymethylene dimethyl ethers over CNT-supported rhenium catalyst. Catalysts 6(3):43. https://doi.org/10.3390/catal6030043

    Article  Google Scholar 

  161. Wang W, Zhang Q, Gao X, Zhang Z, Gu Y, Han Y, Tan Y (2016) VOX modified H-Beta zeolite for dimethyl ether direct oxidation to polyoxymethylene dimethyl ethers. Chem Sci J 7(2):124–129. https://doi.org/10.4172/2150-3494.1000124

    Article  Google Scholar 

  162. Gao XJ, Wang WF, Gu YY, Zhang ZZ, Zhang JF, Zhang QD, Tsubaki N, Han YZ, Tan YS (2018) Synthesis of polyoxymethylene dimethyl ethers from dimethyl ether direct oxidation over carbon-based catalysts. ChemCatChem 10(1):273–279. https://doi.org/10.1002/cctc.201701213

    Article  Google Scholar 

  163. Schmitz N, Ströfer E, Burger J, Hasse H (2017) Conceptual design of a novel process for the production of Poly(oxymethylene) dimethyl ethers from formaldehyde and methanol. Ind Eng Chem Res 56(40):11519–11530. https://doi.org/10.1021/acs.iecr.7b02314

    Article  Google Scholar 

  164. Peter A, Fehr SM, Dybbert V, Himmel D, Lindner I, Jacob E, Ouda M, Schaadt A, White RJ, Scherer H, Krossing I (2018) Towards a sustainable synthesis of oxymethylene dimethyl ether by homogeneous catalysis and uptake of molecular formaldehyde, Angew. Chem Int Edit 57:9461–9464. https://doi.org/10.1002/anie.201802247

  165. Gao H, He X, Liu Z (2013) Preparation method of polymethoxy acetal, Chinese Patent No. 103,121,926

    Google Scholar 

  166. Chen K, He X, Tao W, Teng J, Yuan Z (2013) Polyformaldehyde dimethyl ether preparation method, Chinese Patent No. 103,420,813

    Google Scholar 

  167. He X, Teng J, Yuan Z (2013) Polymethoxy dimethyl ether preparation method, Chinese Patent No. 103,420,814

    Google Scholar 

  168. He X, Teng J, Yuan Z (2014a) Preparation method of polyoxy methylene dimethyl ether, Chinese Patent No. 103,539,644

    Google Scholar 

  169. He X, Teng J, Yuan Z (2014b) Preparation method of polymethoxy methylal, Chinese Patent No. 103,539,645

    Google Scholar 

  170. Gao H, He X, Liu X (2013) Preparation method of polyformaldehyde dimethyl ether, Chinese Patent No. 103,121,924

    Google Scholar 

  171. Fang D, Liu D, Tang B, Zhang J (2014) Method for preparing polyoxymethylene dimethyl ethers, Chinese Patent No. 103,508,859

    Google Scholar 

  172. Fu W, He M, Liang X, Wang Y (2014) Synthesis method of polyformaldehyde dimethyl ether, Chinese Patent No. 104,177,237

    Google Scholar 

  173. Haltenort P, Hackbarth K, Oestreich D, Lautenschütz L, Arnold U, Sauer J (2018) Heterogeneously catalyzed synthesis of oxymethylene dimethyl ethers (OME) from dimethyl ether and trioxane. Catal Comm 109:80–84. https://doi.org/10.1016/j.catcom.2018.02.013

    Article  Google Scholar 

  174. https://www.fnr.de/index.php?id=11150&fkz=22403814. Zugegriffen: 3. Juli 2018

  175. https://www.kopernikus-projekte.de/. Zugegriffen: 3. Juli 2018

  176. https://www.bmbf.de/de/mit-abgas-das-klima-retten-3044.html. Zugegriffen: 3. Juli 2018

  177. Zhang X, Li J, Ni X, Yin Z, Liu Q (2016) Development of the synthesis technology of polyoxymethylene dimethyl ethers. Chem Ind Press 35(7):2293–2298

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Arnold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arnold, U., Haltenort, P., Herrera Delgado, K., Niethammer, B., Sauer, J. (2019). Die Rolle von Dimethylether (DME) als Schlüsselbaustein synthetischer Kraftstoffe aus erneuerbaren Rohstoffen. In: Maus, W. (eds) Zukünftige Kraftstoffe. ATZ/MTZ-Fachbuch. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58006-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-58006-6_22

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58005-9

  • Online ISBN: 978-3-662-58006-6

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics