Skip to main content

Industrial Approach for Direct Electrochemical CO2 Reduction in Aqueous Electrolytes

  • Chapter
  • First Online:
Zukünftige Kraftstoffe

Part of the book series: ATZ/MTZ-Fachbuch ((ATZMTZ))

Abstract

With the unprecedented rise of renewable energies, we will experience a profound change of our energy system, moving away from an unsustainable unidirectional energy system to a stable cyclic energy system. Carbon dioxide (CO2) is a product unavoidably coupled to the energy production for electricity generation or transport based on fossil fuels and the emission need to be reduced. Economic solutions for storage or conversion possibilities of large quantities of energy are essential in the future due the volatility of renewable electricity. This article will look into the industrial aspects of a new technology that converts collected CO2 into fuel precursors using renewable energy, thus opening a path for CO2 neutral transportation keeping combustion engines or hybrid concepts.

The standard method to make green fuel would be to collect CO2 and to let it react with green Hydrogen (H2) from water electrolysis powered by renewable energy. This happens in a high-temperature catalytic bed reactor, already scaled up by chemical industry. As a potentially advantageous technological path, recent research opened up the pathway of a direct electrochemical reduction of the CO2. This can be done at room temperature using water based electrolytes. To reach industrially relevant reaction rates, a technology called “gas diffusion electrode” must be employed which is the key to sufficient access of the CO2 to the cathode performing the reaction. There are already well established catalysts like silver for the production of CO/syngas, whereas catalysts for the direct generation of hydrocarbons out of CO2 are under research. The first steps of applied work towards the industrialization of such a technology are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perez R (2015) A fundamental look at supply side energy reserves for the planet. In: The International Energy Agency SHC programme solar update

    Google Scholar 

  2. Hartmann N, Eltrop L, Bauer N, Salzer J, Schwarz S, Schmidt M (2012) Strom-speicherpotenziale für Deutschland, Report. University Stuttgart, Germany

    Google Scholar 

  3. Deutz S, Bongartz D, Heuser B, Kätelhön A, Langenhorst LS, Omari A, Walters M, Klankermayer J, Leitner W, Mitsos A, Pischinger S, Bardow A (2018) Cleaner production of cleaner fuels wind-to-wheel – environmental assessment of CO2-based oxymethylene ether as a drop-in fuel. Energy Environ Sci 11:331–343

    Article  Google Scholar 

  4. Peter A, Fehr SM, Dybbert V, Himmel D, Lindner I, Jacob E, Ouda M, Schaadt A, White RJ, Scherer H, Krossing I (2018) Towards a sustainable synthesis of oxymethylene dimethyl ether by homogeneous catalysis and up-take of molecular formaldehyde. Angew Chem Int Ed Engl 57:9461–9464

    Article  Google Scholar 

  5. Jensen SH, Sun X, Ebbesen SD, Knibbe R, Mogensen M (2010) Hydrogen and synthetic fuel production using pressurized solid oxide electrolysis cells. Int J Hydrogen Energy 35:9544–9549

    Article  Google Scholar 

  6. Blum L, Meulenberg WA, Nabielek H, Steinberger-Wilckens R (2005) World-wide SOFC technology overview and benchmark. Int J Appl Ceram Technol 2:482–492

    Article  Google Scholar 

  7. Wang Y, Zhao L, Otto A, Robinius M, Stolten D (2017) A review of post-combustion CO2 capture technologies from coal-fired power plants. Energy Procedia 114:650–665

    Article  Google Scholar 

  8. Sanz-Pérez ES, Murdock CR, Didas SA, Jones CW (2016) Direct capture of CO2 from ambient air. Chem Rev 116:11840–11876. https://doi.org/10.1021/acs.chemrev.6b00173

    Article  Google Scholar 

  9. Keith DW, Holmes G, St. Angelo D, Heidel K (2018) Process for capturing CO2 from the atmosphere. Joule 2:1573–1594. https://doi.org/10.1016/j.joule.2018.05.006

    Article  Google Scholar 

  10. Tremel A (2017) Green hydrogen and downstream synthesis products – electricity-based fuels for the transportation sector. In: Liebl J, Beidl C (eds) Internationaler Motorenkongress 2017, Proceedings. Springer Vieweg, Wiesbaden

    Google Scholar 

  11. Tremel A (2018) Electricity-based fuels. Springer International Publishing. ISBN 978–3-319-72458-4

    Google Scholar 

  12. Kiener C, Fleischer M (2015) Storage of excess power from renewable in chemicals using polygeneration IGCC gasification plants. In: ACHEMA, Frankfurt am Main, Germany, 15–19 June 2015

    Google Scholar 

  13. Haas T, Krause R, Weber R, Demler M, Schmid G (2018) Technical photosynthesis involving CO2 electrolysis and fermentation. Nat Catal 1:32–39

    Article  Google Scholar 

  14. Noda H, Ikeda S, Oda Y, Imai K, Maeda M, Ito K (1990) Electrochemical reduction of carbon dioxide at various metal electrodes in aqueous potassium hydrogen carbonate solution. Bull Chem Soc Jpn 63:2459–2462

    Article  Google Scholar 

  15. Azuma M, Hashimoto K, Hiramoto M, Watanabe M, Sakata T (1990) Electro-chemical reduction of carbon dioxide on various metal electrodes in low-temperature aqueous KHCO3 media. J Electrochem Soc 137:1772–1778

    Article  Google Scholar 

  16. Hori Y, Wakebe H, Tsukamoto T, Koga O (1994) Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim Acta 39:1833–1839

    Article  Google Scholar 

  17. Ogura K, Yano H, Shirai F (2003) Catalytic reduction of CO2 to ethylene by electrolysis at a three-phase interface. J Electrochem Soc 150:D163–D168

    Article  Google Scholar 

  18. Hori Y (2008) Electrochemical CO2 reduction on metal electrodes. In: Vayenas C, White R, Gamboa-Aldeco M (eds) Modern aspects of electrochemistry 42:89–189. Springer, New York

    Google Scholar 

  19. Fleischer M, Lehmann M (Hrsg) (2012) Solid state gas sensors: industrial application. Springer, Heidelberg. ISBN 978-3-642-28092-4

    Google Scholar 

  20. Ostrick B, Mühlsteff J, Fleischer M, Meixner H, Doll T, Kohl C-D (1999) Adsorbed water is key to room temperature gas-sensitive reactions in work function type gas sensors: the carbonate carbon dioxide system. Sens Actuators B 57:115–119

    Article  Google Scholar 

  21. Fleischer M (2008) Advances in application potential of solid date gas sensors: high-temperature semi conducting oxides and ambient temperature GasFET devices. Meas Sci Technol 19:1–18

    Article  Google Scholar 

  22. Guth U (1975) Water vapor electrolysis by means of solid oxide electrolytes. Dissertation, University of Greifswald, Germany

    Google Scholar 

  23. Kuhl KP, Cave ER, Abram DN, Jaramillo TF (2012) Energy Environ Sci 5:7050–7059

    Article  Google Scholar 

  24. Schmid B, Reller C, Neubauer S, Fleischer M, Dorta R, Schmid G (2017) Reactivity of copper electrodes towards functional groups and small molecules in the context of CO2 electro-reductions. Catalysts 7:161. https://doi.org/10.3390/catal7050161

    Article  Google Scholar 

  25. Liu X, Xiao J, Peng H, Hong X, Chan K, Nørskov JK (2017) Understanding trends in electrochemical carbon dioxide reduction rates. Nat Commun 8:15438. https://doi.org/10.1038/ncomms15438

    Article  Google Scholar 

  26. De Luna P, Quintero-Bermudez R, Dinh C-T, Ross MB, Bushuyev OS, Todorović P, Regier T, Kelley SO, Yang P, Sargent EH (2018) Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat Catal 1:103–110

    Article  Google Scholar 

  27. Gattrell M, Gupta N, Co A (2006) A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J Electroanal Chem 594:1–19

    Article  Google Scholar 

  28. Oloman C, Li H (2008) Electrochemical processing of carbon dioxide. Chemsuschem 1:385–391

    Article  Google Scholar 

  29. Spinner NS, Vega JA, Mustain WE (2012) Recent progress in the electro-chemical conversion and utilization of CO2. Catal Sci Technol 2:19–28

    Article  Google Scholar 

  30. Jhong H-R, Ma S, Kenis P (2013) Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities. Curr Opin Chem Eng 2:191–199

    Article  Google Scholar 

  31. Jones J-P, Prakash GKS, Olah GA (2014) Electrochemical CO2 reduction: recent advances and current trends. Isr J Chem 54:1451–1466

    Article  Google Scholar 

  32. Martin AJ, Larrazabal GO, Perez-Ramirez J (2015) Towards sustainable fuels and chemicals through the electrochemical reduction of CO2: lessons from water electrolysis. Green Chem 17:5114–5130

    Article  Google Scholar 

  33. Endrodi B, Bencsik G, Darvas F, Jones R, Rajeshwar K, Janaky J (2017) Continuous-flow electroreduction of carbondioxide. Prog Energy Combust Sci 62:133–154

    Article  Google Scholar 

  34. Malik K, Singh S, Basu S, Verma A (2017) Electrochemical reduction of CO2 for synthesis of green fuel. WIREs Energy Environ 6:e244. https://doi.org/10.1002/wene.244

    Article  Google Scholar 

  35. Zhang W, Hu Y, Ma L, Zhu G, Wang Y, Xue X, Chen R, Yang S, Jin Z (2018) Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv Sci 5:1700275. https://doi.org/10.1002/advs.201700275

    Article  Google Scholar 

  36. Thorson MR, Siil KI, Kenis PJA (2013) Effect of cations on the electro-chemical conversion of CO2 to CO. J Electrochem Soc 160:F69–F74

    Article  Google Scholar 

  37. Kortlever R, Shen J, Schouten KJP, Calle-Vallejo F, Koper MTM (2015) Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J Phys Chem Lett 6:4073–4082. https://doi.org/10.1021/acs.jpclett.5b01559

    Article  Google Scholar 

  38. Liu M, Pang Y, Zhang B, De Luna P, Voznyy O, Xu J, Zheng X, Dinh CT, Fan F, Cao C, de Arquer FPG, Safaei TS, Mepham A, Klinkova A, Kumacheva E, Filleter T, Sinton D, Kelley SO, Sargent EH (2016) Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537:382–386. https://doi.org/10.1038/nature19060

    Article  Google Scholar 

  39. Schmid G, Fleischer M (2015) Direct electrochemical conversion of CO2 into valuable products, solar light for energy production and storage: a look into the future. University of Zürich, Switzerland, 26–27 November 2015

    Google Scholar 

  40. Jörissen J, Turek T, Weber R (2011) Energy saving in electrolysis: chlorine production with oxygen depolarized cathodes. Chem unserer Zeit 45:172–183

    Article  Google Scholar 

  41. Kintrup J, Millaruelo M, Trieu V, Bulan A, Mojica ES (2017) Gas diffusion electrodes for efficient manufacturing of chlorine and other chemicals. Electrochem Soc Interface Summer 26:73–76. https://doi.org/10.1149/2.F07172if

    Article  Google Scholar 

  42. Jeanty P, Scherer C, Magori E, Wiesner-Fleischer K, Hinrichsen O, Fleischer M (2018) Upscaling and continuous operation of electrochemical CO2 to CO conversion in aqueous solutions on silver gas diffusion electrodes, J CO2 Utilization 24:454–462

    Google Scholar 

  43. Reller C, Krause R, Neubauer S, Schmid G, Fleischer M (2015) CO2-to-value direct electrocatalytic reduction of CO2 towards chemical feedstock. In: 48. Jahrestreffen Deutscher Katalytiker, Weimar, Germany, 11–13 March 2015

    Google Scholar 

  44. Schmid B, Reller C, Krause R, Fleischer M, Dorta R, Schmid G (2016) High Faradaic efficiencies for non gaseous oxygenates in copper catalyzed CO2 electro-reduction at high current densities. In: 49. Jahrestreffen Deutscher Katalytiker, Weimar, Germany, 16–18 March 2016

    Google Scholar 

  45. Schmid G, Reller C, Krause RK, Schmid B, Neubauer SS, Rucki A, Wiesner K, Magori E, Jeanty P, Fleischer M (2016) Single step direct electro catalytic reduction of CO2 towards CO and hydrocarbons. In: 229th ECS meeting, San Diego, USA, 29 May–02 June 2016

    Google Scholar 

  46. Dinh C-T, Burdyny T, Kibria G, Seifitokaldani A, Gabardo CM, de Arquer FPG, Kiani A, Edwards JP, De Luna P, Bushuyev OS, Zou C, Quintero-Bermudez R, Pang Y, Sinton D, Sargent EH (2018) CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360:783–787

    Article  Google Scholar 

  47. Engelbrecht A, Uhlig C, Stark O, Hämmerle M, Schmid G, Magori E, Wiesner-Fleischer K, Fleischer M, Moos R (2018) On the electrochemical CO2 reduction at copper sheet electrodes with enhanced long-term stability by pulsed electrolysis. J Electrochem Soc 165:J3059–J3068

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Fleischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fleischer, M., Jeanty, P., Wiesner-Fleischer, K., Hinrichsen, O. (2019). Industrial Approach for Direct Electrochemical CO2 Reduction in Aqueous Electrolytes. In: Maus, W. (eds) Zukünftige Kraftstoffe. ATZ/MTZ-Fachbuch. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58006-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-58006-6_12

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58005-9

  • Online ISBN: 978-3-662-58006-6

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics