Skip to main content

Computing Upper Bounds for the Packing Density of Congruent Copies of a Convex Body

  • Chapter
  • First Online:
New Trends in Intuitive Geometry

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 27))

Abstract

In this paper we prove a theorem that provides an upper bound for the density of packings of congruent copies of a given convex body in \(\mathbb {R}^n\); this theorem is a generalization of the linear programming bound for sphere packings. We illustrate its use by computing an upper bound for the maximum density of packings of regular pentagons in the plane. Our computational approach is numerical and uses a combination of semidefinite programming, sums of squares, and the harmonic analysis of the Euclidean motion group. We show how, with some extra work, the bounds so obtained can be made rigorous.

The first author was support by Rubicon grant 680-50-1014 from the Netherlands Organization for Scientific Research (NWO). The second author was supported by Vidi grant 639.032.917 from the Netherlands Organization for Scientific Research (NWO).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    On the five equilateral bodies, that are usually called regular, and which of them fill their natural space, and which do not, in contradiction to the commentator of Aristotle, Averroës.

  2. 2.

    Below I show these angles with their chords:

    Angle of the pyramid – 70 degrees. 31 minutes. \(43\frac{1}{2}\) seconds. chord 1154701.

  3. 3.

    A lattice is a discrete subgroup of \((\mathbb {R}^n, {+})\).

  4. 4.

    Like all the graphs considered in this paper.

  5. 5.

    http://maurolico.free.fr.

References

  1. N.I. Akhiezer, Lectures on Integral Transforms, in Translations of Mathematical Monographs 70 (American Mathematical Society, 1988)

    Google Scholar 

  2. G.E. Andrews, R. Askey, R. Roy, in Special Functions, Encyclopedia of Mathematics and its Applications 71 (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  3. Aristotle, On the Heavens, translation by W.K.C. Guthrie (Harvard University Press, Cambridge, 2006)

    Google Scholar 

  4. S. Atkinson, Y. Jiao, S. Torquato, Maximally dense packings of two-dimensional convex and concave noncircular particles. Phys. Rev. E 86, 031302 (2012)

    Google Scholar 

  5. E. Aylward, S. Itani, P.A. Parrilo, Explicit SOS decompositions of univariate polynomial matrices and the Kalman-Yakubovich-Popov lemma, in Proceedings of the 46th IEEE Conference on Decision and Control (2007), pp. 5660–5665

    Google Scholar 

  6. C. Bachoc, G. Nebe, F.M. de Oliveira Filho, F. Vallentin, Lower bounds for measurable chromatic numbers. Geom. Funct. Anal. 19, 645–661 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Ben-Tal, A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications (SIAM, Philadelphia, 2001)

    Google Scholar 

  8. A. Bezdek, W. Kuperberg, Dense packing of space with various convex solids, in Geometry — Intuitive, Discrete, and Convex, A Tribute to László Fejes Tóth, Bolyai Society Mathematical Studies, ed. by I. Bárány, K.J. Böröczky, G. Fejes Tóth, J. Pach (Springer, Berlin, 2013), pp. 66–90

    Google Scholar 

  9. S. Bochner, Hilbert distances and positive definite functions. Ann. Math. 42, 647–656 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Borchers, CSDP, A C library for semidefinite programming. Optim. Methods Softw. 11, 613–623 (1999)

    Google Scholar 

  11. P. Brass, W. Moser, J. Pach, Research Problems in Discrete Geometry (Springer, Berlin, 2005)

    Google Scholar 

  12. B. Casselman, Can you do better? in Feature Column of the AMS, http://www.ams.org/samplings/feature-column/fc-2012-11 (2012)

  13. E.R. Chen, M. Engel, S.C. Glotzer, Dense crystalline dimer packings of regular tetrahedra. Discrete Comput. Geom. 44, 253–280 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. M.D. Choi, T.Y. Lam, B. Reznick, Real zeros of positive semidefinite forms I. Mathematische Zeitschrift 171, 1–26 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Cohn, N.D. Elkies, New upper bounds on sphere packings I. Ann. Math. 157, 689–714 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Cohn, A. Kumar, Optimality and uniqueness of the Leech lattice among lattices. Ann. Math. 170, 1003–1050 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Cohn, A. Kumar, S.D. Miller, D. Radchenko, and M.S. Viazovska, The sphere packing problem in dimension 24. Ann. Math. (2) 185(3), 1017–1033 (2017). arXiv:1603.06518 [math.NT]

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Cohn, S.D. Miller, Some properties of optimal functions for sphere packing in dimensions 8 and 24 (2016) 23p. arXiv:1603.04759 [math.MG]

  19. H. Cohn, Y. Zhao, Sphere packing bounds via spherical codes. Duke Math. J. 163, 1965–2002 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. J.B. Conway, A Course in Functional Analysis, Graduate Texts in Mathematics 96 (Springer, New York, 1985)

    Book  MATH  Google Scholar 

  21. J.H. Conway, N.J.A. Sloane, Sphere packings, lattices and groups (Grundlehren der mathematischen Wissenschaften), vol. 290, 3rd edn. (Springer, New York, 1999)

    Google Scholar 

  22. J.H. Conway, S. Torquato, Packing, tiling, and covering with tetrahedra. Proc. Natl. Acad. Sci. USA 103, 10612–10617 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. E. de Klerk, F. Vallentin, On the Turing model complexity of interior point methods for semidefinite programming. SIAM J. Optim. 26(3), 1944–1961 (2016). arXiv:1507.03549 [math.OC]

    Article  MathSciNet  MATH  Google Scholar 

  24. D. de Laat, F.M. de Oliveira Filho, F. Vallentin, Upper bounds for packings of spheres of several radii. Forum Math. Sigma 2, e23 (42 pages) (2014)

    Google Scholar 

  25. P. Delsarte, J.M. Goethals, J.J. Seidel, Spherical codes and designs. Geom. Dedic. 6, 363–388 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Delsarte, V.I. Levensthein, Association schemes and coding theory. IEEE Trans. Inf. Theory IT–44, 2477–2504 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Dostert, C. Guzmán, F.M. de Oliveira Filho, F. Vallentin, New upper bounds for the density of translative packings of three-dimensional convex bodies with tetrahedral symmetry. Discrete Comput. Geom. 58, 449–481 (2017). arXiv:1510.02331 [math.MG]

    Article  MathSciNet  MATH  Google Scholar 

  28. G. Fejes Tóth, F. Fodor, V. Vígh, The packing density of the \(n\)-dimensional cross-polytope. Discrete Comput. Geom. 54, 182–194 (2015)

    Google Scholar 

  29. G. Fejes Tóth, W. Kuperberg, Packing and covering with convex sets, in Handbook of Convex Geometry, ed. by P.M. Gruber, J.M. Wills (North-Holland, Amsterdam, 1993), pp. 799–860

    Google Scholar 

  30. G.B. Folland, A Course in Abstract Harmonic Analysis (Studies in Advanced Mathematics, CRC Press, Boca Raton, 1995)

    Google Scholar 

  31. S. Gravel, V. Elser, Y. Kallus, Upper bound on the packing density of regular tetrahedra and octahedra. Discrete Comput. Geom. 46, 799–818 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. T.C. Hales, A proof of the Kepler conjecture. Ann. Math. 162, 1065–1185 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. T.C. Hales, M. Adams, G. Bauer, D. Tat Dang, J. Harrison, T. Le Hoang, C. Kaliszyk, V. Magron, S. McLaughlin, T. Tat Nguyen, T. Quang Nguyen, T. Nipkow, S. Obua, J. Pleso, J. Rute, A. Solovyev, A. Hoai Thi Ta, T. Nam Tran, D. Thi Trieu, J. Urban, K. Khac Vu, R. Zumkeller, A formal proof of the Kepler conjecture (2015) 21p. arXiv:1501.02155 [math.MG]

  34. T.C. Hales, W. Kusner, Packings of regular Pentagons in the plane (2016) 26p. arXiv:1602.07220 [math.MG]

  35. Y. Kallus, W. Kusner, The local optimality of the double lattice packing (2015) 23p. arXiv:1509.02241 [math.MG]

  36. R.M. Karp, Reducibility among combinatorial problems, in: Complexity of Computer Computations, ed. by R.E. Miller, J.W. Thatcher. Proceedings of a symposium on the Complexity of Computer Computations, (IBM Thomas J. Watson Research Center, Yorktown Heights, Plenum Press, New York, 1972), pp. 85–103

    Google Scholar 

  37. J. Kepler, Vom sechseckigen Schnee (Strena seu de Nive sexangula, published in 1611), translation with introduction and notes by Dorothea Goetz, Ostwalds Klassiker der exakten Wissenschaften 273, (Akademische Verlagsgesellschaft Geest u. Portig K.-G, Leipzig, 1987)

    Google Scholar 

  38. G. Kuperberg, W. Kuperberg, Double-lattice packings of convex bodies in the place. Discrete Comput. Geom. 5, 389–397 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  39. J.C. Lagarias, C. Zong, Mysteries in packing regular tetrahedra. Notices Amer. Math. Soc. 59, 1540–1549 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. M. Laurent, Sums of squares, moment matrices and optimization, in Emerging Applications of Algebraic Geometry, IMA Volumes in Mathematics and its Applications, ed. by M. Putinar, S. Sullivant (Springer, Berlin, 2009), pp. 157–270

    Google Scholar 

  41. L. Lovász, On the Shannon capacity of a graph. IEEE Trans. Inf. Theory IT–25, 1–7 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  42. F. Maurolico, De quinque solidis, quae vulgo regularia dicuntur, quae videlicet eorum locum impleant, et quae non, contra commentatorem Aristotelis, Averroem, 1529

    Google Scholar 

  43. R.J. McEliece, E.R. Rodemich, H.C. Rumsey Jr., The Lovász bound and some generalizations. J. Comb. Inf. Syst. Sci. 3, 134–152 (1978)

    Google Scholar 

  44. C.A. Rogers, Packing and Covering (Cambridge University Press, 1964)

    Google Scholar 

  45. A. Schrijver, A comparison of the Delsarte and Lovász bounds. IEEE Trans. Inf. Theory IT–25, 425–429 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  46. W.A. Stein et al. Sage Mathematics Software (Version 4.8). The Sage Development Team (2012). http://www.sagemath.org

  47. M. Sugiura, Unitary Representations and Harmonic Analysis: An Introduction (Kodansha Scientific Books, Tokyo, 1990)

    Google Scholar 

  48. M.S. Viazovska, The sphere packing problem in dimension 8. Ann. Math. (2) 185(3), 991–1015 (2017). arXiv:1603.04246 [math.NT]

    Article  MathSciNet  MATH  Google Scholar 

  49. G.N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge University Press, 1922)

    Google Scholar 

  50. G.M. Ziegler, Three mathematics competitions, in An Invitation to Mathematics: From Competitions to Research, ed. by D. Schleicher, M. Lackmann (Springer, Berlin, 2011), pp. 195–206

    Chapter  Google Scholar 

Download references

Acknowledgements

We are thankful to Pier Daniele Napolitani and Claudia Addabbo from the Maurolico Project, who provided us with a transcript of Maurolico’s manuscript. In particular, Claudia Addabbo provided us with a draft of her commented Italian translation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Mário de Oliveira Filho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 János Bolyai Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Oliveira Filho, F.M., Vallentin, F. (2018). Computing Upper Bounds for the Packing Density of Congruent Copies of a Convex Body. In: Ambrus, G., Bárány, I., Böröczky, K., Fejes Tóth, G., Pach, J. (eds) New Trends in Intuitive Geometry. Bolyai Society Mathematical Studies, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57413-3_7

Download citation

Publish with us

Policies and ethics