Skip to main content

In Situ X-Ray Absorption Spectroscopy to Study Growth of Nanoparticles

  • Chapter
  • First Online:
In-situ Characterization Techniques for Nanomaterials

Abstract

Please check if identified head levels are okay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmid G (ed) (2004) Nanoparticles: from theory to application. Wiley-VCH, Weinheim

    Google Scholar 

  2. Kohler M, Fritzsche W (2004) Nanotechnology: an introduction to nanostructuring techniques. Wiley-VCH, Weinheim

    Book  Google Scholar 

  3. de Mello Donegá C (ed) (2014) Nanoparticles: workhorses of nanoscience. Springer, Berlin/Heidelberg

    Google Scholar 

  4. Koziej D (2016) Revealing complexity of nanoparticle synthesis in solution by in-situ hard X-ray spectroscopy-today and beyond. Chem Mater 28:2478–2490

    Article  CAS  Google Scholar 

  5. Frahm R, Barbee TW Jr, Warburton W (1991) In situ structural study of thin-film growth by quick-scanning x-ray-absorption spectroscopy. Phys Rev B 44:2822–2825

    Article  CAS  Google Scholar 

  6. Newton MA, Dent AJ, Evans J (2002) Bringing time resolution to EXAFS: recent developments and application to chemical systems. Chem Soc Rev 31:83–95

    Article  CAS  Google Scholar 

  7. Harada M, Inada Y (2009) In situ time-resolved XAFS studies of metal particle formation by photoreduction in polymer solutions. Langmuir 25:6049–6061

    Article  CAS  Google Scholar 

  8. Makimura Y, Sasaki T, Oka H, Okuda C, Nonaka T, Nishimura YF, Kawauchi S, Takeuchi Y (2016) Studying the charging process of a lithium-ion battery toward 10 V by in situ X-ray absorption and diffraction: lithium insertion/extraction with side reactions at positive and negative electrodes. J Electrochem Soc 163:A1450–A1456

    Article  CAS  Google Scholar 

  9. Mizutania T, Ogawa S, Murai T, Nameki H, Yoshida T, Yagi S (2015) In situ UV–vis investigation of growth of gold nanoparticles prepared by solution plasma sputtering in NaCl solution. Appl Surf Sci 354:397–400

    Article  Google Scholar 

  10. Amendola V, Meneghetti M (2009) Size evaluation of gold nanoparticles by UV-vis spectroscopy. J Phys Chem C 113:4277–4285

    Article  CAS  Google Scholar 

  11. Zheng H, Smith RK, Jun YW, Kisielowski C, Dahmen U, Alivisatos AP (2009) Observation of single colloidal platinum nanocrystal growth trajectories. Science 324:1309–1312

    Article  CAS  Google Scholar 

  12. Simonsen SB, Chorkendorff I, Dahl S, Skoglundh M, Sehested J, Helveg SJ (2010) Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM. J Am Chem Soc 132:7968–7975

    Article  CAS  Google Scholar 

  13. Jason W, Helveg S, Ullmann S, Peng Z, Bell AT (2016) Growth of encapsulating carbon on supported Pt nanoparticles studied by in situ TEM. J Catal 338:295–304

    Article  Google Scholar 

  14. Hsieh T-H, Chen J-Y, Huang C-W, Wu W-W (2016) Observing growth of nanostructured ZnO in liquid. Chem Mater 28:4507–4511

    Article  CAS  Google Scholar 

  15. DeYoreo JJ (2016) In-situ liquid phase TEM observations of nucleation and growth processes. Prog Cryst Growth Charact Mater 62:69–88

    Article  CAS  Google Scholar 

  16. Tay SER, Goode AE, Nelson Weker J, Cruickshank AA, Heutz S, Porter AE, Ryan MP, Toney MF (2016) Direct in situ observation of ZnO nucleation and growth via transmission X-ray microscopy. Nanoscale 8:1849–1853

    Article  CAS  Google Scholar 

  17. Abecassis B, Testard F, Spalla O, Barboux P (2007) Probing in situ the nucleation and growth of gold nanoparticles by small-angle X-ray scattering. Nano Lett 7:1723–1727

    Article  CAS  Google Scholar 

  18. Caetano BL, Santilli CV, Meneau F, Briois V, Pulcinelli SH (2011) In situ and simultaneous Uv-vis/SAXS and Uv-vis/XAFS time-resolved monitoring of ZnO quantum dots formation and growth. J Phys Chem C 115:4404–4412

    Article  CAS  Google Scholar 

  19. Polte J, Ahner TT, Delissen F, Sokolov S, Emmerling F, Thünemann AF, Kraehnert R (2010) Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. J Am Chem Soc 132:1296–1301

    Article  CAS  Google Scholar 

  20. Lin CS, Khan MR, Lin SD (2006) The preparation of Pt nanoparticles by methanol and citrate. J Colloid Interface Sci 299:678–685

    Article  CAS  Google Scholar 

  21. Ohyama J, Teramura K, Higuchi Y, Shishido T, Hitomi Y, Kato K, Tanida H, Uruga T, Tanaka T (2011) In situ observation of nucleation and growth process of gold nanoparticles by quick XAFS spectroscopy. ChemPhysChem 12:127–131

    Article  CAS  Google Scholar 

  22. Ma J, Zou Y, Jiang Z, Huang W, Li J, Wu G, Huang Y, Xu H (2013) An in situ XAFS study – the formation mechanism of gold nanoparticles from X-ray-irradiated ionic liquid. Phys Chem Chem Phys 15:11904–11908

    Article  CAS  Google Scholar 

  23. Harada M, Kamigaito Y (2012) Nucleation and aggregative growth process of platinum nanoparticles studied by in situ quick XAFS spectroscopy. Langmuir 28:2415–2428

    Article  CAS  Google Scholar 

  24. Harada M, Inada Y, Nomura M (2009) In situ time-resolved XAFS analysis of silver particle formation by photoreduction in polymer solutions. J Colloid Interface Sci 337:427–438

    Article  CAS  Google Scholar 

  25. Harada M, Einaga H (2007) In situ XAFS studies of Au particle formation by photoreduction in polymer solutions. Langmuir 23:6536–6543

    Article  CAS  Google Scholar 

  26. Boita J, Nicolao L, Alves MCM, Morais J (2014) Observing Pt nanoparticle formation at the atomic level during polyol synthesis. Phys Chem Chem Phys 16:17640–17647

    Article  CAS  Google Scholar 

  27. Nayak C, Bhattacharyya D, Jha SN, Sahoo NK (2016) Growth of block copolymer stabilized metal nanoparticles probed simultaneously by in situ XAS and UV–Vis spectroscopy. J Synchrotron Radiat 23:293–303

    Article  CAS  Google Scholar 

  28. Shannon IJ, Maschmeyer T, Sankar G, Thomas JM, Oldroyd RD, Sheehy M, Madill D, Waller AM, Townsend RP (1997) A new cell for the collection of combined EXAFS/XRD data in situ during solid/liquid catalytic reactions. Catal Lett 44:23–27

    Article  CAS  Google Scholar 

  29. Tromp M, Sietsma JRA, van Bokhoven JA, van Strijdonck GPF, van Haaren RJ, van der Eerden AMJ, van Leeuwen PWNM, Koningsberger DC (2003) Deactivation processes of homogeneous Pd catalysts using in situ time resolved spectroscopic techniques. Chem Commun 1:128–129

    Article  Google Scholar 

  30. Briois V, Lützenkirchen-Hecht D, Villain F, Fonda E, Belin S, Griesebock B, Frahm R (2005) Time-resolved study of the oxidation of ethanol by cerium(IV) using combined quick-XANES, UV−Vis, and Raman spectroscopies. J Phys Chem A 109:320–329

    Article  CAS  Google Scholar 

  31. Newton MA, Jyoti B, Dent AJ, Fiddy SG, Evans J (2004) Synchronous, time resolved, diffuse reflectance FT-IR, energy dispersive EXAFS (EDE) and mass spectrometric investigation of the behaviour of Rh catalysts during NO reduction by CO. Chem Commun 21:2382–2383

    Article  Google Scholar 

  32. Sayers DE, Stern EA, Lytle FW (1971) New technique for investigating noncrystalline structures: Fourier analysis of the extended x-ray absorption fine structure. Phys Rev Lett 27:1204–1207

    Article  CAS  Google Scholar 

  33. Stern EA (1974) Theory of the extended x-ray-absorption fine structure. Phys Rev B 10:3027–3037

    Article  CAS  Google Scholar 

  34. Konigsberger DC, Prins R (1988) X ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. Wiley, New York

    Google Scholar 

  35. Bunker G (2010) Introduction to XAFS: a practical guide to X ray absorption fine structure spectroscopy. Cambridge University Press, Cambridge

    Book  Google Scholar 

  36. Newville M (2001) IFEFFIT: interactive XAFS analysis and FEFF fitting. J Synchrotron Radiat 8:322–324

    Article  CAS  Google Scholar 

  37. George GN, Pickering IJ (2000) EXAFSPAK: a suite of computer programs for analysis of X ray absorption spectra. Stanford Synchrotron Radiation Laboratory, Stanford. EXAFSPAK Manual

    Google Scholar 

  38. Filipponi A, Di Cicco A (1995) X-ray-absorption spectroscopy and n-body distribution functions in condensed matter. II. Data analysis and applications. Phys Rev B 52:15135–15149

    Article  CAS  Google Scholar 

  39. Stern EA, Newville M, Ravel B, Yacoby Y, Haskel D (1995) The UWXAFS analysis package: philosophy and details. Physica B 208–209:117–120

    Article  Google Scholar 

  40. Kelly SD, Hesterberg D, Ravel B (2008) Analysis of soils and minerals using X-ray absorption spectroscopy. In Ulery AL, Drees R (eds) Methods of soil analysis – part 5. Mineralogical methods. Soil Science Society America, Madison, pp 387–464. ISBN 13: 978-0891188469

    Google Scholar 

  41. Frahm R (1988) Quick scanning exafs: first experiments. Nucl Inst Methods Phys Res A 270:578–581

    Article  Google Scholar 

  42. Frahm R, Richwin M, Lützenkirchen-Hecht D (2005) Recent advances and new applications of time-resolved X-ray absorption spectroscopy. Phys Scr T115:974–976

    Article  CAS  Google Scholar 

  43. Fonda E, Rochet A, Ribbens M, Barthe L, Belina S, Briois V (2012) The SAMBA quick-EXAFS monochromator: XAS with edge jumping. J Synchrotron Radiat 19:417–424

    Article  CAS  Google Scholar 

  44. Müller O, Nachtegaal M, Just J, Lützenkirchen-Hecht D, Frahm R (2016) Quick-EXAFS setup at the SuperXAS beamline for in situ X-ray absorption spectroscopy with 10 ms time resolution. J Synchrotron Radiat 23:260–266

    Article  Google Scholar 

  45. Prestipino C, Mathon O, Hino R, Beteva A, Pascarelli S (2011) Quick-EXAFS implementation on the general purpose EXAFS beamline at ESRF. J Synchrotron Radiat 18:176–182

    Article  CAS  Google Scholar 

  46. Briois V, La Fontaine C, Belin S, Barthe L, Moreno T, Pinty V, Carcy A, Girardot R, Fonda E (2016) ROCK: the new quick-EXAFS beamline at SOLEIL. J Phys Conf Ser 712:012149

    Article  Google Scholar 

  47. Lee PL, Beno MA, Jennings G, Ramanathan M, Knapp GS, Huang K, Bai J, Montano PA (1994) An energy dispersive x-ray absorption spectroscopy beamline, X6A, at NSLS. Rev Sci Instrum 65:1–6

    Article  CAS  Google Scholar 

  48. Bhattacharyya D, Poswal AK, Jha SN, Sabharwal SC (2009) First results from a dispersive EXAFS beamline developed at INDUS-2 synchrotron source at RRCAT, Indore, India. Nucl Inst Methods Phys Res A 609:286–293

    Article  CAS  Google Scholar 

  49. Wang X, Hanson JC, Frenkel AI, Kim J-Y, Rodriguez J’A (2004) Time-resolved studies for the mechanism of reduction of copper oxides with carbon monoxide: complex behavior of lattice oxygen and the formation of suboxides. J Phys Chem B 108:13667–13673

    Article  CAS  Google Scholar 

  50. Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541

    Article  CAS  Google Scholar 

  51. Wasserman SR, Allen PG, Shuh DK, Bucher JJ, Edelstein NM (1999) EXAFS and principal component analysis: a new shell game. J Synchrotron Radiat 6:284–286

    Article  CAS  Google Scholar 

  52. Frenkel AI, Kleifeld O, Wasserman SR, Sagi I (2002) Phase speciation by extended x-ray absorption fine structure spectroscopy. J Chem Phys 116:9449–9455

    Article  CAS  Google Scholar 

  53. Wang Q, Hanson JC, Frenkel AI (2008) Solving the structure of reaction intermediates by time-resolved synchrotron x-ray absorption spectroscopy. J Chem Phys 129:234502-1–234502-7

    Google Scholar 

  54. Cassinelli WH, Martins L, Passos AR, Pulcinelli SH, Santilli CV, Rochet A, Briois V (2014) Multivariate curve resolution analysis applied to time-resolved synchrotron X-ray absorption spectroscopy monitoring of the activation of copper alumina catalyst. Catal Today 229:114–122

    Article  CAS  Google Scholar 

  55. Voronov A, Urakawa A, van Beek W, Tsakoumis NE, Emerich H, Rønning M (2014) Multivariate curve resolution applied to in situ X-ray absorption spectroscopy data: an efficient tool for data processing and analysis. Anal Chim Acta 840:20–27

    Article  CAS  Google Scholar 

  56. Stötzel J, Lutzenkirchen-Hecht D, Frahm R, Santilli CV, Pulcinelli SH, Kaminski R, Fonda E, Villain F, Briois V (2010) QEXAFS and UV/Vis simultaneous monitoring of the TiO2-nanoparticles formation by hydrolytic sol-gel route. J Phys Chem C 114:6228–6236

    Article  Google Scholar 

  57. Meneau F, Sankar G, Morgante N, Cristol S, Catlow CRA, Thomas JM, Greaves GN (2003) Characterization of zinc oxide nanoparticles encapsulated into zeolite-Y: an in-situ combined X-ray diffraction, XAFS, and SAXS study. Nucl Inst Methods Phys Res B 199:499–503

    Article  CAS  Google Scholar 

  58. Couves JW, Thomas JM, Waller D, Jones RH, Dent AJ, Derbyshire GE, Greaves GN (1991) Tracing the conversion of aurichalcite to a copper catalyst by combined X ray absorption and diffraction. Nature 354:465–468

    Article  CAS  Google Scholar 

  59. Boita J, Alves M d CM, Morais J (2014) A reaction cell for time-resolved in situ XAS studies during wet chemical synthesis: the Cu2(OH)3Cl case. J Synchrotron Radiat 21:254–258

    Article  CAS  Google Scholar 

  60. Staniuk M, Hirsch O, Kranzlin N, Bohlen R, van Beek W, Abdala PM, Koziej D (2014) Puzzling mechanism behind a simple synthesis of cobalt and cobalt oxide nanoparticles: in situ synchrotron X-ray absorption and diffraction studies. Chem Mater 26:2086–2094

    Article  CAS  Google Scholar 

  61. Bauer M, Heusel G, Mangold S, Bertagnolli H (2010) Spectroscopic set-up for simultaneous UV-Vis/(Q)EXAFS in situ and in operando studies of homogeneous reactions under laboratory conditions. J Synchrotron Radiat 17:273–279

    Article  CAS  Google Scholar 

  62. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun:801–802

    Article  CAS  Google Scholar 

  63. Yao T, Sun Z, Li Y, Pan Z, He W, Yi X, Nomura M, Niwa Y, Yan W, Ziyu W, Jiang Y, Liu Q, Wei S (2010) Insights into initial kinetic nucleation of gold nanocrystals. J Am Chem Soc 132:7696–7701

    Article  CAS  Google Scholar 

  64. Kränzlin N, Staniuk M, Heiligtag FJ, Luo L, Emerich H, van Beek W, Niederberger M, Koziej D (2014) Rationale for the crystallization of titania polymorphs in solution. Nanoscale 6:14716–14723

    Article  Google Scholar 

  65. Caetano BL, Santilli CV, Pulcinelli SH, Briois V (2011) SAXS and UV–Vis combined to quick-XAFS monitoring of ZnO nanoparticles formation and growth. Phase Transit 84:714–725

    Article  CAS  Google Scholar 

  66. Hirsch O, Zeng G, Luo L, Staniuk M, Abdala PM, van Beek W, Rechberger F, Suess MJ, Niederberger M, Koziej D (2014) Aliovalent Ni in MoO2 lattice – probing the structure and valence of Ni and its implication on the electrochemical performance. Chem Mater 26:4505–4513

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dibyendu Bhattacharyya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nayak, C., Jha, S.N., Bhattacharyya, D. (2018). In Situ X-Ray Absorption Spectroscopy to Study Growth of Nanoparticles. In: Kumar, C. (eds) In-situ Characterization Techniques for Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56322-9_6

Download citation

Publish with us

Policies and ethics