Skip to main content

Global Biogeochemical Cycles

  • Chapter
  • First Online:
Plant Ecology

Abstract

In this chapter, the major global biogeochemical cycles (carbon, water, nitrogen and sulphur) are introduced in relation to environmental drivers as well as LU. To understand the interactions of the global biosphere with management and biogeochemistry, first, the global distribution of terrestrial ecosystems is presented, both based on climatic zones as well as on management. Then the major biogeochemical cycles of carbon, water, nitrogen and sulphur are explained, elaborating on the identity and the magnitude of the respective pools and fluxes, their interactions, but also on their major disturbances related to global change. Finally, the concept of ecosystem services is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bond WJ, Woodward FI, Midgley GF (2004) The global distribution of ecosystems in a world without fire. New Phytol 165:525–538

    Article  Google Scholar 

  • Canadell JG, Schulze E-D (2014) Global potential of biospheric carbon management for climate mitigation. Nat Commun 5:5282

    Article  Google Scholar 

  • Cerveny RS, Balling RC (1998) Weekly cycles of air pollutants, precipitation and tropical cyclones in the coastal NW Atlantic region. Nature 394:561–563

    Article  CAS  Google Scholar 

  • Charlson RJ, Anderson TL, and McDuff RE (1992) The sulfur cycle. In: Butcher SS, Charlson RJ, Orians GH, and Wolfe GV (eds.) Global biogeochemical cycles. Academic Press: London, pp 285–300

    Google Scholar 

  • Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water-use efficiency. J Exp Bot 55:2447–2460

    Article  CAS  Google Scholar 

  • Costanza R, D’Arge R, De Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, Van den Bel M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  CAS  Google Scholar 

  • Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Change Biol 7:357–373

    Article  Google Scholar 

  • Daily G (1997) Nature’s services. Island Press, Washington, DC

    Google Scholar 

  • Gleick PH, Palaniappan M (2010) Peak water limits to freshwater withdrawal and use. Proceedings of the National Academy of Sciences 107:11155–11162

    Article  CAS  Google Scholar 

  • Gruber N, Galloway JN (2008) An earth-system perspective of the global nitrogen cycle. Nature 451:293–296

    Article  CAS  Google Scholar 

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation: a special report of working groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.)]. Cambridge University Press, Cambridge

    Google Scholar 

  • Jung M, Henkel K, Herold M, Churkina G (2006) Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sens Environ 101:534–553

    Article  Google Scholar 

  • Kaplan JO (2001) Geophysical applications of vegetation modeling. Ph.D. thesis. Lund University, Lund. https://doi.org/10.5281/zenodo.1492908

    Book  Google Scholar 

  • Keenan TF, Hollinger DY, Bohrer G, Dragoni D, Munger JW, Schmid HP, Richardson AD (2013) Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499:324–328

    Article  CAS  Google Scholar 

  • Le Quéré C, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Peters GP, Manning AC, Boden TA, Tans PP, Houghton RA, Keeling RF, Alin S, Andrews OD, Anthoni P, Barbero L, Bopp L, Chevallier F, Chini LP, Ciais P, Currie K, Delire C, Doney SC, Friedlingstein P, Gkritzalis T, Harris I, Hauck J, Haverd V, Hoppema M, Klein Goldewijk K, Jain AK, Kato E, Körtzinger A, Landschützer P, Lefèvre N, Lenton A, Lienert S, Lombardozzi D, Melton JR, Metzl N, Millero F, Monteiro PMS, Munro DR, Nabel JEMS, Nakaoka S, O’Brien K, Olsen A, Omar AM, Ono T, Pierrot D, Poulter B, Rödenbeck C, Salisbury J, Schuster U, Schwinger J, Séférian R, Skjelvan I, Stocker BD, Sutton AJ, Takahashi T, Tian H, Tilbrook B, van der Laan-Luijkx IT, van der Werf GR, Viovy N, Walker AP, Wiltshire AJ, Zaehle S (2016) Global carbon budget 2016. Earth Syst Sci Data 8:605–649

    Article  Google Scholar 

  • Li B, Gasser T, Ciais P, Piao S, Tao S, Balkanski Y, Hauglustaine D, Boisier J-P, Chen Z, Huang M, Li LZ, Li Y, Liu H, Liu J, Peng S, Shen Z, Sun Z, Wang R, Wang T, Yin G, Yin Y, Zeng H, Zeng Z, Zhou F (2016) The contribution of China’s emissions to global climate forcing. Nature 531:357–361

    Article  CAS  Google Scholar 

  • Merbold L, Eugster W, Stieger J, Zahniser M, Nelson D, Buchmann N (2014) Greenhouse gas budget (CO2, CH4 and N2O) of intensively managed grassland following restoration. Glob Change Biol 20:1913–1928

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (MA) (2005) Ecosystems and human well-being: current state and trends. Island Press, Washington, DC

    Google Scholar 

  • Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563

    Article  CAS  Google Scholar 

  • Oki R, Kanae S (2006) Global hydrological cycles and world water resources. Science 313:1068–1072

    Article  CAS  Google Scholar 

  • Piao S (2009) The carbon balance of terrestrial ecosystems in China. Nature 458:1009–1013

    Article  CAS  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: an analysis of global change. Academic Press, San Diego

    Google Scholar 

  • Schlesinger WH, Bernhardt E (2013) Biogeochemistry: an analysis of global change. Academic Press, San Diego

    Chapter  Google Scholar 

  • Schulze E-D (1982) Plant life forms and their carbon, water and nutrient relations. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, Physiological plant ecology II, vol 12B. Water Relations and Photosynthetic Productivity, Springer, Berlin

    Chapter  Google Scholar 

  • Schulze E-D (2000) Der Einfluss des Menschen auf die biogeochemischen Kreisläufe der Erde. Max-Planck-Gesellschaft Jahrbuch 2000:39–58

    Google Scholar 

  • Schulze E-D, Vygodskaya NN, Tchebakova NM, Czimczik CI, Kozlov DN, Lloyd J, Mollicone D, Parfenova E, Siderov KN, Varlagin AV, Wirth C (2002) The European transect: an introduction to the experimental design. Tellus 54B:421–428

    Google Scholar 

  • Steffen W, Sanderson A, Tyson P, Jäger J, Matson P, Moore III B, Oldfield F, Richardson K, Schellnhuber HJ, Turner II BL, Wasson RJ (2004) Global change and the Earth system: a planet under pressure. Springer, Berlin

    Google Scholar 

  • TEEB (2010) The economics of ecosystems and biodiversity: ecological and economic foundations. [Kumar P (ed.)] Earthscan, London

    Google Scholar 

  • Tian H, Chen G, Lu C, Xu X, Ren W, Zang B, Banger K, Tao B, Pan S, Liu M, Zhang C, Bruhwiler L, Eofsy S (2015) Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes. Ecosyst Health Sustain 1:1–20

    Article  Google Scholar 

  • Toon OB (2000) How pollution suppresses rain. Science 287:1763–1765

    Article  CAS  Google Scholar 

  • WBGU (1999) World in transition: ways towards sustainable management of fresh water. Springer, Berlin pp 392

    Google Scholar 

  • Wolf S, Eugster W, Ammann C, Häni M, Zielis S, Hiller R, Stieger J, Imer D, Merbold L, Buchmann N (2013) Contrasting response of grassland versus forest carbon and water fluxes to spring drought in Switzerland. Environ Res Lett 8:035007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schulze, ED., Beck, E., Buchmann, N., Clemens, S., Müller-Hohenstein, K., Scherer-Lorenzen, M. (2019). Global Biogeochemical Cycles. In: Plant Ecology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56233-8_21

Download citation

Publish with us

Policies and ethics