Skip to main content

On \(\varSigma \wedge \varSigma \wedge \varSigma \) Circuits: The Role of Middle \(\varSigma \) Fan-In, Homogeneity and Bottom Degree

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10472))

Included in the following conference series:

  • 608 Accesses

Abstract

We study polynomials computed by depth five \(\varSigma \wedge \varSigma \wedge \varSigma \) arithmetic circuits where ‘\(\varSigma \)’ and ‘\(\wedge \)’ represent gates that compute sum and power of their inputs respectively. Such circuits compute polynomials of the form \(\sum _{i=1}^t Q_i^{\alpha _{i}}\), where \(Q_i = \sum _{j=1}^{r_i}\ell _{ij}^{d_{ij}}\) where \(\ell _{ij}\) are linear forms and \(r_i\), \(\alpha _{i}\), \(t>0\). These circuits are a natural generalization of the well known class of \(\varSigma \wedge \varSigma \) circuits and received significant attention recently. We prove an exponential lower bound for the monomial \(x_1\cdots x_n\) against depth five \(\varSigma \wedge \varSigma ^{[\le n]}\wedge ^{[\ge 21]}\varSigma \) and \(\varSigma \wedge \varSigma ^{[\le 2^{\sqrt{n}/1000}]}\wedge ^{[\ge \sqrt{n}]}\varSigma \) arithmetic circuits where the bottom \(\varSigma \) gate is homogeneous.

Our results show that the fan-in of the middle \(\varSigma \) gates, the degree of the bottom powering gates and the homogeneity at the bottom \(\varSigma \) gates play a crucial role in the computational power of \(\varSigma \wedge \varSigma \wedge \varSigma \) circuits.

K. Sreenivasaiah—This work was done while the author was working at Max Planck Institute for Informatics, Saarbrücken supported by IMPECS post doctoral fellowship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In [15], Corollary 17.16, it is mentioned that the resulting \(\varSigma \wedge \varSigma \wedge \) circuit is homogeneous. However, a closer look at the construction shows that the application of Fischer’s identity produces sum gates that are not homogeneous.

References

  1. Agrawal, M., Vinay, V.: Arithmetic circuits: a chasm at depth four. In: FOCS, pp. 67–75 (2008)

    Google Scholar 

  2. Baur, W., Strassen, V.: The complexity of partial derivatives. Theor. Comput. Sci. 22, 317–330 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fischer, I.: Sums of like powers of multivariate linear forms. Math. Mag. 67(1), 59–61 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fournier, H., Limaye, N., Malod, G., Srinivasan, S.: Lower bounds for depth 4 formulas computing iterated matrix multiplication. In: STOC, pp. 128–135 (2014)

    Google Scholar 

  5. Grigoriev, D., Karpinski, M.: An exponential lower bound for depth 3 arithmetic circuits. In STOC, pp. 577–582 (1998)

    Google Scholar 

  6. Gupta, A., Kamath, P., Kayal, N., Saptharishi, R.: Arithmetic circuits: a chasm at depth three. In: FOCS, pp. 578–587 (2013)

    Google Scholar 

  7. Gupta, A., Kamath, P., Kayal, N., Saptharishi, R.: Approaching the chasm at depth four. J. ACM 61(6), 33:1–33:16 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kayal, N.: An exponential lower bound for the sum of powers of bounded degree polynomials. ECCC 19:81 (2012)

    Google Scholar 

  9. Koiran, P.: Shallow circuits with high-powered inputs. In: ICS, pp. 309–320. Tsinghua University Press (2011)

    Google Scholar 

  10. Koiran, P.: Arithmetic circuits: the chasm at depth four gets wider. Theor. Comput. Sci. 448, 56–65 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Koiran, P., Portier, N., Tavenas, S.: A wronskian approach to the real tau-conjecture. J. Symb. Comput. 68, 195–214 (2015)

    Article  MATH  Google Scholar 

  12. Koiran, P., Portier, N., Tavenas, S., Thomassé, S.: A tau-conjecture for newton polygons. Found. Comput. Math. 15(1), 185–197 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. MacKay, D.J.C.: Information Theory, Inference and Learning Algorithms. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  14. Mulmuley, K., Sohoni, M.A.: Geometric complexity theory I: an approach to the P vs. NP and related problems. SIAM J. Comput. 31(2), 496–526 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Saptharishi, R.: A survey of lower bounds in arithmetic circuit complexity. Version 3.1.0 (2016). https://github.com/dasarpmar/lowerbounds-survey/releases

  16. Shub, M., Smale, S.: On the intractability of hilbert’s nullstellensatz and an algebraic version of “NP != P ?”. Duke Math. J. 81(1), 47–54 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tavenas, S.: Improved bounds for reduction to depth 4 and depth 3. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 813–824. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40313-2_71

    Chapter  Google Scholar 

  18. Valiant, L.G.: Completeness classes in algebra. In: STOC, pp. 249–261 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Raghavendra Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this paper

Cite this paper

Engels, C., Rao, B.V.R., Sreenivasaiah, K. (2017). On \(\varSigma \wedge \varSigma \wedge \varSigma \) Circuits: The Role of Middle \(\varSigma \) Fan-In, Homogeneity and Bottom Degree. In: Klasing, R., Zeitoun, M. (eds) Fundamentals of Computation Theory. FCT 2017. Lecture Notes in Computer Science(), vol 10472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55751-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55751-8_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55750-1

  • Online ISBN: 978-3-662-55751-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics