Skip to main content

Musical Syntax I: Theoretical Perspectives

  • Chapter
Book cover Springer Handbook of Systematic Musicology

Part of the book series: Springer Handbooks ((SHB))

Abstract

The understanding of musical syntax is a topic of fundamental importance for systematic musicology and lies at the core intersection of music theory and analysis, music psychology, and computational modeling. This chapter discusses the notion of musical syntax and its potential foundations based on notions such as sequence grammaticality, expressive unboundedness, generative capacity, sequence compression and stability. Subsequently, it discusses problems concerning the choice of musical building blocks to be modeled as well as the underlying principles of sequential structure building. The remainder of the chapter reviews the main theoretical proposals that can be characterized under different mechanisms of structure building, in particular approaches using finite-context or finite-state models as well as tree-based models of context-free complexity (including the Generative Theory of Tonal Music) and beyond. The chapter concludes with a discussion of the main issues and questions driving current research and a preparation for the subsequent empirical chapter Musical Syntax II.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATN:

augmented transition network

EMI:

experiments in musical intelligence

GTTM:

generative theory of tonal music

HMM:

hidden Markov model

MDL:

minimum description length

References

  1. M. Steedman: The blues and the abstract truth: Music and mental models. In: Mental Models in Cognitive Science, ed. by A. Garnham, J. Oakhill (Erlbaum, Mahwah 1996) pp. 305–318

    Google Scholar 

  2. M.T. Pearce, M. Rohrmeier: Music cognition and the cognitive sciences, Top. Cogn. Sci. 4(4), 468–484 (2012)

    Article  Google Scholar 

  3. M. Christiansen, N. Chater: Toward a connectionist model of recursion in human linguistic performance, Cogn. Sci. 23, 157–205 (1999)

    Article  Google Scholar 

  4. D. Sudnow: Ways of the Hand: The Organization of Improvised Conduct (MIT Press, Cambridge 1978)

    Google Scholar 

  5. M.T. Pearce, G.A. Wiggins: Auditory expectation: The information dynamics of music perception and cognition, Top. Cogn. Sci. 4(4), 625–652 (2012), https://doi.org/10.1111/j.1756-8765.2012.01214.x

    Article  Google Scholar 

  6. M. Rohrmeier, P. Rebuschat: Implicit learning and acquisition of music, Top. Cogn. Sci. 4(4), 525–553 (2012), https://doi.org/10.1111/j.1756-8765.2012.01223.x

    Article  Google Scholar 

  7. R.C. Berwick, A.D. Friederici, N. Chomsky, J.J. Bolhuis: Evolution, brain, and the nature of language, Trends Cogn. Sci. 17(2), 91–100 (2013), https://doi.org/10.1016/j.tics.2012.12.002

    Article  Google Scholar 

  8. E. Aldwell, C. Schachter: Harmony & Voice Leading (Thomson Schirmer, New York 2003)

    Google Scholar 

  9. I. Cross: Cognitive science and the cultural nature of music, Top. Cogn. Sci. 4(4), 668–677 (2012)

    Article  Google Scholar 

  10. J. Kippen, B. Bel: Modelling music with grammars. In: Computer Representations and Models in Music, ed. by A. Marsden, A. Pople (Academic Press, London 1992) pp. 207–238

    Google Scholar 

  11. S. Marcus: The Eastern Arab system of melodic modes: A case study of Maqam Bayyati. In: The Garland Encyclopedia of World Music. The Middle East (Routledge, New York 2003) pp. 33–44

    Google Scholar 

  12. D.R. Widdess: Aspects of form in North Indian ālāp and dhrupad. In: Music and Tradition: Essays on Asian and Other Musics Presented to Laurence Picken (Cambridge Univ. Press, Cambridge 1981) pp. 143–182

    Google Scholar 

  13. A. Sorace, F. Keller: Gradience in linguistic data, Lingua 115(11), 1497–1524 (2005)

    Article  Google Scholar 

  14. B. Aarts: Fuzzy Grammar: A Reader (Oxford Univ. Press, Oxford 2004)

    Google Scholar 

  15. B. Aarts: Syntactic Gradience: The Nature of Grammatical Indeterminacy (Oxford Univ. Press, Oxford 2007)

    Google Scholar 

  16. W. Caplin: Classical Form: A Theory of Formal Functions for the Instrumental Music of Haydn, Mozart, and Beethoven (Oxford Univ. Press, New York, Oxford 1998)

    Google Scholar 

  17. E. Aldwell, C. Schachter: Harmony and Voice Leading, 2nd edn. (Harcourt Brace Jovanovich, San Diego 1989)

    Google Scholar 

  18. N. Chomsky: Syntactic Structures (Mouton, The Hague 1957)

    MATH  Google Scholar 

  19. N. Chomsky: Aspects of the Theory of Syntax (MIT Press, Cambridge 1965)

    Google Scholar 

  20. N. Chater: Reconciling simplicity and likelihood principles in perceptual organisation, Psychol. Res. 103, 566–581 (1996)

    Google Scholar 

  21. N. Chater, P. Vitanyi: The generalized universal law of generalization, J. Math. Psychol. 47, 346–369 (2003)

    Article  MathSciNet  Google Scholar 

  22. D.J.C. MacKay: Information Theory, Inference and Learning Algorithms (Cambridge Univ. Press, Cambridge 2003)

    MATH  Google Scholar 

  23. R. Cilibrasi, P.M.B. Vitanyi, R. de Wolf: Algorithmic clustering of music based on string compression, Comput. Music J. 28, 49–67 (2004)

    Article  Google Scholar 

  24. M.M. Marin, H. Leder: Examining complexity across domains: Relating subjective and objective measures of affective environmental scenes, paintings and music, PLoS ONE 8(8), e72412 (2013)

    Article  Google Scholar 

  25. P.D. Grünwald: The Minimum Description Length Principle (MIT Press, Cambridge 2007)

    Google Scholar 

  26. A. Perfors, J.B. Tenenbaum, T. Regier: The learnability of abstract syntactic principles, Cognition 118(3), 306–338 (2011)

    Article  Google Scholar 

  27. C. Kemp, J.B. Tenenbaum: The discovery of structural form, Proc. Natl. Acad. Sci. 105(31), 10687–10692 (2008)

    Article  Google Scholar 

  28. P. Mavromatis: Minimum description length modelling of musical structure, J. Math. Music 3(3), 117–136 (2009)

    Article  MathSciNet  Google Scholar 

  29. S. Kostka, D. Payne: Tonal Harmony (Alfred A. Knopf, New York 1984)

    Google Scholar 

  30. E. Narmour: The Analysis and Cognition of Melodic Complexity: The Implication-Realization Model (University of Chicago Press, Chicago, London 1992)

    Google Scholar 

  31. C.L. Krumhansl: Cognitive Foundations of Musical Pitch (Oxford Univ. Press, Oxford 1990)

    Google Scholar 

  32. B. De Haas, M. Rohrmeier, R. Veltkamp, F. Wiering: Modeling harmonic similarity using a generative grammar of tonal harmony. In: Proc. 10th Int. Soc. Music Inf. Retr. Conf. (ISMIR 2009), Kobe, ed. by K. Hirata, G. Tzanetakis, K. Yoshii (2009) pp. 549–554

    Google Scholar 

  33. S. Koelsch: Towards a neural basis of processing musical semantics, Phys. Life Rev. 8(2), 89–105 (2011)

    Google Scholar 

  34. L.R. Slevc, A.D. Patel: Meaning in music and language: Three key differences: Comment on ``Towards a neural basis of processing musical semantics'' by Stefan Koelsch, Phys. Life Rev. 8(2), 110–111 (2011)

    Google Scholar 

  35. U. Reich: The meanings of semantics: Comment on ’Towards a neural basis of processing musical semantics’ by Stefan Koelsch, Phys. Life Rev. 8(2), 120–121 (2011)

    Google Scholar 

  36. W.T. Fitch, B. Gingras: Multiple varieties of musical meaning: Comment on ``Towards a neural basis of processing musical semantics'' by Stefan Koelsch, Phys. Life Rev. 8(2), 108–109 (2011)

    Google Scholar 

  37. F. Lerdahl: Tonal Pitch Space (Oxford Univ. Press, New York 2001)

    Google Scholar 

  38. M. Rohrmeier: Towards a generative syntax of tonal harmony, J. Math. Music 5(1), 35–53 (2011)

    Article  Google Scholar 

  39. M. Lehne, M. Rohrmeier, S. Koelsch: Tension-related activity in the orbitofrontal cortex and amygdala: An fMRI study with music, Soc. Cogn. Affect. Neurosci. 9(10), 1515–1523 (2013)

    Article  Google Scholar 

  40. M. Rohrmeier, W. Zuidema, G.A. Wiggins, C. Scharff: Principles of structure building in music, language and animal song, Phil. Trans. R. Soc. B (2015), https://doi.org/10.1098/rstb.2014.0097

    Article  Google Scholar 

  41. G.J. Balzano: The pitch set as a level of description for studying musical pitch perception. In: Music, Mind and Brain, ed. by M. Clynes (Plenum, New York 1982) pp. 321–351

    Chapter  Google Scholar 

  42. L. Euler: Tentamen Novae Theoriae Musicae (Academia Scientiae, St. Petersburg 1739), reprint: Broude Bros., New York 1968

    Google Scholar 

  43. G. Weber: Versuch einer geordneten Theorie der Tonsetzkunst, Vol. 1–4 (Schott, Mainz 1830)

    Google Scholar 

  44. J. Pressing: Cognitive isomorphisms between pitch and rhythm in world musics: West Africa, the Balkans and Western tonality, Stud. Music 17, 38–61 (1983)

    Google Scholar 

  45. H.C. Longuet-Higgins: Letter to a musical friend, Music Rev. 23, 244–248 (1962)

    Google Scholar 

  46. H.C. Longuet-Higgins: Second letter to a musical friend, Music Rev. 23, 271–280 (1962)

    Google Scholar 

  47. R.N. Shepard: Structural representations of musical pitch. In: Psychology of Music, ed. by D. Deutsch (Academic Press, New York 1982) pp. 343–390

    Chapter  Google Scholar 

  48. D. Tymoczko: A Geometry of Music: Harmony and Counterpoint in the Extended Common Practice (Oxford Univ. Press, Oxford 2011)

    Google Scholar 

  49. J. London: Hearing in Time (Oxford Univ. Press, Oxford 2004)

    Book  Google Scholar 

  50. P. Janata, J.L. Birk, J.D. van Horn, M. Leman, B. Tillmann, J.J. Bharucha: The cortical topography of tonal structures underlying Western music, Science 298(5601), 2167–2170 (2002)

    Article  Google Scholar 

  51. G. Jäger, J. Rogers: Formal language theory: refining the Chomsky hierarchy, Philos. Trans. R. Soc. B 367(1598), 1956–1970 (2012)

    Article  Google Scholar 

  52. J.E. Hopcroft, J.D. Ullman: Introduction to Automata Theory, Languages and Computation (Addison-Wesley, Reading 1979)

    MATH  Google Scholar 

  53. G. Rozenberg, A. Salomaa (Eds.): Handbook of Formal Languages (Springer, New York 1997)

    MATH  Google Scholar 

  54. G. Wiggins: Computer models of (music) cognition. In: Language and Music as Cognitive Systems, ed. by P. Rebuschat, M. Rohrmeier, I. Cross, J. Hawkins (Oxford Univ. Press, Oxford 2012) pp. 169–188

    Google Scholar 

  55. M.A. Rohrmeier, S. Koelsch: Predictive information processing in music cogntion. A critical review, Int. J. Psychophysiol. 83(2), 164–175 (2012)

    Article  Google Scholar 

  56. T.C. Bell, J.G. Cleary, I.H. Witten: Text Compression (Prentice Hall, Englewood Cliffs 1990)

    Google Scholar 

  57. S. Bunton: On-Line Stochastic Processes in Data Compression, Doctoral Dissertation (University of Washington, Seattle 1996)

    Google Scholar 

  58. D. Huron: Sweet Anticipation: Music and the Psychology of Expectation (MIT Press, Cambridge 2006)

    Google Scholar 

  59. J.-P. Rameau: Traite de l’harmonie reduite a ses principes naturels (J.B.C. Ballard, Paris 1722)

    Google Scholar 

  60. W. Piston: Harmony (W.W.Norton, New York 1948)

    Google Scholar 

  61. R.O. Gjerdingen: Learning syntactically significant temporal patterns of chords, Neural Netw. 5, 551–564 (1992)

    Article  Google Scholar 

  62. V. Byros: Meyer's anvil: Revisiting the schema concept, Music Anal. 31(3), 273–346 (2012)

    Article  Google Scholar 

  63. V. Byros: Towards an ``archaeology'' of hearing: schemata and eighteenth-century consciousness, Musica Humana 1(2), 235–306 (2009)

    Google Scholar 

  64. D. Conklin, I.H. Witten: Multiple viewpoint systems for music prediction, J. New Music Res. 24(1), 51–73 (1995)

    Article  Google Scholar 

  65. M.T. Pearce: The Construction and Evaluation of Statistical Models of Melodic Structure in Music Perception and Composition, Doctoral Dissertation (Department of Computing, City University, London 2005)

    Google Scholar 

  66. L.R. Rabiner: A tutorial on Hidden Markov Models and selected applications in speech recognition, Proc. IEEE 77(2), 257–285 (1989)

    Article  Google Scholar 

  67. S. Kostka, D. Payne: Tonal Harmony (McGraw-Hill, New York 1995)

    Google Scholar 

  68. M. Rohrmeier: A generative grammar approach to diatonic harmonic structure. In: Proc. 4th Sound Music Comput. Conf., ed. by Spyridis, Georgaki, Kouroupetroglou, Anagnostopoulou (2007) pp. 97–100

    Google Scholar 

  69. D.R. Hofstadter: Goedel, Escher, Bach (Basic Books, New York 1979)

    Google Scholar 

  70. I. Giblin: Music and the Generative Enterprise: Situating a Generative Theory of Tonal Music in the Cognitive Sciences, Doctoral Dissertation (University of New South Wales, Sydney 2008)

    Google Scholar 

  71. F. Lerdahl, R. Jackendoff: A Generative Theory of Tonal Music (MIT Press, Cambridge 1983)

    Google Scholar 

  72. M. Steedman: A generative grammar for jazz chord sequences, Music Percept 2(1), 52–77 (1984)

    Article  Google Scholar 

  73. H. Riemann: Musikalische Syntaxis (Breitkopf Härtel, Leipzig 1877)

    Google Scholar 

  74. T. Christensen: The Schichtenlehre of Hugo Riemann, Theory Only 6(4), 37–44 (1982)

    Google Scholar 

  75. H. Schenker: Der Freie Satz. Neue musikalische Theorien und Phantasien (Margada, Liège 1935)

    Google Scholar 

  76. F. Lerdahl: Cognitive constraints on compositional systems. In: Generative Processes in Music: The Psychology of Performance, Improvisation and Composition, ed. by J.A. Sloboda (Clarendon, Oxford 1988) pp. 231–259

    Google Scholar 

  77. A. Keiler: Bernstein’s ‘‘The Unanswered Question’’ and the problem of musical competence, Music. Q. 64(2), 195–222 (1978)

    Article  Google Scholar 

  78. A. Keiler: Two views of musical semiotics. In: The Sign in Music and Literature, ed. by W. Steiner (Univ. Texas Press, Austin 1981) pp. 138–168

    Google Scholar 

  79. D. Tidhar: A Hierarchical and Deterministic Approach to Music Grammars and its Application to Unmeasured Preludes (dissertation.de, Berlin 2005)

    Google Scholar 

  80. I. Deliège: Grouping conditions in listening to music: An approach to Lerdahl and Jackendoff’s grouping preference rules, Music Percept 4(4), 325–360 (1987)

    Article  Google Scholar 

  81. R. Jackendoff: Foundations of Language – Brain, Meaning, Grammar, Evolution (Oxford Univ. Press, Oxford 2003)

    Google Scholar 

  82. R. Jackendoff: A parallel architecture perspective on language processing, Brain Res 1146, 2–22 (2007)

    Article  Google Scholar 

  83. C. Roads: Grammars as representations for music. In: Foundations of Computer Music, ed. by C. Roads, J. Strawn (MIT Press, Cambridge 1985) pp. 403–442

    Google Scholar 

  84. J. Sundberg, B. Lindblom: Generative theories for describing musical structure. In: Representing Musical Structure, ed. by P. Howell, R. West, I. Cross (Academic Press, London 1991) pp. 245–272

    Google Scholar 

  85. P.N. Johnson-Laird: Jazz improvisation: A theory at the computational level. In: Representing Musical Structure, ed. by P. Howell, R. West, I. Cross (Academic Press, London 1991) pp. 291–325

    Google Scholar 

  86. S.M. Shieber: Evidence against the context-freeness of natural language. In: The Formal Complexity of Natural Language, ed. by W.J. Savitch, E. Bach, W. Marsh, G. Safran-Navah (Springer Netherlands, Dordrecht 1987) pp. 320–334

    Google Scholar 

  87. A.K. Joshi, K.V. Shanker, D. Weir: The Convergence of Mildly Context-Sensitive Grammar Formalisms. Technical Report No. MS- CIS-90-01 (Univ. of Pennsylvania, Department of Computer and Information Science 1990)

    Google Scholar 

  88. M. Steedman: The Syntactic Process (MIT Press, Cambridge 2001)

    Google Scholar 

  89. E.P. Stabler: Computational perspectives on minimalism. In: Oxford Handbook of Linguistic Minimalism, ed. by C. Boeckx (Oxford Univ. Press, Oxford 2011) pp. 617–643

    Google Scholar 

  90. J. Katz, D. Pesetsky: The Identity Thesis for Language and Music. http://ling.auf.net/lingbuzz/000959 (2010)

  91. D. Cope: Computer modelling of musical intelligence in EMI, Comput. Music J. 16(2), 69–83 (1992)

    Article  Google Scholar 

  92. P. Mavromatis: A hidden Markov model of melody production in Greek church chant, Comput. Musicol. 14, 93–112 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Rohrmeier .

Editor information

Editors and Affiliations

Appendix: The Chomsky Hierarchy

Appendix: The Chomsky Hierarchy

Noam Chomsky introduced a containment hierarchy of four classes of formal grammar in terms of increasing restrictions placed on the form of valid rewrite rules [25.52]. A formal grammar consists of a set of nonterminal symbols (variables), terminal symbols (elements of the surface), production rules, and a starting symbol to derive productions. In the following description, \(a\in T^{\mathrm{*}}\) denotes a (possibly empty) sequence of terminal symbols, \(A,B\in V\) denote nonterminal symbols, \(\alpha\in(V\cup T)^{\mathrm{+}}\) denotes a nonempty sequence of terminal and nonterminal symbols, and \(\beta,\beta^{\prime}\in(V\cup T)^{\mathrm{*}}\) denote (possibly empty) sequences of terminal and nonterminal symbols. The difference between different formal grammars in the Chomsky hierarchy relates to different possible production rules.

Every grammar in the Chomsky hierarchy corresponds with an associated automaton: while formal grammars generate the string language, formal automata specify constraints on processing or generating mechanisms that characterize the formal language. Automata provide an equivalent characterization of formal languages as formal grammars.

1.1 Type 3 (Regular)

Grammars in this class feature restricted rules allowing only a single terminal symbol, optionally accompanied by a single nonterminal, on the right-hand side of their productions

$$\begin{aligned}\displaystyle A&\displaystyle\rightarrow a\\ \displaystyle A&\displaystyle\rightarrow aB\quad\text{(right linear grammar) or}\\ \displaystyle A&\displaystyle\rightarrow Ba\quad\text{(left linear grammar)}\;.\end{aligned}$$

Regular grammars generate all languages which can be recognized by a finite-state automaton, which requires no memory other than a representation of its current state.

It is essential to note that regular grammars are not equivalent to Markov models or k-factor languages (see Sect. 25.4.1 above).

1.2 Type 2 (Context Free)

Grammars in this class only restrict the left-hand side of their rewrite rules to a single nonterminal symbol – i. e., the right-hand side can be any string of nonterminal symbols

$$A\rightarrow\alpha\;.$$

The equivalent automata characterization of a context-free language is a nondeterministic pushdown automaton, which is an extension of finite-state automata that employs memory using a stack and state transitions may depend on the current state as well as the top symbol in the stack.

1.3 Type 1 (Context Sensitive)

Grammars in this class are restricted only in that there must be at least one nonterminal symbol on the left-hand side of the rewrite rule and the right-hand side must contain at least as many symbols as the left-hand side, i. e., string length increases monotonically in the production sequence.

$$\beta A\beta^{\prime}\rightarrow\alpha,\quad\left|\beta A\beta^{\prime}\right|\leq\alpha$$

Context-sensitive languages are equivalently characterized by a linear bounded automaton, that is a state-machine extended by a linear bounded random access memory band, whose transitions depend on the state, the symbol on the memory band.

1.4 Type 0 (Unrestricted)

Grammars in this class place no restrictions on their rewrite rules

$$\alpha\rightarrow\beta$$

and generate all languages which can be equivalently characterized by a universal Turing machine (the recursively enumerable languages), which is the same as the linear bounded automaton for context-sensitive languages without bounds on the memory tape.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rohrmeier, M., Pearce, M. (2018). Musical Syntax I: Theoretical Perspectives. In: Bader, R. (eds) Springer Handbook of Systematic Musicology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55004-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55004-5_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55002-1

  • Online ISBN: 978-3-662-55004-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics