Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Music studio technology is reviewed with respect to the different tasks involved in recordings, broadcasts, and live concerts. The chapter covers microphones and microphone arrangements, signal preconditioning and sound effects, and matters of digitalization. It also covers equipment technology such as mixing consoles, synthesizers and sequencers. Historical and contemporary audio formats are reviewed including the issues of restoration. Practical matters such as signals, connectors, cables and grounding problems are addressed due to their significance to sound quality. The general trend towards audio networks is shown. Finally, speakers, reference listening and reinforcement systems are outlined, including some of the multidimensional formats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-D:

three-dimensional

AAF:

advanced authoring format

ADM:

adaptive delta modulation

ADPCM:

adaptive differential pulse code modulation

ADU:

analog-to-digital unit

AIFF:

audio interchange file format

AoIP:

audio over IP

ARQ:

automatic repeat request

ASBF:

structured audio sample bank format

AVI:

audio video interleaved

AWB:

audio workbench

BEM:

boundary element method

BER:

bit error rate

BPM:

beats per minute

BWF:

broadcast wave format

DA:

distribution amplifier

DASH:

digital audio stationary head

DAT:

digital audio tape

DAW:

digital audio workstation

DCC:

digital compact casette

DCT:

discrete cosine transformation

DM:

delta modulation

DMIF:

delivery multimedia integration framework

DML:

distributed-mode loudspeakers

DPCM:

differential pulse code modulation

DRM:

digital rights management

DTS:

digital theatre system

DVB:

digital video broadcast

EMI:

electromagnetic interference

FDDI:

fiber-distributed digital interface

FDM:

finite-difference method

FEC:

forward-error correction

FEM:

finite element method

FLAC:

free lossless audio codec

FT:

Fourier transform

FTP:

file transfer protocol

HDMI:

high-definition multimedia interface

HOA:

higher-order ambisonics

HRTF:

head-related transfer function

IFF:

interchange file format

IID:

interaural intensity difference

ILD:

interaural level difference

INA:

Ideale Nierenanordnung

IP:

internet protocol

ITD:

interaural time difference

LA:

line array

LFE:

low-frequency effect

LP:

linear prediction

MAC:

medium access frames

MADI:

multichannel audio digital interface

MIDI:

musical instrument digital interface

MXF:

material exchange format

NFS:

network file system

OCT:

optimized cardioid triangle

OHCI:

open host controller interface

OMF:

open media framework interchange

OSI:

open standard interconnection

PA:

public address

PCM:

pulse code modulation

POF:

polymer optical fiber

PPM:

peak program meter

QEF:

quasi-error-free

QoS:

quality of service

RIFF:

resource interchange file format

RMS:

root mean square

RTCP:

real-time transport control protocol

RTP:

real-time protocol

SACD:

super audio CD

SAOL:

structured audio orchestra language

SBR:

spectral band replication

SDI:

serial digital interface

SDM:

sigma-delta modulation

SDS:

sample dump standard

SMTP:

simple mail transfer protocol

SPL:

sound pressure level

STFT:

short-term Fourier transform/short-time Fourier transform

TCP:

transmission control protocol

THD:

total harmonic distortion

UDP:

user data protocol

UHF:

ultra high frequency

VCO:

voltage-controlled oscillator

VoIP:

voice over IP

VU:

volume unit meter

WAN:

wide-area network

WCLK:

word clock

WFS:

wave field synthesis

WMA:

Windows media audio

XMF:

extensible music format

References

  1. M. Williams: Microphone Arrays for Stereo and Multichannel Sound Recording, Vol. 1 (Editrice Il Rostro, Segrate 2004)

    Google Scholar 

  2. U. Herrmann, V. Henkels, D. Braun: Comparison of 5 surround microphone methods. In: 20. Tonmeistertagung (Bildungswerk des Verbandes Deutscher Tonmeister, Verlag K. G. Saur, München 1999) pp. 508–517

    Google Scholar 

  3. M. Williams, G. Le Dû: Microphone array analysis for multichannel sound recording. In: 107th AES Convention Preprint 4997 (1999)

    Google Scholar 

  4. G. Theile: Natural 5.1 music recording based on psychoacoustic principals. In: AES 19th Int. Conf.: Surround Sound – Techniques, Technol. Percept., Elmenau (2001)

    Google Scholar 

  5. M.A. Gerzon: The design of precisely coincident microphone arrays for stereo and surround sound. In: 50th Convention of the Audio Engineering Society (Mathematical Institute, University of Oxford, Oxford 1975), pp. Preprint L–20

    Google Scholar 

  6. M. Vorländer: Auralization: Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality (Springer, Berlin 2008) pp. 1–335

    Google Scholar 

  7. R. Bader: Reconstruction of radiating soundfields using minimum energy method, J. Acoust. Soc. Am. 127, 300 (2010)

    Article  Google Scholar 

  8. M.R. Schroeder: Natural sounding artificial reverberation, J. Audio Eng. Soc. 10(3), 219–223 (1962)

    Google Scholar 

  9. W.G. Gardner: Efficient convolution without input-output delay, J. Audio Eng. Soc. 43(3), 127–136 (1995)

    MathSciNet  Google Scholar 

  10. G. de Poli (Ed.): Representations of Musical Signals. Proc. Int. Workshop, Sorrento 1991) pp. 1–478

    Google Scholar 

  11. CITT G.726, Recommendation: General Aspects of Digital Transmission Systems; Terminal Equipments 40, 32, 24, 16 kbit/s adaptive differential pulse code modulation (ADPCM) (The International Telegraph and Telephone Consultative Committee, Geneva 1990)

    Google Scholar 

  12. DIN EN ISO 226:2006-04 (E): Acoustics – Normal Equal-Loudness-Level Contours (Beuth, Berlin 2006)

    Google Scholar 

  13. EBU – TECH 3306, Technical Specification: MBWF/RF64:An Extended File Format for Audi (European Broadcasting Union, Geneva 2009)

    Google Scholar 

  14. ISO/IEC 11801, International standard: Information Technology – Generic Cabling for Customer Premises, 2nd edn. (International Organization for Standardization, Geneva 2002)

    Google Scholar 

  15. AES3, AES standard for digital audio engineering: Serial transmission format for two-channel linearly represented digital audio data (Audio Engineering Society, New York 2009)

    Google Scholar 

  16. AES10-2008 (r2014): AES Recommended Practice for Digital Audio Engineering – Serial Multichannel Audio Digital Interface (MADI) (Audio Engineering Society, New York 2008

    Google Scholar 

  17. IEEE 1394, IEEE Sandard: IEEE Standard for a High-Performance Serial Bus (Institute of Electrical and Electronics Engineers, Piscataway 2008)

    Google Scholar 

  18. IEEE 1588, IEEE Standard: IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems (Institute of Electrical and Electronics Engineers, Piscataway 2008)

    Google Scholar 

  19. EBU – TECH 3326, Technical Specification: Audio Contribution over IP, Rev. 4 (European Broadcasting Union, Geneva 2014)

    Google Scholar 

  20. EBU – TECH 3329, Tutorial: A Tutorial on Audio Contribution over IP (European Broadcasting Union, Geneva 2008)

    Google Scholar 

  21. ITU-R BS.1284-1, Recommendation: General Methods for the Subjective Assessment of Sound Quality (International Telecommunications Union—Radiocommunication, Geneva 2003)

    Google Scholar 

  22. S. Bech, N. Zacharov: Perceptual Audio Evaluation – Theory, Method and Application (Wiley, Chichester 2006)

    Book  Google Scholar 

  23. EBU document Tech. 3286: Assessment Methods for the Subjective Evaluation of the Quality of Sound Programme Material – Music (European Broadcasting Union, Geneva 1997)

    Google Scholar 

  24. D. de Vries: Sound reinforcement by wavefield synthesis: adaptation of the synthesis operator to the loudspeaker directivity characteristics, J. Audio Eng. Soc. 44, 1120–1131 (1996)

    Google Scholar 

  25. E.M. Hulsebos, D. de Vries: Parameterization and reproduction of concert hall acoustics measured with a circular microphone array. In: AES Convention, Munich (2002), Paper 5579

    Google Scholar 

  26. K. Hamasaki, T. Nishiguchi, R. Okumura, Y. Nakayama, A. Ando: A 22.2 multichannel sound system for ultra-high-definition TV (UHDTV), SMPTE Motion Imaging J. 117(3), 40–49 (2008)

    Article  Google Scholar 

  27. ST 2036-2, Standard: Ultra High Definition Television – Audio Characteristics and Audio Channel Mapping for Program Production. (Soc. of Motion Picture and Television Eng., White Plains, New York 2008)

    Google Scholar 

  28. W. Dabringhaus: 2+2+2 – kompatible Nutzung des 5.1 Übertragungsweges für ein System dreidimensionaler Klangwiedergabe klassischer Musik mit drei stereophonen Kanälen, (The 5.1 reproduction chain gives us the chance to be used as a true threedimensional sound-reproduction system for classical music with three pairs of loudspeakrers). In: 21. Tonmeistertagung (MM-Musik-Media-Verlag, Hannover 2000)

    Google Scholar 

  29. V.R. Algazi, R.O. Duda, D.M. Thompson, C. Avendano: The CIPIC HRTF Database. In: Proc. 2001 IEEE Workshop Appl. Signal Process. Audio Electroacoust (Mohonk Mountain House, New Paltz 2001) pp. 99–102

    Google Scholar 

  30. V.R. Algazi, R.O. Duda, R. Duraiswami, N.A. Gumerov, Z. Tang: Approximating the head-related transfer function using simple geometric models of the head and torso, J. Acoust. Soc. Am. 112, 2053 (2002)

    Article  Google Scholar 

  31. V.C. Raykar, R. Durais, B. Yegnanarayana: Extracting the frequencies of the pinna spectral notches in measured head related impulse responses, J. Acoust. Soc. Am. 118, 364 (2005)

    Article  Google Scholar 

  32. M. Urban, C. Heil, P. Bauman: Wavefront sculpture technology, J. Audio Eng. Soc. 51(10), 912–932 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Mores .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mores, R. (2018). Music Studio Technology. In: Bader, R. (eds) Springer Handbook of Systematic Musicology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55004-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55004-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55002-1

  • Online ISBN: 978-3-662-55004-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics