Skip to main content

Synteny Among Solanaceae Genomes

  • Chapter
  • First Online:

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

The Solanaceae was among the first plant families to be analyzed via comparative mapping and thus was a pioneer in the realm of synteny studies. Analyses of chromosome content and organization have employed a range of techniques, including linkage mapping of genes and molecular markers, physical mapping via fluorescence in situ hybridization, and sequencing of relatively small genomic segments as well as the complete sequencing of the tomato genome. Early comparisons in the family involved tomato and its close relative potato and have extended outward to include eggplant, pepper, tobacco, and petunia. Not surprisingly, the degree of synteny among these species is a function of the time since their divergence, with inversion, translocation, and transposition being the chief mechanisms of chromosome rearrangement. The results of this work provide important insight into the modes and tempo of plant genome evolution while serving a practical purpose as well: knowledge of genome synteny and colinearity makes it easier to leverage resources from one species to another in this agronomically important family.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrouk M, Murat F, Pont C, Messing J, Jackson S, Faraut T, Tannier E, Plomion C, Cooke R, Feuillet C, Salse J (2010) Paleogenomics of plants: synteny-based modelling of extinct ancestors. Trends Plant Sci 15:479–487

    Article  CAS  PubMed  Google Scholar 

  • Albrecht E, Chetelat RT (2009) Comparative genetic linkage map of Solanum sect. Juglandifolia: evidence of chromosomal rearrangements and overall synteny with the tomatoes and related nightshades. Theor Appl Genet 118:831–847

    Article  PubMed  Google Scholar 

  • Ameline-Torregrosa C, Wang B-B, O’Bleness MS, Deshpande S, Zhu H, Roe B, Young ND, Cannon SB (2008) Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula. Plant Physiol 146:5–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andolfo G, Sanseverino W, Rombauts S, Van de Peer Y, Bradeen JM, Carputo D, Frusciante L, Ercolano MR (2013) Overview of tomato (Solanum lycopersicum) candidate pathogen recognition genes reveals important Solanum R locus dynamics. New Phytol 197:223–237

    Article  CAS  PubMed  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  • Asamizu E, Shirasawa K, Hirakawa H, Sato S, Tabata S, Yano K, Ariizumi T, Shibata D, Ezura H (2012) Mapping of Micro-Tom BAC-end sequences to the reference tomato genome reveals possible genome rearrangements and polymorphisms. Int J Plant Genomics. doi:10.1155/2012/437026

    PubMed  PubMed Central  Google Scholar 

  • Bai Y, Lindhout P (2007) Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? Ann Bot 100:1085–1094

    Article  PubMed  PubMed Central  Google Scholar 

  • Barchi L, Lanteri S, Portis E, Val G, Volante A, Pulcini L, Ciriaci T, Acciarri N, Barbierato V, Toppino L (2012) A RAD tag derived marker based eggplant linkage map and the location of QTLs determining anthocyanin pigmentation. PLoS ONE 7:e43740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumgarten A, Cannon S, Spangler R, May G (2003) Genome-level evolution of resistance genes in Arabidopsis thaliana. Genetics 165:309–319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernatzky R, Tanksley SD (1986) Toward a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics 112:887–898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bindler G, van der Hoeven R, Gunduz I, Plieske J, Ganal M, Rossi L, Gadani F, Donini P (2007) A microsatellite marker based linkage map of tobacco. Theor Appl Genet 114:341–349

    Article  CAS  PubMed  Google Scholar 

  • Bindler G, Plieske J, Bakaher N, Gunduz I, Ivanov N, van der Hoeven R, Ganal M, Donini P (2011) A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theor Appl Genet 123:219–230

    Article  PubMed  PubMed Central  Google Scholar 

  • Bombarely A, Rosli HG, Vrebaliv J, Moffett P, Mueller LA, Martin GB (2012) A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research. Mol Plant Microbe Interact 25:1523–1530

    Article  CAS  PubMed  Google Scholar 

  • Bonierbale MW, Plaisted RL, Tanksley SD (1988) RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120:1095–1103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnema G, Schipper D, van Heusden S, Zabel P, Lindhout P (1997) Tomato chromosome 1: high-resolution genetic and physical mapping of the short arm in an interspecific Lycopersicon esculentum × L. peruvianum cross. Mol Gen Genet 253:455–462

    Article  CAS  PubMed  Google Scholar 

  • Bossolini E, Klahre U, Brandenburg A, Reinhardt D, Kuhlemeier C (2011) High resolution linkage maps of the model organism Petunia reveal substantial synteny decay with the related genome of tomato. Genome 54:327–340

    Article  CAS  PubMed  Google Scholar 

  • Burnham CR (1962) Discussions in cytogenetics. Burgess, Minneapolis

    Google Scholar 

  • Cericola F, Portis E, Lanteri S, Toppino L, Barchi L, Acciarri N, Pulcini L, Sala T, Rotino GL (2014) Linkage disequilibrium and genome-wide association analysis for anthocyanin pigmentation and friut color in eggplant. BMC Genom 15:896–911

    Article  Google Scholar 

  • Chetelat RT, Meglic V (2000) Molecular mapping of chromosomes segments introgressed from Solanum lycopersicoides into cultivated tomato (Lycopersicon esculentum). Theor Appl Genet 100:232–241

    Article  CAS  Google Scholar 

  • Chetelat RT, Meglic V, Cisneros P (2000) A genetic map of tomato based on BC1 Lycopersicon esculentum × Solanum lycopersicoides reveals overall synteny but supressed recombination between these homeologous genomes. Genetics 154:857–867

    CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras-M A, Spooner DM (1999) Revision of Solanum section Etuberosum (subgenus Potatoe). In: Nee M, Symon DE, Lester RN, Jessop JP (eds) Solanaceae IV. Royal Botanic Gardens, Kew, pp 227–245

    Google Scholar 

  • D’Agostino N, Golas T, van der Geest H, Bombarely A, Dawood T, Zethof J, Driedonks N, Wijnker E, Bargsten J, Nap J-P, Mariani C, Rieu I (2013) Genomic analysis of the native European Solanum species, S. dulcamara. BMC Genom 15:356–370

    Article  Google Scholar 

  • Doganlar S, Frary A, Daunay M-C, Lester RN, Tanksley SD (2002) A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae. Genetics 161:1697–1711

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doganlar S, Frary A, Daunay M-C, Huvenaars K, Mank R, Frary A (2014) High resolution map of eggplant (Solanum melongena) reveals extensive chromosome rearrangement in domesticated members of the Solanaceae. Euphytica 198:231–241

    Article  Google Scholar 

  • Fukuoka H, Miyatake K, Nunome T, Negoro S, Shirasawa K, Isobe S, Asamizu E, Yamaguchi H, Ohyama A (2012) Development of gene-based markers and construction of an integrated linkage map in eggplant by using Solanum orthologous (SOL) gene sets. Theor Appl Genet 125:47–56

    Article  CAS  PubMed  Google Scholar 

  • Fulton TM, Van der Hoeven R, Eannetta NT, Tanksley SD (2002) Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14:1457–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadani F, Hayes A, Opperman CH, Lommel SA, Sosinski BR, Burke M, Hi L, Brierly R, Salstead A, Heer J, Fuelner G, Lakey N (2003) Large scale genome sequencing and analysis of Nicotiana tabacum: the tobacco genome initiative. In: Proceedings, 5èmes Journées Scientifiques du Tabac de Bergerac—5th Bergerac Tobacco Scientific Meeting, Bergerac, pp 117–130

    Google Scholar 

  • Gebhardt C, Ritter E, Barone A, Debener T, Walkemeier B, Schachtschabel U, Kaufman H, Thompson RD, Bonierbale MW, Ganal MW, Tanskley SD, Salamini F (1991) RFLP maps of potato and their alignment with the homoeologous tomato genome. Theor Appl Genet 83:49–57

    Article  CAS  PubMed  Google Scholar 

  • Gramazio P, Prohens J, Plazas M, Andjar I, Herraiz FJ, Castillo E, Knapp S, Meyer RS, Vilanova S (2014) Location of chlorogenic acid biosynthesis pathway and polyphenol oxidase genes in a new interspecific anchored linkage map of eggplant. BMC Plant Biol 14:350–365

    Article  PubMed  PubMed Central  Google Scholar 

  • Gregory TR (2005) The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Ann Rev Bot 95:133–146

    Article  CAS  Google Scholar 

  • Grube RC, Radwanski ER, Jahn M (2000) Comparative genetics of disease resistance within the Solanaceae. Genetics 155:873–887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Heiser CB, Pickersgill B (1969) Names for the cultivated Capsicum species (Solanaceae). Taxon 18:277–283

    Article  Google Scholar 

  • Hermann K, Klahre U, Moser M, Sheehan H, Mandel T, Kuhlemeier C (2013) Tight genetic linkage of prezygotic barrier loci creates a multifunctional speciation island in Petunia. Curr Biol 23:873–877

    Article  CAS  PubMed  Google Scholar 

  • Hirakawa H, Shirasawa K, Miyatake K, Nunome T, Negoro S, Ohyama A, Yamaguchi H, Sato S, Isobe S, Tabata S, Fukuoka H (2014) Draft genome sequence of eggplant (Solanum melongena L.): the representative Solanum species indigenous to the Old World. DNA Res doi:10.1093/dnares/dsu027

    Google Scholar 

  • Huang S, Vleeshouwers VGAA, Werij JS, Hutten RC, van Eck HJ, Visser RGF, Jacobsen E (2004) The R3 resistance to Phytophthora infestans in potato is conferred by two closely linked R genes with distinct specificities. Mol Plant Microbe Interact 17:428–435

    Article  CAS  PubMed  Google Scholar 

  • Huang S, van der Vossen EAG, Kuang H, Vleeshouwers VGAA, Zhang N, Borm TJA, van Eck HJ, Baker B, Jacobsen E, Visser RGF (2005) Comparative genomics enabled the isolation of the R3a late blight resistance gene in potato. Plant J 42:251–261

    Article  CAS  PubMed  Google Scholar 

  • Iorizzo M, Gao L, Mann H, Traini A, Chiusano ML, Kilian A, Aversano R, Carputo D, Bradeen JM (2014) A DArT marker-based linkage map for wild potato Solanum bulbocastanum facilitates structural comparisons between Solanum A and B genomes. BMC Genet 15:123–132

    Article  PubMed  PubMed Central  Google Scholar 

  • Iovene M, Wielgus SM, Simon PW, Buell CR, Jiang J (2008) Chromatin structure and physical mapping of chromosome 6 of potato and comparative analyses with tomato. Genetics 180:1307–1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamenetzky L, Asis R, Bassi S. de Godoy F, Bermudez L, Fernie AR, Van Sluys MA, Vrebalov J, Giovannoni JJ, Rossi M, Carrari F (2010) Genomic analysis of wild tomato introgressions determining metabolism- and yield-associated traits. Plant Physiol 152:1772–1786

    Google Scholar 

  • Kenton A, Parokonny AS, Gleba YY, Bennett MD (1993) Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Mol Gen Genet 240:159–169

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Park M, Yeom S-I, Kim Y-M, Lee JM et al (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46:270–279

    Article  CAS  PubMed  Google Scholar 

  • Ku H-K, Vision T, Liu J, Tanksley SD (2000) Comparing sequenced segments of the tomato and Arabidopsis genomes: large-scale duplication followed by selective gene loss creates a network of synteny. Proc Natl Acad Sci USA 97:9121–9126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhl JC, Hanneman RE, Havey MJ (2001) Characterization and mapping of Rpi1, a light-blight resistance locus from diploid (1EBN) Mexican Solanum pennatisectum. Mol Genet Genomics 265:977–985

    Article  CAS  PubMed  Google Scholar 

  • Labroche P, Poirier-Hamon S, Pernes J (1983) Inheritance of leaf peroxidase isozymes in Nicotiana alata and linkage with the S-incompatibility locus. Theor Appl Genet 65:163–170

    Article  CAS  PubMed  Google Scholar 

  • Lanteri S, Pickersgill B (1993) Chromosomal structural changes in Capsicum annuum L. and C. chinense Jacq. Euphytica 67:155–160

    Google Scholar 

  • Lim KY, Matyasek R, Kovarik A, Leitch AR (2004) Genome evolution in allotetraploid Nicotiana. Biol J Linn Soc 82:599–606

    Article  Google Scholar 

  • Lin TY, Kao YY, Lin S, Lin RF, Chen CM, Huang CH, Wang CK, Lin YZ, Chen CC (2001) A genetic linkage map of Nicotiana plumbaginifolia/Nicotiana longiflora based on RFLP and RAPD markers. Theor Appl Genet 103:905–911

    Article  CAS  Google Scholar 

  • Lindqvist-Kreuze H, Cho K, Portal L, Rodriguez F, Simon R, Mueller LA, Spooner DM, Bonierbale M (2013) Linking the potato genome to the conserved ortholog set (COS) markers. BMC Genom 14:51–63

    Article  CAS  Google Scholar 

  • Lippman ZB, Semel Y, Zamir D (2007) An integrated view of quantitative trait variation using tomato interspecific introgression lines. Curr Opin Genet Dev 17:545–552

    Article  CAS  PubMed  Google Scholar 

  • Livingstone KD, Lackney VK, Blauth JR, van Wijk R, Jahn MK (1999) Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae. Genetics 152:1183–1202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lou Q, Iovene M, Spooner DM, Buell CR, Jiang J (2010) Evolution of chromosome 6 of Solanum species revealed by comparative fluorescence in situ hybridization mapping. Chromosoma 119:435–442

    Article  CAS  PubMed  Google Scholar 

  • Mazourek M, Cirulli ET, Collier SM, Landry LG, Kang B-C, Quirin EA, Bradeen JM, Moffett P, Jahn MM (2009) The fractionated orthology of Bs2 and Rx/Gpa2 supports shared synteny of disease resistance in the Solanaceae. Genetics 182:1351–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCouch (2001) Genomics and synteny. Plant Physiol 125:152–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadeau JH, Taylor BA (1984) Lengths of chromosomal segments conserved since divergence of man and mouse. Proc Natl Acad Sci USA 81:814–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunome T, Negoro S, Kono I, Kanamori H, Miyatake K, Yamaguchi H, Ohyama A, Fukuoka H (2009) Development of SSR markers derived from SSR-enriched genomic library of eggplant (Solanum melongena L.). Theor Appl Genet 119:1143–1153

    Article  PubMed  Google Scholar 

  • Park M, Jo SH, Kwon J-K, Park J, Ahn JH, Kim S, Lee Y-H, Yang T-J, Hur C-G, Kang B-C, Kim B-D, Choi D (2011) Comparative analysis of pepper and tomato reveals euchromatin expansion of pepper genome caused by differential accumulation of Ty3/Gypsy-like elements. BMC Genom 12:85

    Article  CAS  Google Scholar 

  • Pel MA, Foster SJ, Park T-H, Rietman H, van Arkel G, Jones JDG, Van Eck HJ, Jacobsen E, Visser RGF, Van der Vossen EAG (2009) Mapping and cloning of late blight rsistance genes from Solanum venturii using an interspecific candidate gene approach. Mol Plant Microb Interact 22:601–615

    Article  CAS  Google Scholar 

  • Peralta I, Spooner DM (2001) Granule-bound starch synthase (GBSSI) gene phylogeny of wild tomatoes (Solanum L. section Lycopersicon (Mill.) Wettst. subsection Lycopersicon). Am J Bot 88:1888–1902

    Article  CAS  PubMed  Google Scholar 

  • Perez F, Menendez A, Dehal P, Quiros CF (1999) Genomic structural differentiation in Solanum: comparative mapping of the A and E genomes. Theor Appl Genet 98:1183–1193

    Article  CAS  Google Scholar 

  • Pertuze RA, Ji Y, Chetelat RT (2002) Comparative linkage map of the Solanum lycopersicoides and S. sitiens genomes and their differentiation from tomato. Genome 45:1003–1012

    Article  CAS  PubMed  Google Scholar 

  • Peters SA, Bargsten JW, Szinay D, van de Belt J, Visser RGF, Bai Y, de Jong H (2012) Structural homology in the Solanaceae: analysis of genomic regions in support of synteny studies in tomato, potato and pepper. Plant J 71:602–614

    Article  CAS  PubMed  Google Scholar 

  • Portis E, Barchi L, Toppino L, Lanteri S, Acciarri N, Felicioni N, Fusari F, Barbierato V, Cericola F, Vale G, Rotino GL (2014) QTL mapping in eggplant reveals clusters of yield-related loci and orthology with the tomato genome. PLoS ONE 9:e89499

    Article  PubMed  PubMed Central  Google Scholar 

  • Presting G, Frary A, Pillen K, Tanksley SD (1996) Telomere-homologous sequences occur near the centromeres of many tomato chromosomes. Mol Gen Genet 251:526–531

    Article  CAS  PubMed  Google Scholar 

  • Prince JP, Pochard E, Tanksley SD (1993) Construction of a molecular linkage map of pepper and comparison of synteny with tomato. Genome 36:404–417

    Article  CAS  PubMed  Google Scholar 

  • Qin C, Yu C, Shen Y, Fang X et al (2014) Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci 111:5135–5140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramanna M, Hermsen J (1979) Unique meiotic behavior in F1 plants from a cross between non-tuberous and tuberous Solanum species in section Petota. Euphytica 28:9–15

    Article  Google Scholar 

  • Raskina O, Barber JC, Nevo E, Belyayev A (2008) Repetitive DNA and chromosomal rearrangement: speciation-related events in plant genomes. Cytogenet Genome Res 120:351–357

    Article  CAS  PubMed  Google Scholar 

  • Rick CM (1979) Biosystematic studies in Lycopersicon and closely related species of Solanum. In: Hawkes JG, Lester RN, Skelding AD (eds) The biology and taxonomy of the Solanaceae. Academic Press, New York, pp 667–678

    Google Scholar 

  • Seah S, Yaghoobi J, Rossi M, Gleason CA, Williamson VM (2004) The nematode-resistance gene, Mi-1, is associated with an inverted chromosomal segment in susceptible compared to resistance tomato. Theor Appl Genet 108:1635–1642

    Article  CAS  PubMed  Google Scholar 

  • Seah S, Telleen AC, Williamson VM (2007) Introgressed and endogenous Mi-1 gene clusters in tomato differ by complex rearrangements in flanking sequences and show sequence exchange and diversifying selection among homologues. Theor Appl Genet 114:1289–1302

    Article  CAS  PubMed  Google Scholar 

  • Sierro N, Battey JND, Ouadi S, Bovet L, Goepfert S, Bakaher N, Peitsch MC, Ivanov NV (2013) Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. Genome Biol 14:R60

    Article  PubMed  PubMed Central  Google Scholar 

  • Sierro N, Battey JND, Ouadi S, Bakaher N, Bovet L, Willig A, Goepfert S, Peitsch MC, Ivanov NV (2014) The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun 5:3833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spooner D, Anderson G, Jansen R (1993) Chloroplast DNA evidence for the interrelationships of tomatoes, potatoes and pepinos (Solanaceae). Am J Bot 80:676–688

    Article  CAS  Google Scholar 

  • Strommer J, Gerats AGM, Sanago M, Molnar SJ (2000) A gene-based RFLP map of Petunia. Theor Appl Genet 100:899–905

    Article  CAS  Google Scholar 

  • Suen DF, Wang CK, Lin RF, Kao YY, Lee FM, Chen CC (1997) Assignment of DNA markers to Nicotiana sylvestris chromosomes using monosomic alien addition lines. Theor Appl Genet 94:331–337

    Article  CAS  Google Scholar 

  • Szinay D, Wijnker E, van den Berg R, Visser RGF, de Jong H, Bai Y (2012) Chromosome evolution in Solanum traced by cross-species BAC-FISH. New Phytol 195:688–698

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Szinay D, Lang C, Ramanna MS, ven der Vossen EAG, Datema E, Lankhorst RK, de Boer J, Peters SA, Bachem C, Stiekema W, Visser RGF, de Jong J, Bai Y (2008) Cross-species bacterial artificial chromosome-fluorescence in situ hybridization painting of the tomato and potato chromosome 6 reveals undescribed chromosomal rearrangements. Genetics 180:1319–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD, Bernatzky R, Lapitan NL, Prince JP (1988) Conservation of gene repertoire but not gene order in pepper. Proc Natl Acad Sci USA 85:6419–6423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Roder MS, Wing RA, Wu R, Young ND (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    CAS  PubMed  PubMed Central  Google Scholar 

  • ten Hoopen R, Harbord RM, Maes T, Nanninga N, Robbins TP (1998) The self-incompatibility (S) locus in Petunia hybrida is located on chromosome III in a region syntenic for the Solanaceae. Plant J 16:729–734

    Article  Google Scholar 

  • Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  Google Scholar 

  • Traini A, Iorizzo M, Mann H, Bradeen JM, Carputo D, Frusciante L, Chiusano ML (2013) Genome microscale heterogeneity among wild potatoes revealed by diversity arrays technology marker sequences. Int J of Genomics 2013:257218

    Article  Google Scholar 

  • van der Knaap E, Sanyal A, Jackson SA, Tanksley SD (2004) High-resolution fine mapping and fluorescence in situ hybridization analysis of sun, a locus controlling tomato fruit shape, reveals a region of the tomato genome prone to DNA rearrangements. Genetics 168:2127–2140

    Article  PubMed  PubMed Central  Google Scholar 

  • van Heusden AW, Koornneef M, Voorrips RE, Bruggemann W, Pet G, Vrielink-van Ginkel R, Chen X, Lindhout P (1999) Three QTLs from Lycopersicon peruvianum confer a high level of resistance to Clavibacter michiganensis ssp. michiganensis. Theor Appl Genet 99:1068–1074

    Article  Google Scholar 

  • van Wordragen MF, Weide R, Liharska T, Vandersteen A, Koornneef M, Zabel P (1994) Genetic and molecular organization of the short arm and pericentromeric region of tomato chromosome 6. Euphytica 79:169–174

    Article  Google Scholar 

  • Wang J, Hu H, Zhao T, Yang Y, Chen T, Yang M, Yu W, Zhang B (2015) Genome-wide analysis of bHLH transcription factor and involvement in the infection by yellow leaf curl virus in tomato (Solanum lycopersicum). BMC Genom 16:39–53

    Article  Google Scholar 

  • Wang Y, Tang X, Cheng Z, Mueller L, Giovannoni J, Tanksley SD (2006) Euchromatin and pericentromeric heterochromatin: comparative composition in the tomato genome. Genetics 172:2529–2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Diehl A, Wu F, Vrebalov J, Giovannoni J, Siepel A, Tanksley SD (2008) Sequencing and comparative analysis of a conserved syntenic segment in the Solanaceae. Genetics 180:391–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe K, Orrillo M, Vega S, Valkonen J, Pehu E, Hurtado A, Tanksley S (1995) Overcoming crossing barriers between non-tuber-bearing and tuber-bearing Solanum species: towards potato genome enhancement with a broad spectrum of solanaceous genetic resources. Genome 38:27–35

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Eannetta NT, Xu Y, Tanksley SD (2009a) A detailed synteny map of the eggplant genome based on conserved ortholog set II (COSII) markers. Theor Appl Genet 118:927–935

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Eannetta NT, Xu Y, Durrett R, Mazourek M, Jahn MM, Tanksley SD (2009b) A COSII genetic map of the pepper genome provides a detailed picture of synteny with tomato and new insights into recent chromosome evolution in the genus Capsicum. Theor Appl Genet 118:1279–1293

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Eannetta NT, Xu Y, Plieske J, Ganal M, Pozzi C, Bakaher N, Tanksley SD (2010) COSII genetic maps of two diploid Nicotiana species provide a detailed picture of synteny with tomato and insights into chromosome evolution in tetraploid N. tabacum. Theor Appl Genet 120:809–827

    Article  PubMed  Google Scholar 

  • Wu F, Mueller LA, Crouzillat D, Petiard V, Tanksley SD (2006) Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and systematic studies: a test case in the euasterid plant clade. Genetics 174:1407–1420

    Google Scholar 

  • Wu F, Tanksley SD (2010) Chromosomal evolution in the plant family Solanaceae. BMC Genom 11:182–193

    Article  Google Scholar 

  • Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap (2008) A retrotransposon mediated gene duplication underlies morphological variation of tomato fruit. Science 319:1527–1530

    Article  CAS  PubMed  Google Scholar 

  • Yang H-B, Liu WY, Kang W-H, Jahn M, Kang B-C (2009) Development of SNP markers linked to the L locus in Capsicum spp. By comparative genetic analysis. Mol Breed 24:433–446

    Article  CAS  Google Scholar 

  • Zhu W, Ouyang S, Iovene M, O’Brien K, Vuong H, Jiang J, Buell CR (2008) Analysis of 90 Mb of the potato genome reveals conservation of gene structure and order with tomato but divergence in repetitive sequence composition. BMC Genom 9:286–300

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to The Scientific and Technological Research Council of Turkey (Project No. 104T224) for support of our work in eggplant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Frary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frary, A., Doganlar, S., Frary, A. (2016). Synteny Among Solanaceae Genomes. In: Causse, M., Giovannoni, J., Bouzayen, M., Zouine, M. (eds) The Tomato Genome. Compendium of Plant Genomes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53389-5_12

Download citation

Publish with us

Policies and ethics