Skip to main content

The Discrete Ordinate Algorithm, DISORT for Radiative Transfer

  • Chapter
  • First Online:

Part of the book series: Springer Praxis Books ((PRAXIS))

Abstract

The discrete ordinate method for the transfer of monochromatic unpolarized radiation in non-isothermal, vertically inhomogeneous media, as implemented in the computer code Discrete-Ordinate-Method Radiative Transfer, DISORT, is reviewed. Both the theoretical background and its algorithmic implementation are covered. Among others, described are the reduction of the order of the standard algebraic eigenvalue problem to increase efficiency in both the homogenous and particular solutions of the system of coupled ordinary differential equations, application of the scaling transformation to make the solution unconditionally stable for arbitrary large values of optical depth, application of the δ-M method to handle highly anisotropic scattering, the correction of intensities by the Nakajima-Tanaka method, and the implementation of a realistic bidirectional bottom boundary. Numerical considerations that make the implementation robust and efficient are also discussed. Examples of setting up DISORT runs are shown by using test cases with increasing complexity. Brief summaries of the versions released to date are provided, as well.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson E, Bai Z, Bischof C, Demmel I, Dongarra J, Du Croz J, Greenbaum A, Hammarling S, McKenney A, Ostrouchov S, Sorensen D (1999) LAPACK user’s guide, 3rd ed. Society for Industrial and Applied Mathematics, 3600 University City Science Center, Philadelphia, Pennsylvania, ISBN: 978-0-89871-447-0, 19104-2688

    Google Scholar 

  • Asano S (1975) On the discrete ordinates method for radiative transfer. J. Meteor Soc 53:92–95

    Google Scholar 

  • Asheim A, Deano A, Huybrechs D, Wang HY (2014) A gaussian quadrature rule for oscillatory integrals on a bounded interval. Discret Contin Dyn Syst 34(3):883–901

    Article  Google Scholar 

  • Berk A, Bernstein LS, Anderson GP, Acharya PK, Robertson DC, Chetwynd JH, Adler-Golden SM (1998) MODTRAN cloud and multiple scattering upgrades with application to AVIRIS. Rem Sens Envir 65(3):367–375. doi:10.1016/S0034-4257(98)00045-5

    Article  Google Scholar 

  • Bohren C, Huffman D (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  • Buras R, Dowling T, Emde C (2011) New secondary-scattering correction in DISORT with increased efficiency for forward scattering. J Quant Spectrosc Radiat Transfer 112(12):2028–2034. doi:10.1016/j.jqsrt.2011.03.019

    Article  Google Scholar 

  • Chandrasekhar S (1960) Radiative transfer. Dover Publications, New York 393 p

    Google Scholar 

  • Clough SA, Shephard MW, Mlawer EJ, Delamere JS, Iacono MJ, Cady-Pereira K, Boukabara S, Brown PD (2005) Atmospheric radiative transfer modeling: a summary of the AER codes. J Quant Spectrosc Radiat Transfer 91(2):233–244. doi:10.1016/j.jqsrt.2004.05.058

    Article  Google Scholar 

  • Cowell WR (ed) (1980) Sources and developments of mathematical sofware. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Cox C, Munk W (1954) Measurement of roughness of the sea surface from photographs of the sun’s glitter. J Opt Soc Am 44(11):838–850

    Article  Google Scholar 

  • Devaux C, Grandjean P, Ishiguro Y, Siewert CE (1979) On multi-region problems in radiative transfer. Astrophys Space Sci 62:225–233

    Google Scholar 

  • Ding S, Yang P, Weng F, Liu Q, Han Y, van Delst P, Li J, Baum B (2011) Validation of the community radiative transfer model. J Quant Spectrosc Radiat Transfer 112(6):1050–1064. doi:10.1016/j.jqsrt.2010.11.009

    Article  Google Scholar 

  • Dongarra J, Moler C, Bunch J, Stewart GW (1979) LINPACK User’s guide. Society for Industrial and Applied Mathematics (SIAM) Press, Philadelphia, pp xx+344. ISBN 978-0-89871-172-1

    Google Scholar 

  • Filon LNG (1928) On a quadrature formula for trigonometric integrals. Proc Roy Soc Edinburgh Sect A 49:38–47

    Google Scholar 

  • Garcia RDM, Siewert CE (1985) Benchmark results in radiative transfer. Transp Theory Stat Phys 14:437–483

    Article  Google Scholar 

  • Godsalve C (1995) The Inclusion of Reflectances with Preferred Directions in Radiative-Transfer Calculations. J Quant Spectrosc Radiat Transfer 53(3):289–305

    Article  Google Scholar 

  • Godsalve C (1996) Accelerating the discrete ordinates method for the solution of the radiative transfer equation for planetary atmospheres. J Quant Spectrosc Radiat Transfer 56(4):609–616. doi:10.1016/0022-4073(96)00075-1

    Article  Google Scholar 

  • Hapke B (1993) Theory of reflectance and emittance spectroscopy. Cambridge University Press, Cambridge, p 455

    Google Scholar 

  • Iserles A, Nørsett SP (2004) On quadrature methods for highly oscillatory integrals and their implementation. BIT 44(4):755–772

    Article  Google Scholar 

  • Iserles A, Nørsett SP, Olver S (2006) Highly oscillatory quadrature: the story so far. In: de Castro A, Gómez D, Quintela P, Salgado P (eds) Numerical mathematics and advanced applications. Springer, Berlin, pp 97–118

    Chapter  Google Scholar 

  • Jerg M, Trautmann T (2007) One-dimensional solar radiative transfer: Perturbation approach and its application to independent-pixel calculations for realistic cloud fields. J Quant Spectrosc Radiat Transfer 105(1):32–54. doi:10.1016/j.jqsrt.2006.09.014

    Article  Google Scholar 

  • Key J, Schweiger AJ (1998) Tools for atmospheric radiative transfer: Streamer and FluxNet. Comput Geosci 24(5):443–451

    Article  Google Scholar 

  • Kokhanovsky AA et al (2010) Benchmark results in vector atmospheric radiative transfer. J Quant Spectrosc Radiat Transfer 111(12–13):1931–1946

    Article  Google Scholar 

  • Kylling A, Stamnes K (1992) Efficient yet accurate solution of the linear transport equation in the presence of internal sources: the exponential-linear-in-depth approximation. J Comp Phys 102:265–276

    Article  Google Scholar 

  • Laszlo I, Stamnes K, Wiscombe WJ, Tsay S-C (2010) Towards generalized boundary conditions in DISORT. In: Extended abstracts of the AMS 13th conference on atmospheric radiation, 28 June–2 July 2010, Portland, Oregon. https://ams.confex.com/ams/13CldPhy13AtRad/techprogram/paper_171283.htm

  • Levin D (1996) Fast integration of rapidly oscillatory functions. J Comput Appl Math 67(1):95–101

    Article  Google Scholar 

  • Lin Z, Stamnes S, Jin Z, Laszlo I, Tsay SC, Wiscombe WJ, Stamnes K (2015) Improved discrete ordinate solutions in the presence of an anisotropically reflecting lower boundary: upgrades of the DISORT computational tool. J Quant Spectrosc Radiat Transfer 157:119–134. doi:10.1016/j.jqsrt.2015.02.014

    Article  Google Scholar 

  • Lindner B (1988) Ozone on mars: the effects of clouds and airborne dust. Planet Space Sci 36:125–144

    Article  Google Scholar 

  • Liou K-N (1973) A numerical experiment on Chandrasekhar’s discrete-ordinate method for radiative transfer: applications to cloudy and hazy atmospheres. J Atmos Sci 30(7):1303–1326

    Article  Google Scholar 

  • Nakajima T (2010) A retrospective view on “algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation” by Teruyuki Nakajima and Masayuki Tanaka (1988). J Quant Spectrosc Radiat Transfer 111(11):1651–1652. doi:http://dx.doi.org/10.1016/j.jqsrt.2010.01.002

    Google Scholar 

  • Nakajima T, Tanaka M (1986) Matrix formulations for the transfer of solar radiation in a plane-parallel atmosphere. J Quant Spectrosc Radiat Transfer 35:13–21

    Article  Google Scholar 

  • Nakajima T, Tanaka M (1988) Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation. J Quant Spectrosc Radiat Transfer 40:51–69

    Article  Google Scholar 

  • Ozisik M, Shouman S (1980) Source function expansion method for radiative transfer in a two-layer slab. J Quant Spectrosc Radiat Transfer 24:441–449

    Article  Google Scholar 

  • Parlett and Reinsch (1969) Balancing a matrix for calculation of eigenvalues and eigenvectors. Num Math 13:293–304

    Article  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge 963 p

    Google Scholar 

  • Rahman H, Pinty B, Verstraete MM (1993) Coupled surface-atmosphere reflectance (CSAR) model 2. Semiempirical surface model usable with NOAA advanced very high resolution radiometer data. J Geophys Res 98(D11):20791–20801

    Article  Google Scholar 

  • Ricchiazzi P, Yang S, Gautier C, Sowle D (1998) SBDART: a research and teaching software tool for plane-parallel radiative transfer in the earth’s atmosphere. Bull Am Meteorol Soc 79(10):2101–2114. doi:10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2

    Article  Google Scholar 

  • Roujean J-L, Leroy M, Deschamps P-Y (1992) A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data. J Geophys Res 97(D18):20455–20468

    Article  Google Scholar 

  • Siewert CE (2000) A concise and accurate solution to Chandrasekhar’s basic problem in radiative transfer. J Quant Spectrosc Radiat Transfer 64(2):109–130. doi:10.1016/S0022-4073(98)00144-7

    Article  Google Scholar 

  • Stamnes K (1982a) On the computation of angular distributions of radiation in planetary atmospheres. J Quant Spectrosc Radiat Transfer 28:47–51

    Article  Google Scholar 

  • Stamnes K (1982b) Reflection and transmission by a vertically inhomogeneous planetary atmosphere. Planet Space Sci 30:727–732

    Article  Google Scholar 

  • Stamnes K (1986) The theory of multiple scattering of radiation in plane parallel atmospheres. Rev Geophys 24:299–310

    Article  Google Scholar 

  • Stamnes K, Conklin P (1984) A new multi-layer discrete ordinate approach to radiative transfer in vertically inhomogeneous atmospheres. J Quant Spectrosc Radiat Transfer 31:273–282

    Article  Google Scholar 

  • Stamnes K, Dale H (1981) A new look at the discrete ordinate method for radiative transfer calculation in anisotropically scattering atmospheres. II: Intensity computations. J Atmos Sci 38:2696–2706

    Article  Google Scholar 

  • Stamnes K, Swanson RA (1981) A New look at the discrete ordinate method for radiative transfer calculations in anisotropically scattering atmospheres. J Atmos Sci 38(2):387–399. doi:10.1175/1520-0469(1981)038<0387:ANLATD>2.0.CO;2

    Article  Google Scholar 

  • Stamnes K, Tsay S-C, Wiscombe W, Jayaweera K (1988a) Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl Opt 27:2502–2509

    Article  Google Scholar 

  • Stamnes K, Tsay S-C, Nakajima T (1988b) Computation of eigenvalues and eigenvectors for discrete ordinate and matrix operator method radiative transfer. J Quant Spectrosc Radiat Transfer 39:415–419

    Article  Google Scholar 

  • Stamnes K, Tsay S-C, Wiscombe WJ, Laszlo I (2000) DISORT, a general-purpose Fortran program for discrete-ordinate-method radiative transfer in scattering and emitting layered media: documentation of methodology. NASA Technical Report, version 1.1

    Google Scholar 

  • Stamnes S (2011) Calculations of the bidirectional reflectance distribution function (BRDF) of a planetary surface. MS thesis, Department of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken, New Jersey, USA

    Google Scholar 

  • Sweigart A (1970) Radiative transfer in atmospheres scattering according to the Rayleigh phase function with absorption. Astrophys J 22:1–80

    Article  Google Scholar 

  • Sykes JB (1951) Approximate integration of the equation of transfer. Mon Not R Astron Soc 111(4):377–386

    Article  Google Scholar 

  • Thomas GE, Stamnes K (1999) Radiative transfer in the atmosphere and ocean. Cambridge University Press, Cambridge

    Google Scholar 

  • Tsay S-C (1986) Numerical study of the atmospheric radiative transfer process with application to the Arctic energy balance. Ph.D. thesis, Alaska University, Fairbanks

    Google Scholar 

  • Tsay S-C, Stamnes K, Jayaweera K (1989) Radiative energy budget in the cloudy and hazy Arctic. J Atmos Sci 46:1002–1018

    Article  Google Scholar 

  • Tsay S-C, Stamnes K, Jayaweera K (1990) Radiative transfer in stratified atmospheres: development and verification of a unified model. J Quant Spectrosc Radiat Transfer 43:133–148

    Article  Google Scholar 

  • Tsay S-C, Stamnes K (1992) Ultraviolet radiation in the Arctic: the impact of potential ozone depletions and cloud effects. J Geophy Res 97:7829–7840

    Article  Google Scholar 

  • Van de Hulst HC (1980) Multiple light scattering, tables, formulas and applications, vol 1 and 2. Academic Press, New York

    Google Scholar 

  • Wilkinson J (1965) The algebraic eigenvalue problem. Clarendon Press, Oxford

    Google Scholar 

  • Wiscombe WJ (1976) Extension of the doubling method to inhomogeneous sources. J Quant Spectrosc Radiat Transfer 16:477–489

    Article  Google Scholar 

  • Wiscombe WJ (1977) The delta–M method: rapid yet accurate radiative flux calculations for strongly asymmetric phase functions. J Atmos Sci 34(9):1408–1422

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Z. Lin, S. Stamnes, L. Rokke, M. Zhou and H. Liu for their critical reading of and useful comments on an earlier version of the manuscript, and A. Kokhanovsky for inviting us to write this review and for his patience. IL acknowledges the assistance of K. Laszlo with typing in many of the equations.

Disclaimer

The contents of this paper are solely the opinions of the authors and do not constitute a statement of policy, decision, or position on behalf of the U.S. National Oceanic and Atmospheric Administration (NOAA) or the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Istvan Laszlo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Laszlo, I., Stamnes, K., Wiscombe, W.J., Tsay, SC. (2016). The Discrete Ordinate Algorithm, DISORT for Radiative Transfer. In: Kokhanovsky, A. (eds) Light Scattering Reviews, Volume 11. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49538-4_1

Download citation

Publish with us

Policies and ethics