Skip to main content

Heuristics for Sphere Recognition

  • Conference paper
Mathematical Software – ICMS 2014 (ICMS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8592))

Included in the following conference series:

Abstract

The problem of determining whether a given (finite abstract) simplicial complex is homeomorphic to a sphere is undecidable. Still, the task naturally appears in a number of practical applications and can often be solved, even for huge instances, with the use of appropriate heuristics. We report on the current status of suitable techniques and their limitations. We also present implementations in polymake and relevant test examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adiprasito, K., Benedetti, B., Lutz, F.H.: Extremal examples of collapsible complexes and random discrete morse theory. arXiv:1404.4239, 20 pages (2014)

    Google Scholar 

  2. Benedetti, B., Lutz, F.H.: Knots in collapsible and non-collapsible balls. Electron. J. Comb. 20(3), Research Paper P31, 29 p. (2013)

    Google Scholar 

  3. Benedetti, B., Lutz, F.H.: Random discrete Morse theory and a new library of triangulations. Exp. Math. 23, 66–94 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  4. Benedetti, B., Ziegler, G.M.: On locally constructible spheres and balls. Acta Math. 206, 205–243 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Björner, A., Lutz, F.H.: Simplicial manifolds, bistellar flips and a 16-vertex triangulation of the Poincaré homology 3-sphere. Exp. Math. 9, 275–289 (2000)

    Article  MATH  Google Scholar 

  6. Brehm, U., Kühnel, W.: 15-vertex triangulations of an 8-manifold. Math. Ann. 294, 167–193 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Burton, B.A.: Simplification paths in the Pachner graphs of closed orientable 3-manifold triangulations. arXiv:1110.6080, 39 pages (2011)

    Google Scholar 

  8. Burton, B.A.: Regina: A normal surface theory calculator, version 4.95 (1999-2013), http://regina.sourceforge.net

  9. CAPD::RedHom. Redhom software library, http://redhom.ii.uj.edu.pl

  10. Chernavsky, A.V., Leksine, V.P.: Unrecognizability of manifolds. Ann. Pure Appl. Logic 141, 325–335 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. CHomP. Computational Homology Project, http://chomp.rutgers.edu

  12. Forman, R.: Morse theory for cell complexes. Adv. Math. 134, 90–145 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Forman, R.: A user’s guide to discrete Morse theory. Sémin. Lothar. Comb 48(B48c), 35 p., electronic only. (2002)

    Google Scholar 

  14. Freedman, M.H.: The topology of four-dimensional manifolds. J. Differ. Geom. 17, 357–453 (1982)

    MATH  Google Scholar 

  15. Gawrilow, E., Joswig, M.: Polymake: a framework for analyzing convex polytopes. In: Polytopes—Combinatorics and Computation (Oberwolfach, 1997). DMV Sem., vol. 29, pp. 43–73. Birkhäuser, Basel (2000)

    Google Scholar 

  16. Joswig, M.: Computing invariants of simplicial manifolds, preprint arXiv:math/0401176 (2004)

    Google Scholar 

  17. Joswig, M., Pfetsch, M.E.: Computing optimal Morse matchings. SIAM J. Discrete Math. 20, 11–25 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kaibel, V., Pfetsch, M.E.: Computing the face lattice of a polytope from its vertex-facet incidences. Comput. Geom. 23, 281–290 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. King, S.A.: How to make a triangulation of S 3 polytopal. Trans. Am. Math. Soc. 356, 4519–4542 (2004)

    Article  MATH  Google Scholar 

  20. Lewiner, T., Lopes, H., Tavares, G.: Optimal discrete Morse functions for 2-manifolds. Comput. Geom. 26, 221–233 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Matveev, S.V.: An algorithm for the recognition of 3-spheres (according to Thompson). Sb. Math. 186, 695–710 (1995), Translation from Mat. Sb. 186, 69–84 (1995)

    Google Scholar 

  22. Mijatović, A.: Simplifying triangulations of S 3. Pac. J. Math. 208, 291–324 (2003)

    Article  MATH  Google Scholar 

  23. Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley Publishing Company, Menlo Park (1984)

    MATH  Google Scholar 

  24. Novikov, P.S.: On the algorithmic unsolvability of the word problem in group theory. Trudy Matematicheskogo Instituta imeni V. A. Steklova, vol. 44. Izdatel’stvo Akademii Nauk SSSR, Moscow (1955)

    Google Scholar 

  25. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159, 39 pages (2002)

    Google Scholar 

  26. Rubinstein, J.H.: An algorithm to recognize the 3-sphere. In: Chatterji, S.D. (ed.) Proc. Internat. Congr. of Mathematicians, ICM 1994, Zürich, vol. 1, pp. 601–611. Birkhäuser Verlag, Basel (1995)

    Google Scholar 

  27. Saucan, E., Appleboim, E., Zeevi, Y.Y.: Sampling and reconstruction of surfaces and higher dimensional manifolds. J. Math. Imaging Vision 30(1), 105–123 (2008)

    Article  MathSciNet  Google Scholar 

  28. Seifert, H., Threlfall, W.: Lehrbuch der Topologie. B. G. Teubner, Leipzig (1934)

    Google Scholar 

  29. Smale, S.: On the structure of manifolds. Am. J. Math. 84, 387–399 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  30. Spreer, J., Kühnel, W.: Combinatorial properties of the K3 surface: Simplicial blowups and slicings. Exp. Math. 20, 201–216 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. Sulanke, T., Lutz, F.H.: Isomorphism free lexicographic enumeration of triangulated surfaces and 3-manifolds. Eur. J. Comb. 30, 1965–1979 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Thompson, A.: Thin position and the recognition problem for S 3. Math. Res. Lett. 1, 613–630 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  33. Tsuruga, M., Lutz, F.H.: Constructing complicated spheres. arXiv:1302.6856, EuroCG 2013, 4 pages (2013)

    Google Scholar 

  34. Volodin, I.A., Kuznetsov, V.E., Fomenko, A.T.: The problem of discriminating algorithmically the standard three-dimensional sphere. Russ. Math. Surv. 29(5), 71–172 (1974)

    Article  Google Scholar 

  35. Whitehead, J.H.C.: Simplicial spaces, nuclei and m-groups. Proc. Lond. Math. Soc., II. Ser. 45, 243–327 (1939)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Joswig, M., Lutz, F.H., Tsuruga, M. (2014). Heuristics for Sphere Recognition. In: Hong, H., Yap, C. (eds) Mathematical Software – ICMS 2014. ICMS 2014. Lecture Notes in Computer Science, vol 8592. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44199-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44199-2_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44198-5

  • Online ISBN: 978-3-662-44199-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics